Marginal Policy Analysis and Fun with the Borel Paradox

James Heckman, University of Chicago

and

Edward Vytlacil, Columbia University

Cowles Foundation June 11, 2007

Potential outcomes

- Y_1 potential outcome if treated.
- Y₀ potential outcome if not treated.
- $\Delta = Y_1 Y_0$ (Treatment Effect)
- Y observed outcome, $\Rightarrow Y = Y_0(1 - D) + DY_1$ where D = 1 if treated, D = 0 otherwise.
- Implicitly fully conditioning on any observed regressors that determine Y_0 or Y_1 .

Selection Model

$$D = \mathbf{1}\{P(Z) - U \ge 0\}$$

- Assumptions:
 - P(Z), U, abs. continuous w.r.t. Lebesgue measure.
 Z ⊥⊥ (Y₀, Y₁, U).
- Normalization:
 - $U \sim \text{Unif}[0, 1]$
 - $P(Z) = \Pr[D = 1|Z].$

Average Effect for Those on Margin

Natural parameter to consider, Average Marginal Treatment Effect (AMTE):

 $E(Y_1 - Y_0 | P(Z) = U)$

- Expected effect of treatment on those indifferent between treatment or not.
- Economic intuition, seems to be interesting parameter.

Paradox and "Solution"

- Borel Paradox:
 - $E(Y_1 Y_0 | P(Z) = U)$ not uniquely defined!
- Our solution:

define $E(Y_1 - Y_0 | P(Z) = U)$ by connecting to effect of marginal policy change, effect of treatment on those whose choice would be affected by marginal policy change.

• Resulting $E(Y_1 - Y_0 | P(Z) = U)$ depends on particular marginal policy change (direction of marginal policy change).

Marginal Policy Change, Effect on Those on Margin

Considering marginal policy changes and corresponding average effect for those on margin of indifference has several advantages:

- Economic, policy content.
- weak support conditions for identification
- \sqrt{N} -estimability.

Outline

Rest of talk:

- Problem: Borel Paradox
- Policy Effects
- Marginal Policy Effects
- Average Marginal Treatment Effects
- Identification, Estimation Issues

Lack of Unique Definition: Borel Paradox

How to define average effect for individuals at the margin of indifference, the average marginal treatment effect?

•
$$D = \mathbf{1}\{P(Z) \ge U\}.$$

- Suggests defining $\Delta^{AMTE} = E(Y_1 Y_0 | P(Z) = U).$
- Problem: not uniquely defined (Borel Paradox).
- Can by defined by

•
$$E(Y_1 - Y_0 | P(Z) - U = t)$$
 evaluated at $t = 0$.

•
$$E(Y_1 - Y_0 | P(Z) / U = t)$$
 evaluated at $t = 1$.

- $E(Y_1 Y_0 | Z\gamma V = t)$ evaluated at t = 0, if $D = \mathbf{1}\{Z\gamma - V \ge 0\}$ so that $P(Z) = F_V(Z\gamma)$, $U = F_V(V)$.
- and so forth

• Let
$$\Delta^{MTE}(u) \equiv E(Y_1 - Y_0 | U = u).$$

Alternative Definitions of Average Marginal Treatment Effects

$$\begin{split} E(Y_1 - Y_0 | P(Z) - U = t) &= \int_0^1 \Delta^{\mathsf{MTE}}(u) f_P(u+t) du \\ E(Y_1 - Y_0 | Z\gamma - V = t) &= \int_0^1 \Delta^{\mathsf{MTE}}(u) \frac{f_{Z\gamma}(F_V^{-1}(u) + t)}{E(f_V(Z\gamma - t))} du \\ E(Y_1 - Y_0 | P/U = t) &= \int_0^1 \Delta^{\mathsf{MTE}}(u) \frac{f_P(u/t)t^{-2}u}{E(D)} du, \end{split}$$

and thus

$$E(Y_{1} - Y_{0}|P(Z) - U = 0) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) f_{P}(u) du$$

$$E(Y_{1} - Y_{0}|Z\gamma - V = 0) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \frac{f_{Z\gamma}(F_{V}^{-1}(u))}{E(f_{V}(Z\gamma))} du$$

$$E(Y_{1} - Y_{0}|P/U = 1) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \frac{f_{P}(u)u}{E(D)} du.$$

-

9 / 33

Alternative Definitions of Average Marginal Treatment Effects

•
$$E(Y_1 - Y_0 | P(Z) - U = 0) \neq E(Y_1 - Y_0 | Z\gamma - V = 0),$$

 $E(Y_1 - Y_0 | P(Z) - U = 0) \neq E(Y_1 - Y_0 | P/U = 1).$

- Can define $E(Y_1 Y_0 | P(Z) = U)$ using any of these limits (or in many other ways), each definition being equally valid but giving a different result.
- Thus, $E(Y_1 Y_0 | P(Z) = U)$ is not uniquely defined.
- We will define AMTE by connecting to marginal policy changes, direction of policy change will determine choice of AMTE.

Alternative Definitions of AMTE

PRTE

Previous Heckman-Vytlacil analysis:

- Policy Relevent Treatment Effect (PRTE): per-person effect of moving from baseline to an alternative policy, for policy alternative that affects incentives for treatment but not the potential outcomes, i.e., affect P(Z) but not Y₀, Y₁.
- For example, tuition subsidies, etc.
- Effect of a discrete change, from baseline to fixed alternative policy.

PRTE

- Let G denote the space of all cumulative distribution functions for random variables that lie in the unit interval.
 Space of policy alternatives (possible distribution functions for P(Z)).
- Define the PRTE function, Δ^{PRTE} : G → ℝ, as effect of going from baseline distribution F_P of P(Z) to distribution G.

PRTE

• Heckman-Vytlacil (2001) show $\Delta^{\mathsf{PRTE}} : \mathcal{G} \mapsto \mathbb{R}$, given by

$$\Delta^{\mathsf{PRTE}}(G) = \int_0^1 \Delta^{\mathsf{MTE}}(u) \, \omega_{\mathsf{PRTE}}(u; G) \, du$$

where

$$\Delta^{\text{MTE}}(u) = E(Y_1 - Y_0 | U = u),$$

$$\omega_{\text{PRTE}}(u; G) = \begin{cases} \frac{F_P(u) - G(u)}{E_G(P) - E_{F_P}(P)} & \text{if } E_G(P) \neq E_{F_P}(P) \\ 0 & \text{if } E_G(P) = E_{F_P}(P) \end{cases}$$

Effect of going from baseline to alternative policy G, as a function of G.

One Dimensional Curves in Space of Policy Alternatives

In many cases, the class of policy alternatives under consideration can be indexed by a scalar variable.

- Let P_0 denote base line probability for D = 1
- Let \mathbf{M} denote a subset of \mathbb{R} with $0 \in \mathbf{M}$,
- Let {P_α : α ∈ M} denote a class of alternative probabilities corresponding to alternative policy regimes with associated cumulative distribution functions F_{P_α}

Examples

Examples:

- The alternative policy increases the probability of participation by $\alpha \ge 0$, so that $P_{\alpha} = P_0 + \alpha \Rightarrow F_{P_{\alpha}}(t) = F_P(t \alpha).$
- The alternative policy changes each person's probability of participating by the proportion $(1 + \alpha)$, so that $P_{\alpha} = (1 + \alpha)P_{0} \Rightarrow F_{P_{\alpha}}(t) = F_{P}(\frac{t}{1+\alpha}).$
- Can also define alternative policy changes that operate on Z, for example, tuition subsidies or proportional tuition subsidies

Marginal PRTE

Define the Marginal Policy Relevant Treatment Effect as:

$$\Delta^{\mathsf{MPRTE}}(F_{P_{\alpha}}) = \lim_{\alpha \to 0} \Delta^{\mathsf{PRTE}}(F_{P_{\alpha}}),$$

Effect of a marginal change in the policy, going along the one dimensional curve $\{F_{P_{\alpha}}\}$. Depends on the curve $\{F_{P_{\alpha}}\}$, different policies will correspond to different PRTEs, and to different MPRTEs.

Marginal PRTE

Under regularity conditions,

$$\Delta^{\text{MPRTE}}(F_{P_{\alpha}}) = \lim_{\alpha \to 0} \int_{0}^{1} \Delta^{\text{MTE}}(u) \, \omega_{\text{PRTE}}(u; F_{P_{\alpha}}) \, du$$
$$= \int_{0}^{1} \Delta^{\text{MTE}}(u) \, \omega_{\text{MPRTE}}(u; F_{P_{\alpha}}) \, du,$$

where $\omega_{\text{MPRTE}}(u; F_{P_{\alpha}})$ is given by

$$\omega_{\text{MPRTE}}(u; F_{P_{\alpha}}) = \lim_{\alpha \to 0} \left(\frac{F_{P}(u) - F_{P_{\alpha}}(u)}{E_{F_{P_{\alpha}}}(P) - E_{F_{P}}(P)} \right).$$

Examples of MPRTE

Examples of MPRTE:

• The alternative policy increases the probability of participation by $\alpha \ge 0$, so that $P_{\alpha} = P_0 + \alpha \Rightarrow F_{P_{\alpha}}(t) = F_P(t - \alpha)$. Then

$$\Delta^{\mathsf{PRTE}}(F_{P_{\alpha}}) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \left(\frac{F_{P}(u) - F_{P}(u - \alpha)}{\alpha}\right) du.$$
$$\lim_{\alpha \to 0} \Delta^{\mathsf{PRTE}}(F_{P_{\alpha}}) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) f_{P}(u) du$$

Examples of MPRTE

② The alternative policy changes each person's probability of participating by the proportion $(1 + \alpha)$, so that $P_{\alpha} = (1 + \alpha)P_0 \Rightarrow F_{P_{\alpha}}(u) = F_P(\frac{u}{1+\alpha})$. Then

$$\Delta^{\mathsf{PRTE}}(F_{P_{\alpha}}) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \left(\frac{F_{P}(u) - F_{P}(\frac{u}{1+\alpha})}{\alpha E(D)}\right) du$$
$$\lim_{\alpha \to 0} \Delta^{\mathsf{PRTE}}(F_{P_{\alpha}}) = \int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \frac{uf_{P}(u)}{E(D)} du.$$

Compared to previous example, puts higher weight on higher u values.

Examples of MPRTE

Can also develop MPRTE for alternative policy changes that operate on Z, for example, tuition subsidies or proportional tuition subsidies

Numerical Example: MTE and density of P(Z)

Figure 1a

Figure 1b

Marginal Treatment Effect

Density Function of P(Z)

Numerical Example: PRTE, MPRTE for $P_{\alpha} = P + \alpha$

23 / 33

Numerical Example: PRTE for $P_{\alpha} = P + \alpha$, Plotted as Function of α

Figure 2b

 $PRTE\left(\alpha\right)$

 $P_{\alpha} = \min \left\{ P_0 + \alpha, 1 \right\} \therefore F_{P_{\alpha}} \left(t \right) = F_P \left(t - \alpha \right)$

Numerical Example: PRTE, MPRTE for $P_{\alpha} = (1 + \alpha)P$

25 / 33

Numerical Example: PRTE for $P_{\alpha} = (1 + \alpha)P$, Plotted as Function of α

Figure 3b

 $PRTE\left(\alpha\right)$

 $P_{\alpha} = \min\left\{(1+\alpha)P_0, 1\right\} \therefore F_{P_{\alpha}}\left(t\right) = F_P\left(\frac{t}{1+\alpha}\right)$

AMTE and Marginal PRTE

Note connections between choice of AMTE and Marginal PRTE, e.g.,

- Evaluating $E(Y_1 Y_0 | P(Z) U = t)$ at 0 and effect of marginal policy defined by marginal additive shift in P both given by $\int_0^1 \Delta^{\text{MTE}}(u) f_P(u) du$.
- Evaluating $E(Y_1 Y_0 | P/U = t)$ at t = 1 and effect of marginal policy defined by marginal proportional shifts in P both given by $\int_0^1 \Delta^{\text{MTE}}(u) \frac{f_P(u)u}{E(D)} du$.
- Likewise, if $D = 1\{Z\gamma V \ge 0\}$, then evaluating $E(Y_1 Y_0|Z\gamma V = t)$ at t = 0 leads to same expression as effect of marginal policy defined by marginal additive shift in a component of Z.

AMTE and Marginal PRTE

- Alternative definitions of AMTE correspond to alternative directions for marginal policy effects.
- Thus, uniquely define effect of treatment on those at margin of indifference by being precise about margin of indifference – e.g., those for whom a marginal additive shift versus marginal proportional shift would change treatment choice.

Identification

 Heckman-Vytlacil (2001) show all standard treatment parameters are weighted averages of MTE with weights that can be estimated.

Treatment Parameter (
$$j$$
) = $\int_{0}^{1} \Delta^{\mathsf{MTE}}(u) \omega_{j}(u) du$,

where $\omega_j(u)$ is the weighting function for parameter *j*. We have shown same is true for AMTE/Marginal PRTE.

- $\Delta^{\text{MTE}}(u) = \frac{d}{dp} E(Y|P(Z) = p)|_{p=u}$ \Rightarrow identify $\Delta^{\text{MTE}}(u)$ for $u \in \text{Supp}(P(Z))$.
- \Rightarrow Treatment Parameter (j) identified if Supp(P(Z)) \supseteq Supp(ω_j).

Identification

- Treatment Parameter (j) identified if Supp(P(Z)) ⊇ Supp(ω_j).
- Strong requirement for traditional treatment parameters, typically large support requirement – require 0 and/or 1 to be in support of P(Z).
- But for effect of marginal policy changes, equivalently for average effect on people at margin of indifference (AMTE), support condition holds.

Estimation: Treatment Effects as Weighted Average Derivatives

Treatment Parameter (j)

$$=\int \frac{\partial}{\partial p} E(Y|P(Z)=p) \, \omega_j(p) \, dp = E(g'(P)q_j(P)),$$

where

•
$$g'(p) = \frac{\partial}{\partial p} E(Y|P(Z) = p)$$

• $q_j(p) = \omega_j(p) / f_P(p)$

√N - Normal estimation using weighted average derivative?
 Problem: √N-consistent estimability requires q_j(p)f_P(p) = 0 on boundary of the support of P (see, e.g., Newey and Stoker, 1993)

• Otherwise, parameter depends on conditional expectation at a point.

Estimation: Treatment Effects as Weighted Average Derivatives

- \sqrt{N} -consistent estimability requires $q_j(p)f_P(p) = 0$ on boundary of the support of P
- q_j(p) = ω_j (p) / f_P(p), so requires ω_j(p) = 0 on boundary of the support of P
- Violated for common treatment parameters,
 - For example, $\omega_{ATE}(u) = 1$ for $u \in [0, 1]$, and ATE = E(Y|P = 1) E(Y|P = 0).
- However, will often hold for effect of marginal policy change, equivalently, for AMTE parameter. It will often be possible to consistently estimate MPRTE and AMTE parameters at \sqrt{N} -rate.

Summary

- Average effect of treatment on those at margin of indifference is not uniquely defined (Borel Paradox).
- We define effect of marginal policy changes. We give unique definition to average effect on those at margin of indifference by connecting to effect of marginal policy change in a particular direction.
- Unlike traditional treatment parameters in nonparametric selection model framework, these parameters
 - Can be identified without strong support requirements.
 - Can sometimes be consistently estimated at \sqrt{N} -rate.