Regression Discontinuity Estimators and LATE

James Heckman
University of Chicago

Econ 312
May 13, 2007
Regression Discontinuity Estimators and LATE

- Campbell (1969) developed the regression discontinuity design which is now widely used.

- Hahn, Todd, and Van der Klaauw (2001) present an exposition of the regression discontinuity estimator within a LATE framework.

- This lecture exposits the regression discontinuity method within our MTE framework.
Suppose assumptions (A-1)–(A-5) used in the IV lecture hold except that we relax independence assumption (A-1) to assume that \((Y_1 - Y_0, U_D)\) is independent of \(Z\) conditional on \(X\).

We *do not* impose the condition that \(Y_0\) is independent of \(Z\) conditional on \(X\).
Using $Y = Y_0 + D(Y_1 - Y_0)$, we obtain:

$$E(Y|X = x, Z = z) = E(Y_0|X = x, Z = z)$$
$$+ E(D(Y_1 - Y_0)|X = x, Z = z)$$
$$= E(Y_0|X = x, Z = z)$$
$$+ \int_0^{P(z)} E(Y_1 - Y_0|X = x, U_D = u)du.$$

So

$$\frac{\partial}{\partial z} E(Y|X = x, Z = z) = \frac{\partial}{\partial z} E(Y_0|X = x, Z = z)$$
$$+ E(Y_1 - Y_0|X = x, U_D = P(z))$$
Likewise, if we consider the discrete change form of IV:

\[
E(Y|X = x, Z = z) - E(Y|X = x, Z = z') \quad \frac{P(z) - P(z')}{P(z) - P(z')}
\]

\[
= \frac{E(Y_0|X = x, Z = z) - E(Y_0|X = x, Z = z')}{P(z) - P(z')}
\]

\[
+ \left(E(Y_1 - Y_0|X = x, P(z) > U_D > P(z')) \right)
\]

so that we now recover LATE plus a bias term.
Claims

- Relaxing the assumption that Y_0 is independent of Z conditional on X causes the standard LIV estimand to differ from the MTE.

- The LIV estimand in this case equals MTE plus a bias term that depends on $\frac{\partial}{\partial p} E(Y_0|X = x, P(Z) = p)$.

- Likewise, the discrete-difference IV formula will no longer correspond to LATE, but now will correspond to LATE plus a bias term.
A regression discontinuity design allows analysts to recover a LATE parameter at a particular value of Z.

If $E(Y_0|X = x, Z = z)$ is continuous in z, while $P(z)$ is discontinuous in z at a particular point, then it will be possible to use a regression discontinuity design to recover a LATE parameter.
While the regression discontinuity design does have the advantage of allowing Y_0 to depend on Z conditional on X, it only recovers a LATE parameter at a particular value of Z and cannot in general be used to recover either other treatment parameters such as the average treatment effect or the answers to policy questions such as the PRTE.
The following discussion is motivated by the analysis of Hahn et al. (2001).

For simplicity, assume that Z is a scalar random variable.

First, consider LIV while relaxing independence assumption (A-1) to assume that $(Y_1 - Y_0, U_D)$ is independent of Z conditional on X but without imposing that Y_0 is independent of Z conditional on X.

In order to make the comparison with the regression discontinuity design easier, we will condition on Z instead of $P(Z)$.
Using $Y = Y_0 + D(Y_1 - Y_0)$, we obtain:

$$
E(Y|X = x, Z = z) = E(Y_0|X = x, Z = z)
+ E(D(Y_1 - Y_0)|X = x, Z = z)
= E(Y_0|X = x, Z = z)
+ \int_0^{P(z)} E(Y_1 - Y_0|X = x, U_D = u) du.
$$

So

$$
\frac{\partial}{\partial z} E(Y|X = x, Z = z)
\frac{\partial}{\partial z} P(z)
= \frac{\partial}{\partial z} E(Y_0|X = x, Z = z)
\frac{\partial}{\partial z} P(z)
+ E(Y_1 - Y_0|X = x, U_D = P(z)).
$$
We have assumed that \(\frac{\partial}{\partial z} P(z) \neq 0 \).

We have also assumed that \(E(Y_0|X = x, Z = z) \) is differentiable in \(z \).

Notice that under our stronger independence condition (A-1),
\[\frac{\partial}{\partial z} E(Y_0|X = x, Z = z) = 0 \]
so that we identify MTE as before.

With \(Y_0 \) possibly dependent on \(Z \) conditional on \(X \), we now get MTE plus the bias term that depends on
\[\frac{\partial}{\partial z} E(Y_0|X = x, Z = z) \].
Likewise, if we consider the discrete change form of IV:

\[
\frac{E(Y|X = x, Z = z) - E(Y|X = x, Z = z')}{P(z) - P(z')}
= \frac{E(Y_0|X = x, Z = z) - E(Y_0|X = x, Z = z')}{P(z) - P(z')}
\]

so that we now recover LATE plus a bias term.
Now consider a regression discontinuity design.

Suppose that there exists an evaluation point z_0 for Z such that $P(\cdot)$ is discontinuous at z_0, and suppose that $E(Y_0|X = x, Z = z)$ is continuous at z_0.

Suppose that $P(\cdot)$ is increasing in a neighborhood of z_0.

Let

$$P(z_0-) = \lim_{\epsilon \downarrow 0} P(z_0 - \epsilon),$$

$$P(z_0+) = \lim_{\epsilon \downarrow 0} P(z_0 + \epsilon).$$

Note that the conditions that $P(\cdot)$ is increasing in a neighborhood of z_0 and discontinuous at z_0 imply that $P(z_0+) > P(z_0-)$.
Let
\[
\mu(x, z_0-) = \lim_{\epsilon \downarrow 0} E(Y|X = x, Z = z_0 - \epsilon),
\]
\[
\mu(x, z_0+) = \lim_{\epsilon \downarrow 0} E(Y|X = x, Z = z_0 + \epsilon).
\]

Note that
\[
\mu(x, z_0-) = E(Y_0|X = x, Z = z_0) + \int_0^{P(z_0-)} E(Y_1 - Y_0|U_D = u_D)du_D
\]
and
\[
\mu(x, z_0+) = E(Y_0|X = x, Z = z_0)
+ \int_0^{P(z_0+)} E(Y_1 - Y_0|X = x, U_D = u_D)du_D.
\]
We used the fact that $E(Y_0 | X = x, Z = z)$ is continuous at z_0.

Thus,

$$
\mu(x, z_0^+) - \mu(x, z_0^-) = \int_{P(z_0^-)}^{P(z_0^+)} E(Y_1 - Y_0 | X = x, U_D = u_D) du_D
$$

$$
\Rightarrow \frac{\mu(x, z_0^+) - \mu(x, z_0^-)}{P(z_0^+) - P(z_0^-)} = E(Y_1 - Y_0 | X = x, P(z_0^+) \geq U_D > P(z_0^-))
$$

We have recovered a LATE parameter for a particular point of evaluation.
Note that if $P(z)$ is only discontinuous at z_0, then we only identify $E(Y_1 - Y_0 | X = x, P(z_0+) \geq U_D > (z_0-))$ and not any LATE or MTE at any other evaluation points.

While this discussion assumes that Z is a scalar, it is straightforward to generalize the discussion to allow for Z to be a vector.

For more discussion of the regression discontinuity design estimator and an example, see Hahn et al. (2001).