
Estimation of Treatment Effects under Essential Heterogeneity

James Heckman

University of Chicago and American Bar Foundation

Sergio Urzua

University of Chicago

Edward Vytlacil

Columbia University

March 20, 2006

1 Introduction

The objective of this document is to describe different estimation techniques that allow the computation of treatment
effecs in the context of models with essential heterogeneity. We provide a FORTRAN code (MTE exe) that implements
these techniques, and an example based on the Generalized Roy Model.

2 The Illustrative Model

Assume that the economic model generating the data for potential outcomes is of the form:

Y1 = α1 + ϕ+Xβ1 + U1 (1)

Y0 = α0 +Xβ0 + U0 (2)

where vector X represents the observed variables (regressors), U0 and U1 represent the unobservables in the potential
outcome equations, and ϕ represents the benefit associated with the treatment (D = 1). The assumptions of linearity
and additive separability are not intrinsic to the model of essential heterogeneity and are used in this supplement
just to illustrate the estimation method we propose. The individuals decide whether or not to receive the treatment
(D = 1 or D = 0) based on a latent variable I

I = γ0Z − V (3)

where Z and V represent observables and unobservables respectively. Thus, we can define a binary variable D
indicating the treatment status

D =

½
1 if I > 0
0 if I ≤ 0 (4)

Finally, we assume that the error terms in the model are not independent even conditioning on the observables,
i.e. U1 ⊥Á⊥ U0 ⊥Á⊥ V |X1,X2.

Equations (1)-(4) can be interpreted as the Generalized Roy Model (Heckman and Vytlacil, 2001a).
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3 The Marginal Treatment Effect, Treatment Parameters and IV esti-
mates.

The marginal treatment effect in the model of the previous section is

E(Y1 − Y0|X = x, V = v) (5)

and it represents the benefits of treatment when V = v.

Notice that without lost of generality we can consider the following

γ0Z > V ⇐⇒ FV (γ
0Z) > FV (V )

where FV () is the cumulative distribution function of V. Then, if P (Z) and UD denote FV (γ0Z) and FV (V ) respectively,
we have that the choice model can be re-written as

P (Z) > UD.

and (5) can be defined
E(Y1 − Y0|X = x,UD = uD)

The TT, TUT, ATE and IV estimators can be constructed as a weighted averages of the MTE (Heckman and
Vytlacil, 2001a,b, 2005). In particular, if ∆IV

J (x) denotes the IV estimator obtained by using the instrument J we
have that:

∆IV
J (x) =

Z
MTE (x, ud)ωJ(x, ud)dud

where

ωJ(x, ud) =
(E(J |P (Z) > ud,X = x)− E(J |X = x)) Pr(P (Z) > ud|X = x)

Cov(J,D|X = x)

and ωJ(x, 0) = ωJ(x, 1) = 0 and
R
ωJ(x, ud)dFUd(ud) = 1.

Likewise,

∆TT (x) =

Z
MTE (x, ud)ωTT (x, ud)dud

where ∆TT (x) represents the treatment on the treated conditional on X = x. Similar expressions exist for the other
treatment parameters. These estimators depend on the particular value ofX (x). In order to eliminate this dependence
we need to integrate X out, so that we can define the unconditional estimators as

∆IV
J =

Z
∆IV
J (x)dFX(x)

and

∆TT =

Z
∆TT (x)dFX|D=1(x).

4 The Estimation of the Propensity Score and The Identification of the
Relevant Support

The first step in the computation of the MTE is to estimate the probability of participation or propensity score,
Pr(D = 1|Z = z) = P (z). This probability can be estimated using different methods. In this document, we assume
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V ∼ N(0, 1) and thus estimate P (z) using a probit model. Let bγ denote the estimated value of γ in equation (3).1 The
predicted value of the propensity score (conditional on Z = z), bP (z), is then computed as bP (z) = Pr(bγZ > V |Z =
z) = Φ(bγz) where Φ represents the cumulative distribution function of a standard normal random variable.

The predicted values of the propensity score allow us to define the values of uD over which the MTE can be
identified. In particular, as emphasized by Heckman and Vytlacil (2001a), identification of theMTE depends critically
on the support of the propensity score. The larger the support of the propensity score, the bigger the set over which
the MTE can be identified.

In order to define the relevant support we first estimate the frequencies of the predicted propensity scores in
the samples of treated (D = 1) and untreated (D = 0) individuals. These frequencies are computed using simple
histograms, and in both subsamples the same grid of values of bP (z) (Γ) specifies the number of points at which the
histogram is to be evaluated.2

Let Pl denote the set of evaluation points (coming from the grid) such that

Pl = {p ∈ Γ|� < Pr( bP (z) = p|D = l) < 1− �} with l = 0, 1 and � > 0

so Pl represents the set of values of p for which we compute frequencies in the range (0, 1) using the subsample of
individuals declaring D = l (l = 0, 1). Notice that the extreme values 0 and 1 are excluded from Pl. Finally, if we
denote by P the set of evaluation points used to define the relevant support of the propensity score, we have that

P = P0
T
P1 = {p ∈ Γ|� < Pr( bP (z) = p|D = 0) < 1− � and � < Pr( bP (z) = p|D = 1) < 1− �}.

for � > 0. Therefore, the MTE is defined only for those evaluations of bP (z) for which we obtain positive frequencies
for both subsamples.

In practice, after identifying the relevant or common support of the propensity score, it is necessary to adjust the
sample. In particular, the observations for which bP (z) is contained in the common support are kept. The rest of the
sample is dropped. From this point on, our analysis refers to the resulting sample.

5 Different Approaches to Estimate the Marginal Treatment under Es-
sential Heterogeneity

Using the expression (1)-(4), it is easy to show that

E (Y |X = x, P (Z) = p) = α+ β0x+ ((β1 − β0)x) p+K(p) (6)

where P (Z) represents the propensity score or probability of selection, p is a particular evaluation value of the
propensity score and

K(p) = ϕp+E(U0|P (Z) = p) +E (U1 − U0|D = 1, P (Z) = p) p. (7)

Equations (6) and (7) are the cornerstones in the approaches we start presenting now.

1Our code allows the utilization of non-parametric probit, linear probability model, and standard probit model in estimating the
propensity score.

2 In practice we set Γ = {0.01, 0.02, ..., 0.98, 0.99}.
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5.1 The Parametric Approach

This approach uses the parametric form of the marginal treatment effect under the assumption of joint normality for
the error terms. In particular, we add to the model presented in section 2 the following assumption:

(U0, U1, V ) ∼ N (0,Σ) (8)

where Σ represents the variance and covariance matrix. In what follows we denote by σ2V the variance of V, σ2i the
variance of Ui (with i = 0, 1), σV,i the covariance between Ui and V (with i = 0, 1), and σi,j the covariance between
Ui and Uj (with i 6= j).

Therefore, we can write

Pr (D = 1, Z) = Pr

µ
V

σV
<

Zγ

σV

¶
= Φ

µ
Zγ

σV

¶
= P (Z)

so
Zγ

σV
= Φ−1 (P (Z)) .

where Φ represents the cumulative distribution function of a standard normal random variable and Φ−1 its inverse.

Additionally, by using assumption (8) we can obtain:

E (Y1|D = 1,X, Z) = α1 + ϕ+Xβ1 +E (U1|V < Zγ)

= α1 + ϕ+Xβ1 + ρ1E

µ
V

σV
| V
σV

<
Zγ

σV

¶

= α1 + ϕ+Xβ1 + ρ1

⎛⎝−φ
³
Zγ
σV

´
Φ
³
Zγ
σV

´
⎞⎠

or, in terms of the propensity score

E (Y1|D = 1,X, P (Z)) = E (Y1|D = 1,X, P (Z)) = α1 + ϕ+Xβ1 + ρ1

Ã
−
φ
¡
Φ−1 (P (Z))

¢
P (Z)

!

where ρ1 =
σV,1
σV

and φ(.) denotes the density function associated with a standard normal random variable. Likewise,

E (Y1|D = 0,X, P (Z)) = α1 + ϕ+Xβ1 + ρ1
φ
¡
Φ−1 (P (Z))

¢
1− P (Z)

and
E (Y1|Zγ − V = 0,X, P (Z)) = α1 + ϕ+Xβ1 + ρ1Φ

−1 (P (Z)) .

Analogous expression can be obtained forE (Y0|D = 0,X, P (Z)) , E (Y0|D = 1,X, P (Z)), andE (Y0|Zγ − V = 0,X, P (Z)) .

Notice that, as mentioned in Section 3, without lost of generality, we can re-write the decision rule as follows

D =

½
1 if Zγ − V > 0
0 if Zγ − V ≤ 0 ⇐⇒ D =

½
1 if P (Z)− UD > 0
0 if P (Z)− UD ≤ 0

where in this case UD = Φ(V/σV ). Therefore, the marginal treatment in this case can be defined as:

MTE (X = x,UD = uD) = β01x− β00x+ (ρ1 − ρ0)Φ
−1 (uD)
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The following algorithm is used in the computation of the MTE under the parametric approach.

Step 1: We estimate E(Y |X = x,D = 1, P (Z) = p) and E(Y |X = x,D = 0, P (Z) = p) using the expressions

E(Y |X = x,D = 1, P (Z) = p) = α1 + ϕ+Xβ1 + ρ1

µ
−φ(Φ

−1(p))

p

¶
E(Y |X = x,D = 0, P (Z) = p) = α0 +Xβ0X + ρ0

φ(Φ−1(p))

(1− p)

where we use the following facts

E(U1|X = x,D = 1, P (Z) = p) = E(U1|X = x,Z 0γ > V, P (Z) = p) = −ρ1
φ(Φ−1(p))

p

E(U0|X = x,D = 0, P (Z) = p) = E(U0|X = x,Z 0γ < V, P (Z) = p) = ρ0
φ(Φ−1(p))

(1− p)
.

Step 2: With the estimated values bα0, \α1 + ϕ, bβ0, bβ1,bρ1 and bρ0 and by using the estimated propensity score (under
the full support condition) we compute:

\MTEPar (X = x,UD = uD) = \α1 + ϕ− bα0 + x0
³bβ1 − bβ0´+ (bρ1 − bρ0)Φ−1 (uD) .

5.2 Relaxing the Assumption of Normality: Using a Polynomial of the Propensity
Score.

We can approximate the function K(p) in equations (6) and (7) by a polynomial of p.3 Thus, if ϑ denote the degree
of the polynomial we obtain:

E (Y |X = x, P (Z) = p) = α0 + x0β0 + (α1 + ϕ− α0) p+ (x
0 (β1 − β0)) p+

ϑX
i=1

φip
i (9)

and, consequently, the estimator of the MTE is

∂E (Y |X = x, P (Z) = p)

∂p
= (α1 + ϕ− α0) + x0 (β1 − β0) +

ϑX
i=1

iφip
i−1

Therefore, the following algorithm can be used to compute the MTE.

Step 1: First, fit the model

Y = α0 +X 0β0 + (X
0 (β1 − β0))P (Z) +

ϑX
i=1

φiP (Z)
i + ξ

where we assume E(ξ|X = x, P (Z) = p) = 0. Notice that the term φ1 includes (α1 + ϕ− α0) .

Step 2: With the parameters values found in step 1 compute

\MTEPol (X = x,UD = p) = bκ+ x0 \(β1 − β0) +
ϑX
i=1

ibφipi−1
where κ = (α1 + ϕ− α0) + φ1.

3 Intuitively, this idea is based on a series approximation of the conditional expectation.
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6 The LIV Estimator (Semiparametric Method 1)

Heckman and Vytlacil (2001,2005) show that

∆LIV (x, uD) =
∂E(Y |X = x, P (Z) = p)

∂p

¯̄̄̄
p=uD

= ∆MTE (x, uD).

This expression indicates that in general the computation of the MTE involves the estimation of the partial derivative
of the expectation of the outcome Y (conditional on X = x and P (Z) = p) with respect to p. This is the method of
local instrumental variables introduced in Heckman and Vytlacil (2001). However, since we are considering the linear
and separable version of the model of essential heterogeneity, we can use equations (6) and (7) to show that

∂E(Y |X = x, P (Z) = p)

∂p

¯̄̄̄
p=uD

= x0(β1 − β0) +
∂K (p)

∂p

¯̄̄̄
p=uD

(10)

Thus, in order to compute theMTE we need to estimate values for (β1−β0) and
∂K(p)
∂p . Notice that without additional

assumptions, the estimation of this last term requires the utilization of nonparametric techniques.

Different approaches can be used in the estimation of (10). The following steps describe the first semiparametric
approach described in this document.

Step 1 We first estimate the coefficients β0 and (β1 − β0) in (6) using a semi-parametric version of the double residual
regression procedure.4 In order to do so, we start by fitting a local linear regression (LLR) of each regressor in
(6) on the predicted propensity score bP (z). Notice that if nX represents the number of variables in X, this step
involves the estimation of 2 × nX local linear regressions. This is because equation (6) also contains terms of
the form Xk

bP (z) for k = 1, ..., nX . We use the k-th regressor in (6), Xk, to illustrate the LLR procedure. Let
Xk(j) and bP (z(j)) denote the values of the k-th regressor and predicted propensity score for the j-th individual,
respectively, the latter evaluated at z (j) (the observed value for the individual). The estimation of the LLR of
Xk on bP (z) requires obtaining the values of {θ0(p), θ1(p)} for a set of values of p contained in the support ofbP (z) such that

{θ0(p), θ1(p)} = arg min
{θ0,θ1}

⎧⎨⎩
NX
j=1

(Xk(j)− θ0 − θ1( bP (z(j))− p))2Ψ(( bP (z(j))− p)/h)

⎫⎬⎭
where Ψ(.) and h represent the kernel function and the bandwidth, respectively and where θ0 and θ1 are
parameters.5 In practice, we use the set of all values of bP (z) to define the set of evaluation points (p) in the
LLR. This allows us to estimate the predicted value of Xk for each individual in the sample.6

Let bXk(j) denote the predicted value of Xk for the j-th individual. This procedure is repeated for each of the
2× nX regressors in the outcome equations.

Step 2 Given the predicted values of the 2×nX regressors bXk (k = 1, ..., 2×nX), we now generate the residual for each
regressor k and person j, beXk

(j) = Xk(j)− bXk(j) with k = 1, . . . , , 2× nX .

4 In the textbook case Y = λ1X1 + λ2X2 + � where � is assumed independent of X1 and X2, a double residual regression procedure
estimates λ2 using two stages. In the first stage, the estimated residuals of regressions of Y on X2 and X1 on X2 are computed. Let εY
and εX1 denote these estimated residuals. In the second stage, λ2 is estimated from the regression of εY on εX1 .

5The selection of optimal bandwidth is an extensively studied issue in the nonparametric literature. In the code utilized in this paper two
procedures computing optimal bandwidth in the context of local regressions are implemented. The first one is the standard leave-one-out
crossvalidation procedure. The second procedure is the refined bandwidth selector described in Section 4.6 of Fan and Gijbels (1996). Our
code allows the utilization of three different kernel functions: Epanechnikov, Gaussian and Biweight kernel functions.

6An alternative could be to use P as the set of evaluation points. In this case, in order to compute the predicted value of Xk for each
individual, it would be necessary to replace his value of the predicted propensity score.by the closest value in P.
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We denote by beXk
the vector of residuals (beXk

(1), beXk
(2), ..., beXk

(N))0, and by beX the matrix of residuals such
that its k-th column contains the vector beXk

.

Step 3 As in the standard double residual regression procedure, we also need to estimate a LLR of Y on bP (z). The
same procedure as the one described in Step 1 is used in this case. Let bY (j) denote the resulting predicted value
of outcome Y for the j-th individual.

Step 4 With bY (j) in hand, we generate the residual associated with outcome Y for each person j,

beY (j) = Y (j)− bY (j)
Following the notation used before, we denote by beY the vector of residuals (beY (1), ..., beY (N))0.

Step 5 Finally, we can estimate the values of β0 and (β1 − β0) in (6) from a regression of beY on be0X . More specifically,hbβ0, ( \β1 − β0)
i
= [be0XbeX ]−1[be0XbeY ].

Heckman et al. (1998) use a similar double residual regression argument to characterize the selection bias in a
semiparametric setup that arises from using nonexperimental data.

Step 6 From equation (10) we observe that after obtaining the estimated value of (β1 − β0), only ∂K (p)/ ∂p remains
to be estimated. However, with the estimated values of β0 and (β1 − β0) in hand, this term can be estimated
using standard nonparametric techniques. To see why, notice that we can write

eY = K (P (Z)) + ev (11)

where eY = Y −X 0bβ0−³X 0( \β1 − β0)
´
P (Z) and, as before, we assume E (ev|P (z),X) = 0. Then, it is clear from

(11) that the problem reduces to the estimation of ∂K
³ bP (z)´. ∂ bP (z), where K ³ bP (z)´ can be interpreted as

the conditional expectation E
³eY |P (Z) = bP (z)´ .

Step 7 Let bϑ1 (p) denote the nonparametric estimator of ∂K (p)/ ∂p. Notice that we define this estimator as a function
of p instead of bP (z). This is because, unlike the case of the LLR estimators described in Step 1, we now use a
subset of values of bP (z) to define the set of points (p) on which our estimator is evaluated. In particular, we use
the set P to define this set of evaluation points. As shown above, P contains the values of bP (z) for which we
obtain positive frequencies in both the D = 0 and D = 1 samples. Thus, bϑ1 (p) is computed as

{ϑ0(p), ϑ1(p)} = arg min
{ϑ0,ϑ1}

⎧⎨⎩
NX
j=1

(eY (j)− ϑ0 − ϑ1( bP (z(j))− p))2Ψ(( bP (z(j))− p)/h)

⎫⎬⎭
where as before Ψ(.) and h represent the kernel function and the bandwidth, respectively.

Step 8 The LIV estimator of the MTE is finally computed as follows:

∆LIV (x, uD) = ( \β1 − β0)
0x+

\∂K (p)

∂p

¯̄̄̄
¯
p=uD

= [MTE (x, uD)

and is evaluated over the set of p0s contained in P.
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7 Adding Structure (Semiparametric Method 2).

A different approach, that combines the ideas of the two previous methods, can also be used in the estimation of the
MTE. This approach has two stages. The first stage is closely related with the polynomial approximation method
presented in section 5.2, whereas the second stage uses some of the ideas behind the method in section 6.

The method is the following. First, a control function approach is used to estimate the coefficients inE (Y |X = x,P (Z) = p) .
In particular, based on the expression (6), we use a polynomial of degree d to approximate the function K(p) (see
expression (9) in Section 5.2). With these coefficients in hand, and using the same logic as in the step 6 in the previous
method, we construct a residualized version of the outcome. Finally, by fitting a nonparametric regression of this new
outcome on the propensity score, and by computing its derivative we obtain the MTE. These two last steps are similar
to the steps 6,7 and 8 in the previous section.

Formally, the method can be described by the following algorithm.

Step 1: We fit the model

Y = α0 +Xβ0 + (X (β1 − β0))P (Z) +
dX
i=1

ψiP (Z)
i
+ ς

where we assume E(ς|X = x,P (Z) = p) = 0. Notice that the term ψ1 includes (α1 + ϕ− α0) .

Step 2. With the estimated values of α0, β0 and (β1 − β0) in hand, we compute a residualized version of our
outcome. This new variable allows us to apply standard nonparametric techniques in the estimation of K(p). To see
why, notice that we can write: eY = K(P (Z)) + ev
where eY = Y − bα0 −X 0bβ0 − ³X 0( \β1 − β0)

´
P (Z) and as before, we assume E(ev|P (Z)) = 0. Therefore, the problem

reduces to the estimation of K(p), where K(p) can be interpreted as the conditional expectation E(eY |P (Z) = p).

Step 3. Standard nonparametric techniques for the estimation of local derivatives are used in the estimation of

∂E(eY |P (Z) = p)

∂p
=

∂K(p)

∂p

Our code allows the utilization of local polynomial of higher order to approximate K(p), and so the derivative is
computed accordingly to the selected order.

Step 4: Finally, the LIV estimator of the MTE in this case is

\MTENon2 (x = x,UD = uD) = x0( \β1 − β0) +
\∂K(p)
∂p

¯̄̄̄
¯
p=uD

.

8 The Weights

The IV weights. Let J be the instrument. For simplicity we assume that J is a scalar. Then, the IV weight is:

ωJ(x, uD) =
(E(J |P (Z) > uD,X = x)−E(J |X = x)) Pr(P (Z) > uD|X = x)

Cov(J,D|X = x)
(12)
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see Heckman and Vytlacil (2001a) and Heckman et al. (2006) for a derivation of this expression.

In order to compute the weight:

Step 1 We approximate bE(J |X = x) using a linear projection, i.e. we assume J = λ0X + V where E(V |X = x) = 0, sobE(J |X = x) = bλ0x.
Step 2 For each value of uD we generate the auxiliary indicator function I [P (Z) > uD] which is equal to 1 if the

argument of the function is true and 0 otherwise.

Step 3 We use linear projections to estimate E(J |X = x,P (Z) > uD). More precisely, we use OLS to estimate the
equation J(ud) = λ0J(uD)X + V using only the observations for which I [P (Z) > uD] = 1. Since we assume

E(V |X = x, P (Z) > uD) = 0, then bE(J |X = x, P (Z) > uD) = bλ0J(uD)x.
Step 4 Since Pr(P (Z) > uD|X = x) = Pr(I [P (Z) > uD] = 1|X = x) we use a probit model (for each value of uD) to

estimate this probability. Let cPr(P (Z) > uD|X = x) denote the estimated probability.

Step 5 We repeat steps 2, 3 and 4 for each value of uD..

Step 6 With bE(J |X = x), bE(J |X = x, P (Z) > uD) and cPr(P (Z) > uD|X = x) in hand we can compute the numerator
of (12). In order to get the denominator, we use the fact thatZ

ωJ(x, uD)duD =
1

Cov(J,D|X = x)

Z
(E(J |P (Z) > uD,X = x)−E(J |X = x)) Pr(P (Z) > uD|X = x)duD = 1

so with the numerator in hand, it is straightforward to obtain the value of the covariance (conditional on X).

The Treatment Parameter weights. We use the Treatment on the Treated (TT ) parameter to illustrate the
computation of the treatment parameter weights. The TT weight is:

ωTT (x, uD) =
Pr(P (Z) > uD|X = x)R
Pr(P (Z) > uD|X = x)duD

and consequently, we can use cPr(P (Z) > uD|X = x) to estimate the ωTT (x, uD). As in the case of ωJ(x, uD), with the
estimated value of cPr(P (Z) > uD|X = x) in hand, we can directly obtain the value for

R
Pr(P (Z) > uD|X = x)duD,

using the fact
R
ωTT (x, uD)duD = 1.

Therefore, provided with \MTE (x, ud) and estimated values for the weights we can can compute b∆IV
J (x) andb∆TT (x). Finally, since these estimators depend on the particular value of X (x) we can integrate X out to obtain b∆IV

J

and b∆TT .

9 Optimal Bandwidth and Kernel Functions

When applying nonparametric techniques is necessary to consider the selection of the bandwidth and the kernel
function. Cross-validation and data-driven procedures of bandwidth selection are frequently used in the applied
nonparametric literature. We implement the standard leave-one-out crossvalidation procedure, as well as the global
optimal bandwidth selection method recommended by Fan and Gijbels (1996).

In term of the kernel function, our code allows us to use three different kernel functions: Gaussian or Normal
kernel, Biweight Kernel, and Epanechnikov kernel.
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10 Example

Our example considers the following parametrization of the model:

U1 = σ1�

U0 = σ0�

V = σ∗V �

� ∼ N(0, 1) (13)

σ1 = 0.012, σ0 = −0.05, σ∗V = −1 (14)

α0 = 0.02, α1 = 0.04

β0 = [β10, β20] = [0.5, 0.1], β1 = [β11, β21] = [0.8, 0.4]

ϕ = 0.2

γ0 = 0.2, γ1 = 0.3, γ2 = 0.1

In the case of the independent variables we assume:

X1 ∼ N(−2, 4), X2 ∼ N(2, 4)

Z1 ∼ N(−1, 9), Z2 ∼ N(1, 9)

where X1 ⊥⊥ X2 ⊥⊥ Z1 ⊥⊥ Z2. Since we only observe Y1 or Y0 for each individual, but not both, we construct the
observed outcome Y as

Y = DY1 + (1−D)Y0

This framework allows us to compute the value of the different treatment parameters, as well as the IV estimator,
using exact forms. In particular, if we denote by Pr(D = 1|Z = z) = P (z) the propensity score we have that

Pr (D = 1, Z) = Pr

µ
V

σV
<

Zγ

σV

¶
= Φ

µ
Zγ

σV

¶
= P (Z)

so
Zγ

σV
= Φ−1 (P (Z)) .

where Φ represents the cumulative distribution function of a standard normal random variable and Φ−1 its inverse.

Additionally, by using assumption (13) we have

E (Y1|D = 1,X, Z) = α1 + ϕ+ β11X1 + β12X2 +E (U1|V < Zγ)

= α1 + ϕ+ β11X1 + β12X2 + ρ1E

µ
V

σV
| V
σV

<
Zγ

σV

¶

= α1 + ϕ+ β11X1 + β12X2 + ρ1

⎛⎝−φ
³
Zγ
σV

´
Φ
³
Zγ
σV

´
⎞⎠

or, in terms of the propensity score

E (Y1|D = 1,X, P (Z)) = α1 + ϕ+ β11X1 + β12X2 + ρ1

Ã
−
φ
¡
Φ−1 (P (Z))

¢
P (Z)

!
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where ρ1 =
σ∗V σ1
|σ∗V |

= −σ1 and φ denotes the density function associated with a standard normal random variable.
Likewise,

E (Y1|D = 0,X, P (Z)) = α1 + ϕ+ β11X1 + β12X2 + ρ1
φ
¡
Φ−1 (P (Z))

¢
1− P (Z)

and
E (Y1|Zγ − V = 0,X, P (Z)) = α1 + ϕ+ β11X1 + β12X2 + ρ1Φ

−1 (P (Z)) .

Analogous expression can be obtained forE (Y0|D = 0,X, P (Z)) , E (Y0|D = 1,X, P (Z)), andE (Y0|Zγ − V = 0,X, P (Z)) .

Notice that, without lost of generality, we can re-write the decision rule as follows

D =

½
1 if Zγ − V > 0
0 if Zγ − V ≤ 0 ⇐⇒ D =

½
1 if P (Z)− UD > 0
0 if P (Z)− UD ≤ 0

⇐⇒

where UD = Φ(V/σV ).

Therefore, the marginal treatment can be written as:

MTE (X = x,UD = uD) = (α1 − α0) + ϕ+ x0 (β1 − β0) + (ρ1 − ρ0)Φ
−1 (uD)

and provided with the values of α0, α1, β0, β1, ρ0, and ρ1 we can compute the MTE in this case.

The IV weights can be easily simulated as well. In particular, since X1 ⊥⊥ X2 ⊥⊥ Z1 ⊥⊥ Z2 we have that

ωJ(x, uD) =
(E(J |P (Z) > ud)−E(J)) Pr(P (Z) > uD)

Cov(J,D)

where J represents the instrument (either Z1, Z2 or a function of them), so since

Pr(P (Z) > uD) = Pr(Zγ > Φ−1 (uD))

and Z1 and Z2 are normally distributed, we have that

Pr(P (Z) > uD) = 1− ΦZγ(Φ−1 (uD))

where ΦZγ() represents the cdf of a normal distribution with mean 0 (= 0.2 − 0.3 + 0.1) and variance 1.6 (= 0.32 ×
16 + 0.12 × 16). In order to give an explicit expression for E(J |P (Z) > ud) let’s assume that J = Z1. Then,

E(J |P (Z) > uD) = E(Z1|Zγ > Φ−1 (uD))

= E(Z1|Zγ > Φ−1 (uD))

= E(Z1) +
Cov(Z1, Zγ)

V ar(Zγ)
E(Zγ|Zγ > Φ−1 (uD))

= E(Z1) +
Cov(Z1, Zγ)p

V ar(Zγ)

φ

µ
Φ−1(uD)√
V ar(Zγ)

¶
1− Φ

µ
Φ−1(uD)√
V ar(Zγ)

¶

= E(Z1) +
Cov(Z1, Zγ)p

V ar(Zγ)

⎛⎜⎜⎝ φ

µ
Φ−1(uD)√
V ar(Zγ)

¶
1− Φ

µ
Φ−1(uD)√
V ar(Zγ)

¶
⎞⎟⎟⎠
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so

ωZ1(uD) =

⎛⎝Cov(Z1,Zγ)√
V ar(Zγ)

⎛⎝ φ
Φ−1(uD)√
V ar(Zγ)

1−Φ Φ−1(uD)√
V ar(Zγ)

⎞⎠⎞⎠ ¡1− ΦZγ(Φ−1 (uD))¢
Cov(J,D)

=

Cov(Z1,Zγ)√
V ar(Zγ)

φ

µ
Φ−1(uD)√
V ar(Zγ)

¶
Cov(J,D)

and the denominator can be estimated using its sample analogue. Notice that in this case the weights do not depend
on X, so

∆IV
Z1 =

Z Z 1

0

MTE (x, uD)ωZ1(uD)duDdFX(x)

=

Z 1

0

Z
MTE (x, uD) dFX(x)ωZ1(uD)duD

=

Z 1

0

£
(α1 − α0) + ϕ+ x0 (β1 − β0) + (ρ1 − ρ0)Φ

−1 (uD)
¤
ωZ1(uD)duD

= (α1 − α0) + β + x0 (β1 − β0) + (ρ1 − ρ0)

Z 1

0

Φ−1 (uD)ωZ1(uD)duD

Finally, the weights associated with the treatment on the treated are

ωTT (xuD) =
Pr(P (Z) > uD)R
Pr(P (Z) > uD)dud

=
1− ΦZγ(Φ−1 (uD))R
1− ΦZγ(Φ−1 (uD))duD

and

∆TT = (α1 − α0) + ϕ+ x0 (β1 − β0) + (ρ1 − ρ0)

Z 1

0

Φ−1 (uD)ωTT (xuD)duD

Analogous logic applies to the other treatment effects.

In what follows we consider a montecarlo experiment. We simulate 50 samples of size 5000 from the model described
above, and we use our code to estimate its components. Then we compare these results with the actual values.

Table 1 presents the actual and estimated values for the probit model.

Table 2 presents the actual and estimated values for the different parameter in the each of the different approaches.

Table 3 presents the actual and estimated values for the treatment parameters.

Table 4 presents the results from IV in this case.

Figure 1 presents the estimated propensity score under the states (D = 1 and D = 0).

Figures 2 and 3 present the IV and treatment parameter weights, respectively.

Figure 4 presents the estimated marginal treatment effects obtained by using the different approaches.
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Coefficient Actual Values Estimated Values

γ0 0.2 0.226
(0.022)

γ1 0.3 0.311
(0.009)

γ2 0.1 0.092
(0.006)

Table 1. Coefficients in the Choice Model(Probit)



Coefficient Actual Values
Parametric Polynomial SemiParametric 1 (LIV) SemiParametric 2

α0 0.02 0.019 0.014
(0.001) (0.023)

α1 + ϕ 0.24 0.239
(0.004)

β10 0.5 0.499 0.499 0.498 0.499
(0.000) (0.004) (0.004) (0.004)

β20 0.1 0.099 0.101 0.1 0.101
(0.000) (0.004) (0.004) (0.004)

β11 0.8 0.799
(0.000)

β21 0.4 0.4
(0.000)

β11 - β10 0.3 0.296 0.297 0.296
(0.008) (0.008) (0.008)

β21 - β20 0.3 0.299 0.3 0.299
(0.009) (0.009) (0.009)

σ1 0.012 0.012
(0.000)

σ0 -0.05 -0.049
(0.002)

 φ1 - 0.641
(0.444)

φ2 - -1.536
(1.956)

 φ3 - 2.209
(2.957)

φ4 - -1.119
(1.144)

Estimated Values

Table 2. Coefficients in the Outcome Equations



Treatment Parameter Actual Values
Parametric Polynomial SemiParametric 1 (LIV) SemiParametric 2

Treatment on the Treated 0.254 0.258 0.279 0.261 0.261
(0.025) (0.043) (0.034) (0.034)

Treatment on the Untreated 0.185 0.189 0.128 0.158 0.158
(0.018) (0.042) (0.033) (0.033)

Average Treatment Effect 0.22 0.223 0.202 0.209 0.208
(0.015) (0.025) (0.021) (0.021)

Table 3. Treatment Parameters

Estimated Values



Instrument Actual Values
TSLS Parametric Polynomial SemiParametric 1 SemiParametric 2

Z1 0.221 0.22 0.224 0.206 0.207 0.207
(0.002) (0.01) (0.02) (0.02) (0.02)

Z2 0.213 0.231 0.222 0.205 0.206 0.206
(0.007) (0.01) (0.02) (0.02) (0.02)

Pr(D=1|Z1, Z2 ) 0.219 0.221 0.224 0.207 0.208 0.210
(0.002) (0.01) (0.03) (0.02) (0.03)

Table 4. IV Estimates

Estimated Values



Figure 1. Frequency of the Propensity Score by 
Treatment Status
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A. When Z1 is the instrument
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B. When Z2 is the instrument
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C. When P(Z) is the instrument

Notes: In each figure we present the actual and estimated IV weigths. The actual IV weigths are computed using the structure of the Generalized Roy model
described in the text. The estimated weigths on the other hand, are computed using the simulated data generated from the model. The sample size considered in
this example is 5000 observations. A detailed description of the estimation method is presented in the text.

Figure 2. Comparison of Actual and Estimated IV Weights
Generalized Roy Model
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A. TT Weights
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B. TUT Weights

0
.0

05
.0

1
.0

15
.0

2

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
v

Estimated Actual

Figure 3. ATE Weights

Notes: In each figure we present the actual and estimated treatment parameter weights. Figure A depicts the comparison for the treatment on the
treated (E(Y1−Y0|D=1)). Figure B presents the comparison for the treatment on the untreated (E(Y1−Y0|D=0)). Finally, Figure C presents the comparison
for the average treatment effect (E(Y1−Y0)). In each case, the actual weigths are computed using the structure of the Generalized Roy model described
in the text. The estimated weigths on the other hand, are computed using the simulated data generated from the model. The sample size considered in
this example is 5000 observations. A detailed description of the estimation method is presented in the text.

Figure 3. Comparison of actual and estimated Treatment Parameters
Generalized Roy Model
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Notes: In each figure we present the actual MTE, its estimate, and the associated confidence interval. The confidence interval is computed using 50
bootstraps. The first figure (up−left) presents the LIV estimator (semiparametric 1). The second figure (up−right) presents the results from the second
semiparametric approach presented in the text. The third figure (down−left) presents the results after approximating E(Y|P) by a fourth order polynomial.
The last figure (down−right) presents the results after assuming a parametric representation of the MTE. This representation is obtained by assuming that
the error terms in the model are normally distributed with means 0 and variances 1. A detailed description of the four procedures is presented in the text.

5000 Observations

Figure 4. Results using Different Approaches
Estimated Marginal Treatment Effects




