Understanding Instrumental Variables in Models with Essential Heterogeneity

James Heckman, Sergio Urzua and Edward Vytlacil

Econ 312 This draft, May 14, 2007

Policy adoption problem

- Suppose a policy is proposed for adoption in a country.
- What can we conclude about the likely effectiveness of the policy in countries?
- Build a model of counterfactuals.

$$\begin{array}{rcl} Y_1 &=& \mu_1(X) + U_1 & (1.1) \\ Y_0 &=& \mu_0(X) + U_{0.} \end{array} \end{array}$$

Consider the basic generalized Roy model

- Two potential outcomes (Y_0, Y_1) .
- A choice equation

$$D = \mathbf{1}[\underbrace{\mu_D(Z, V)}_{\text{net utility}} > 0].$$

Observed outcomes are

$$Y = DY_1 + (1 - D)Y_0$$

• Assume $\mu_D(Z, V) = \mu_D(Z) - V$.

Switching Regression Notation

$$Y = Y_0 + (Y_1 - Y_0)D$$
(1.2)
= $\mu_0 + (\mu_1 - \mu_0 + U_1 - U_0)D + U_0.$

(Quandt, 1958, 1972)

In Conventional Regression Notation

$$Y = \alpha + \beta D + \varepsilon \tag{1.3}$$

$$\alpha = \mu_0, \ \beta = (Y_1 - Y_0) = \mu_1 - \mu_0 + U_1 - U_0, \ \varepsilon = U_0.$$

• β is the "treatment effect."

Figure 1: distribution of gains, a Roy economy

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000		000000000000000000000000000000000000000

The model

Outcomes	Choice Model
$Y_1 = \mu_1 + U_1 = \alpha + \overline{\beta} + U_1$ $Y_0 = \mu_0 + U_0 = \alpha + U_0$	$D=\left\{ egin{array}{c} 1 ext{ if } D^*>0\ 0 ext{ if } D^*\leq 0 \end{array} ight.$

General Case

 $\begin{array}{c} (U_1 - U_0) \not \perp D \\ \mathsf{ATE} \neq \mathsf{TT} \neq \mathsf{TUT} \end{array}$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000

The model

The Researcher Observes
$$(Y, D, C)$$

$$Y = \alpha + \beta D + U_0$$
 where $\beta = Y_1 - Y_0$

Parameterization

$$\alpha = 0.67 \quad (U_1, U_0) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \quad D^* = Y_1 - Y_0 - C$$

$$\bar{\beta} = 0.2 \quad \mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix} \qquad C = 1.5$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000	

- In the case when U₁ = U₀ = ε₀, simple least squares regression of Y on D subject to a selection bias.
- This is a form of endogeneity bias considered by the Cowles analysts.
- Upward biased for β if $Cov(D, \varepsilon) > 0$.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0 0000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000000000000000000000000000000000000	

- Three main approaches have been adopted to solve this problem:
 - Selection models
 - Instrumental variable models
 - **③** Matching: assumes that $\varepsilon \perp D \mid X$.
- Matching is just nonparametric least squares and assumes access to rich data which happens to guarantee this condition.

Case I, the traditional case: β is a constant

• If there is an instrument Z, with the property that

$$\begin{array}{ll} \operatorname{Cov}(Z,D)\neq 0 & (1.4)\\ \operatorname{Cov}(Z,\varepsilon)=0, & (1.5) \end{array}$$

then

plim
$$\hat{\beta}_{IV} = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, D)} = \beta.$$

• If other instruments exist, each identifies the same β .

Case II, heterogeneous response case: β is a random variable even conditioning on X

Sorting bias or sorting on the gain which is distinct from sorting on the level.

Essential heterogeneity

 $Cov(\beta, D) \neq 0.$

Suppose (1.4), (1.5) and

$$\operatorname{Cov}(Z,\beta) = 0. \tag{1.6}$$

• Can we identify the mean of $(Y_1 - Y_0)$ using IV?

In general we cannot (Heckman and Robb, 1985).Let

$$\bar{\beta} = (\mu_1 - \mu_0)$$
$$\beta = \bar{\beta} + \eta$$
$$U_1 - U_0 = \eta$$
$$Y = \alpha + \bar{\beta}D + [\varepsilon + \eta D]$$

- Need Z to be uncorrelated with $[\varepsilon + \eta D]$ to use IV to identify $\bar{\beta}$.
- This condition will be satisfied if policy adoption is made without knowledge of $\eta (= U_1 U_0)$.
- If decisions about D are made with partial or full knowledge of η , IV does not identify $\bar{\beta}$.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000	

• The IV condition is

$$E\left[\varepsilon+\eta D\mid Z\right]=0.$$

- $E(\varepsilon \mid Z) = 0, \quad E(\eta \mid Z) = 0.$
- Even if $\eta \perp\!\!\!\perp Z$, $\eta \not\perp\!\!\!\perp Z \mid D = 1$.
- $E(\eta D \mid Z) = E(\eta \mid D = 1, Z) \Pr(D = 1 \mid Z).$
- But E (η | Z, D = 1) ≠ 0, in general, if agents have some information about the gains.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	

- Draft Lottery example (Heckman, 1997).
- Linear IV does not identify ATE or any standard treatment parameters.

Imbens Angrist conditions (1994)

- Imbens and Angrist (1994) establish that IV can identify an interpretable parameter in the model with essential heterogeneity.
- Their parameter is a discrete approximation to the marginal gain parameter of Björklund and Moffitt (1987).
- This parameter can be interpreted as the marginal gain to outcomes induced from a marginal change in the costs of participating in treatment (Björklund-Moffitt).

Imbens Angrist conditions (1994)

- Imbens and Angrist assume the existence of an instrument Z that takes two or more distinct values.
- Keep conditioning on X implicit.
- Let $D_i(z)$ be the indicator (= 1 if adopted; = 0 if not)
- It is a random variable for choice when we set Z = z.

Imbens Angrist conditions (1994)

IV-1 (Independence)

 $Z \perp\!\!\!\perp (Y_1, Y_0, \{D(z)\}_{z \in \mathcal{Z}}).$

IV-2 (Rank) Pr(D = 1 | Z) depends on Z.

• They supplement the standard *IV* assumption with a "monotonicity" assumption.

IV-3 (Monotonicity or Uniformity) $D_i(z) \ge D_i(z') \text{ or } D_i(z) \le D_i(z') \text{ } i = 1, ..., I.$

Imbens Angrist conditions (1994)

- Uniformity of responses across persons.
- Uniformity is satisfied when, for z < z', $D_i(z) \le D_i(z')$ for all i, while for z'' > z', $D_i(z'') \le D_i(z')$ for all i.

Imbens Angrist conditions (1994)

• These conditions imply the LATE parameter.

$$E(Y \mid Z = z) - E(Y \mid Z = z')$$

= $E((D(z) - D(z'))(Y_1 - Y_0))$ (Independence)

Imbens Angrist conditions (1994)

• Using iterated expectations,

$$E(Y | Z = z) - E(Y | Z = z')$$

$$= \begin{pmatrix} E(Y_1 - Y_0 | D(z) - D(z') = 1) \\ \cdot \Pr(D(z) - D(z') = 1) \end{pmatrix}$$

$$- \begin{pmatrix} E(Y_1 - Y_0 | D(z) - D(z') = -1) \\ \cdot \Pr(D(z) - D(z') = -1) \end{pmatrix}.$$
(1.7)

Monotonicity allows us to drop out one term.

Imbens Angrist conditions (1994)

• Suppose, for example, that Pr(D(z) - D(z') = -1) = 0. Thus,

$$E(Y | Z = z) - E(Y | Z = z')$$

= $E(Y_1 - Y_0 | D(z) - D(z') = 1) \Pr(D(z) - D(z') = 1).$

$$LATE = \frac{E(Y \mid Z = z) - E(Y \mid Z = z')}{\Pr(D = 1 \mid Z = z) - \Pr(D = 1 \mid Z = z')}$$

= $E(Y_1 - Y_0 \mid D(z) - D(z') = 1)$ (1.8)

• The mean gain to those induced to switch from "0" to "1" by a change in Z from z' to z.

Imbens Angrist conditions (1994)

• Observe LATE = ATE if

$$\Pr(D = 1 | Z = z) = 1$$
 while $\Pr(D = 1 | Z = z') = 0$.

• "Identification at infinity" plays a crucial role throughout the entire literature on policy evaluation.

Imbens Angrist conditions (1994)

- In general, LATE $\neq E(Y_1 Y_0) = E(\beta)$.
- Not treatment on the treated: $E(\beta \mid D = 1)$.
- Different instruments define different parameters.
- Having a wealth of different strong instruments does not improve the precision of the estimate of any particular parameter (Heckman and Robb, 1986).
- When there are more than two distinct values of Z, Imbens and Angrist use Yitzhaki (1989) weights.

Imbens Angrist conditions (1994)

- Goal of our work: unify literature with a common set of underlying parameters interpretable across studies.
- To understand how to connect the results of various disparate IV estimands within a unified framework.

IV in choice models

$$D = \mathbf{1} \left[D^* > \mathbf{0} \right] \tag{2.1}$$

 $\mathbf{1}[\cdot]$ is an indicator ($\mathbf{1}[A] = 1$ if A true; 0 otherwise).

$$D^* = \mu_D(Z) - V \tag{2.2}$$

Example: $\mu_D(Z) = \gamma Z$

$$D^* = \gamma Z - V$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0 0000000000	000000	0.000000000000000000000	

Examples

$$(V \perp Z) \mid X.$$

The propensity score:

$$P(z) = \Pr(D = 1 \mid Z = z) = \Pr(\gamma z > V) = F_V(\gamma z)$$

 F_V is the distribution of V.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	

Examples

Generalized Roy model

$$D = \mathbf{1}[Y_1 - Y_0 - C > 0]$$

Costs
$$C = \mu_{C}(W) + U_{C}$$

 $Z = (X, W)$
 $\mu_{D}(Z) = \mu_{1}(X) - \mu_{0}(X) - \mu_{C}(W)$
 $V = -(U_{1} - U_{0} - U_{C}).$

Heterogeneous response model

In a general model with heterogenous responses, specification of P(Z) and its relationship with the instrument play a crucial role.

$$Cov(Z, \eta D) = E((Z - \overline{Z}) \eta D)$$

= $E((Z - \overline{Z}) \eta | D = 1) Pr(D = 1)$
= $E((Z - \overline{Z}) \eta | \underline{\gamma Z} > V) \underbrace{P(\gamma Z > V)}_{P(Z)}$
 $F_V(\gamma Z) > F_V(V) \underbrace{P(Z)}_{P(Z)}$

• Probability of selection enters the covariance even though we use only one component of Z as an instrument.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00000000000000000	00000000000000

• Selection models control for this dependence induced by choice.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	

Selection models

Assume

$$(U_1, U_0, V) \perp Z$$
 (2.3)
[Alternatively $(\varepsilon, \eta, V) \perp Z$].

$$\eta = (U_1 - U_0), \, \varepsilon = U_0 \tag{2.4}$$

$$E(Y | D = 0, Z = z) = E(Y_0 | D = 0, Z = z) = \alpha + E(U_0 | \gamma z < V)$$

$$E(Y \mid D = 0, Z = z) = \alpha + \underbrace{K_0(P(z))}_{\text{control function}}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	

Selection models

$$E(Y \mid D = 1, Z = z) = E(Y_1 \mid D = 1, Z = z)$$

= $\alpha + \overline{\beta} + E(U_1 \mid \gamma z > V)$
= $\alpha + \overline{\beta} + \underbrace{\mathcal{K}_1(P(z))}_{\text{control function}}$

- K₀(P(z)) and K₁(P(z)) are control functions in the sense of Heckman and Robb (1985, 1986).
- P(z) is an essential ingredient.
- Matching: $K_1(P(z)) = K_0(P(z))$.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	

- In a model where β is variable and not independent of V, misspecification of Z affects the interpretation of what IV estimates analogous to its role in selection models.
- Misspecification of Z affects both approaches to identification.
- This is a new phenomenon in models with heterogenous β .

Model for outcomes

$$Y_{1} = \mu_{1}(X, U_{1})$$

$$Y_{0} = \mu_{0}(X, U_{0}).$$
(3.1)

- X are observed and (U_1, U_0) are unobserved by the analyst.
- The X may be dependent on U_0 and U_1 .
- Generalize choice model (2.1) and (2.2) for D^* , a latent utility.

Model for outcomes

$$D^* = \mu_D(Z) - V \text{ and } D = \mathbf{1}(D^* \ge 0)$$
 (3.2)

 $\mu_D(Z) - V$ can be interpreted as a net utility for a person with characteristics (Z, V).

•
$$\beta = Y_1 - Y_0 = \mu_1(X, U_1) - \mu_0(X, U_0)$$
 (Treatment Effect)

Model for outcomes

- A special case that links our analysis to standard models in econometrics:
- $Y_1 = X \beta_1 + U_1$ and
- $Y_0 = X \beta_0 + U_0$; so
- $\beta = X (\beta_1 \beta_0) + (U_1 U_0).$
- In the case of separable outcomes, heterogeneity in β arises because in general $U_1 \neq U_0$ and people differ in their X.
- Heckman-Vytlacil conditions (1999,2001, 2005)

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	

Assumptions

A-1

The distribution of $\mu_D(Z)$ conditional on X is nondegenerate (Rank Condition for IV). This says that we can vary Z (excluded from outcome equations) given X. Key property of an instrument.

A-2

 (U_0, U_1, V) are independent of Z conditional on X (Independence Condition for IV). Z is not affecting potential outcomes or affecting the unobservables affecting choices.
Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	

Assumptions

A-3

The distribution of V is continuous (not essential).

A-4

 $E|Y_1| < \infty$, and $E|Y_0| < \infty$ (Finite Means).

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000000000000000000000000000000000000	

Assumptions

A-5

 $1 > \Pr(D = 1 | X) > 0$ (For each X there is a treatment group and a comparison group).

A-6

Let X_0 denote the counterfactual value of X that would have been observed if D is set to 0. X_1 is defined analogously. Thus $X_d = X$, for d = 0, 1 (The X_d are invariant to counterfactual manipulations).

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0.00000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000000000000000000000000000000000000	

- Separability between V and $\mu_D(Z)$ in choice equation is conventional.
- Plays an important role in the properties of instrumental variable estimators in models with essential heterogeneity.
- It implies monotonicity (uniformity) condition (IV-3) from choice equation (3.2).
- Vytlacil (2002) shows that independence and monotonicity (IV-3) imply the existence of a V and representation (3.2) given some regularity conditions.

Use probability integral transform to write

$$D = \mathbf{1} [F_V (\mu_D (Z)) > F_V (V)] = \mathbf{1} [P (Z) > U_D]$$
(3.3)
$$U_D = F_V (V) \text{ and } P (Z) = F_V (\mu_D (Z)) = \Pr[D = 1 | Z]$$

• *P*(*Z*) is transformation of mean scale utility in a discrete choice model.

• A basic parameter that can be used to unify the treatment effect literature:

$$\Delta^{MTE}(x, u_D) = E(Y_1 - Y_0 | X = x, U_D = u_D).$$

= $E(\beta | X = x, V = v)$

- MTE and the local average treatment effect (LATE) parameter are closely related.
- For $(z, z') \in \mathcal{Z}(x) \times \mathcal{Z}(x)$ so that P(z) > P(z'), under (IV-3) and independence (A-2), LATE is:

$$\Delta^{\text{LATE}}(z', z) = E(Y_1 - Y_0 \mid D(z) = 1, D(z') = 0) \quad (3.4)$$

LATE can be written in a fashion free of any instrument:

$$E(Y_1 - Y_0 | D(z) = 1, D(z') = 0)$$

$$= E(Y_1 - Y_0 | u'_D < U_D < u_D)$$

$$= \Delta^{\text{LATE}}(u'_D, u_D)$$
(3.5)

$$u_{D} = \Pr(D(z) = 1) = \Pr(D(z) = 1 | Z = z) = \Pr(D(z) = 1) = P(z)$$

$$u'_{D} = \Pr(D(z') = 1 | Z = z') = \Pr(D(z') = 1) = P(z')$$

The z just help us define evaluation points for the u_D .

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		000000		00000000	000000000000000000000000000000000000000			010000000000000000000000000000000000000	

LATE, the marginal treatment effect and instrumental variables

• Under (A-1)–(A-5), all standard treatment parameters are weighted averages of MTE with weights that can be estimated.

LATE, the marginal treatment effect and instrumental variables

Table 1A: treatment effects and estimands as weighted averages of the marginal treatment effect

$$ATE(x) = E(Y_1 - Y_0 | X = x) = \int_0^1 \Delta^{MTE}(x, u_D) du_D$$

 $TT(x) = E(Y_1 - Y_0 | X = x, D = 1) = \int_0^1 \Delta^{MTE}(x, u_D) \omega_{TT}(x, u_D) du_D$

 $TUT(x) = E(Y_1 - Y_0 | X = x, D = 0) = \int_0^1 \Delta^{MTE}(x, u_D) \omega_{TUT}(x, u_D) du_D$

Policy Relevant Treatment Effect (x) = $E(Y_{a'} | X = x) - E(Y_a | X = x) = \int_0^1 \Delta^{\text{MTE}}(x, u_D) \omega_{\text{PRTE}}(x, u_D) du_D$ for two policies a and a' that affect the Z but not the X

$$IV_J(x) = \int_0^1 \Delta^{MTE}(x, u_D) \omega_{IV}^J(x, u_D) du_D$$
, given instrument J

$$OLS(x) = \int_0^1 \Delta^{MTE}(x, u_D) \omega_{OLS}(x, u_D) du_D$$

LATE, the marginal treatment effect and instrumental variables

-

Table 1B: weights

1

$$\omega_{\text{ATE}}(x, u_D) = 1$$

$$\omega_{\text{TT}}(x, u_D) = \left[\int_{u_D}^1 f(p \mid X = x) dp\right] \frac{1}{E(P \mid X = x)}$$

$$\omega_{\text{TUT}}(x, u_D) = \left[\int_0^{u_D} f(p \mid X = x) dp\right] \frac{1}{E((1-P) \mid X = x)}$$

$$\omega_{\text{PRTE}}(x, u_D) = \left[\frac{F_{P_{a'}, X}(u_D) - F_{P_{a}, X}(u_D)}{\Delta \overline{P}}\right]$$

LATE, the marginal treatment effect and instrumental variables

Table 1B: weights

$$= \frac{\int_{U_D}^1 (J(Z) - E(J(Z) \mid X = x)) \int f_{J,P|X}(j,t \mid X = x) dt dj}{\operatorname{Cov}(J(Z), D \mid X = x)}$$

$$\sum_{\substack{\omega_{\mathsf{OLS}}(x, u_D) \\ = 1 + \frac{\left\{ \begin{array}{c} E(U_1 \mid X = x, U_D = u_D) \,\omega_1(x, u_D) \\ -E(U_0 \mid X = x, U_D = u_D) \,\omega_0(x, u_D) \end{array} \right\}}{\Delta^{\mathsf{MTE}}(x, u_D) }$$

LATE, the marginal treatment effect and instrumental variables

Table 1B: weights

$$\omega_1(x, u_D) = \left[\int_{u_D}^1 f(p \mid X = x) dp\right] \left[\frac{1}{E(P \mid X = x)}\right]$$
$$\omega_0(x, u_D) = \left[\int_0^{u_D} f(p \mid X = x) dp\right] \frac{1}{E((1-P) \mid X = x)}$$

Source: Heckman and Vytlacil (2005)

Relationships Among Parameters Using the Index Structure

• From the definition $D(z) = \mathbf{1} (U_D \le P(z))$,

$$\Delta^{\mathsf{TT}}(x, P(z)) = E(\Delta | X = x, U_D \le P(z)). \tag{4.1}$$

• Consider $\Delta^{\text{LATE}}(x, P(z), P(z'))$.

$$\begin{split} & E(Y|X = x, P(Z) = P(z)) \\ &= P(z) \bigg[E(Y_1|X = x, P(Z) = P(z), D = 1) \bigg] \\ &+ (1 - P(z)) \bigg[E(Y_0|X = x, P(Z) = P(z), D = 0) \bigg] \\ &= \int_{0}^{P(z)} E(Y_1|X = x, U_D = u_D) du_D + \int_{P(z)}^{1} E(Y_0|X = x, U_D = u_D) du_D. \end{split}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	

So that

$$E(Y|X = x, P(Z) = P(z)) - E(Y|X = x, P(Z) = P(z'))$$

= $\int_{P(z')}^{P(z)} E(Y_1|X = x, U_D = u_D) du_D - \int_{P(z')}^{P(z)} E(Y_0|X = x, U_D = u_D) du_D,$

and thus

$$\Delta^{\mathsf{LATE}}(x, P(z), P(z')) = E(\Delta|X = x, P(z') \le U_D \le P(z)).$$

- Notice that this expression could be taken as an alternative definition of LATE.
- Note that in this expression we could replace P(z) and P(z') with u_D and u'_D .
- No instrument needs to be available to define LATE.

• Rewrite these relationships in succinct form:

$$\Delta^{\mathsf{MTE}}(x, u_D) = E(\Delta | X = x, U_D = u_D)$$
(4.2)

$$\Delta^{\mathsf{ATE}}(x) = \int_0^1 E(\Delta | X = x, U_D = u_D) du_D$$

$$P(z)[\Delta^{\mathsf{TT}}(x,P(z))] = \int_0^{P(z)} E(\Delta|X=x,U_D=u_D) du_D$$

$$(P(z) - P(z'))[\Delta^{\text{LATE}}(x, P(z), P(z'))] = \int_{P(z')}^{P(z)} E(\Delta | X = x, U_D = u_D) du_D$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0 0000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010000000000000000000000000000000000000	

- Everywhere in these expressions can replace P(z) with u_D and P(z') with u'_D .
- Each parameter is an average value of MTE, $E(\Delta \mid X = x, U_D = u_D)$, but for values of U_D lying in different intervals and with different weighting functions.
- MTE defines the treatment effect more finely than do LATE, ATE, or TT.
- The relationship between MTE and LATE or TT conditional on P(z) is analogous to the relationship between a probability density function and a cumulative distribution function.

- The probability density function and the cumulative distribution function represent the same information, but for some purposes the density function is more easily interpreted.
- Likewise, knowledge of TT for all P(z) evaluation points is equivalent to knowledge of the MTE for all u evaluation points, so it is not the case that knowledge of one provides more information than knowledge of the other.
- However, in many choice-theoretic contexts it is often easier to interpret MTE than the TT or LATE parameters.
- It has the interpretation as a measure of willingness to pay on the part of people on a specified margin of participation in the program.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000000000		0.0000000000000000000000000000000000000	

- Δ^{MTE}(x, u_D) is the average effect for people who are just indifferent between participation in the program (D = 1) or not (D = 0) if the instrument is externally set so that P(Z) = u_D.
- For values of u_D close to zero, Δ^{MTE}(x, u_D) is the average effect for individuals with unobservable characteristics that make them the most inclined to participate in the program (D = 1), and for values of u_D close to one it is the average treatment effect for individuals with unobserved (by the econometrician) characteristics that make them the least inclined to participate.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000	

- ATE integrates Δ^{MTE}(x, u_D) over the entire support of U_D (from u_D = 0 to u_D = 1).
- It is the average effect for an individual chosen at random from the entire population.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	

- Δ^{TT}(x, P(z)) is the average treatment effect for persons who chose to participate at the given value of P(Z) = P(z); it integrates Δ^{MTE}(x, u_D) up to u_D = P(z).
- As a result, it is primarily determined by the MTE parameter for individuals whose unobserved characteristics make them the most inclined to participate in the program.
- LATE is the average treatment effect for someone who would not participate if P(Z) ≤ P(z') and would participate if P(Z) ≥ P(z).
- The parameter $\Delta^{\text{LATE}}(x, P(z), P(z'))$ integrates $\Delta^{\text{MTE}}(x, u_D)$ from $u_D = P(z')$ to $u_D = P(z)$.

• Using the third expression in equation (4.2) to substitute into equation (4.1), we obtain an alternative expression for the TT parameter as a weighted average of MTE parameters:

$$\Delta^{\mathsf{TT}}(x) = \int_0^1 \frac{1}{p} \left[\int_0^p E(\Delta | X = x, U_D = u_D) du_D \right] dF_{P(Z)|X,D}(p|x, D = 1).$$

Using Bayes' rule, it follows that

$$dF_{P(Z)|X,D}(p|x,1) = rac{\Pr(D=1|X=x,P(Z)=p)}{\Pr(D=1|X=x)} dF_{P(Z)|X}(p|x).$$

• Since
$$\Pr(D = 1 | X = x, P(Z) = p) = p$$
, it follows that

$$\Delta^{TT}(x) \qquad (4.3)$$

$$= \frac{1}{\Pr(D = 1 | X = x)} \int_{0}^{1} \left(\int_{0}^{p} E(\Delta | X = x, U_{D} = u_{D}) du_{D} \right) dF_{P(Z)|X}(p|x).$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	

• Note further that since $Pr(D = 1|X = x) = E(P(Z)|X = x) = \int_0^1 (1 - F_{P(Z)|X}(t|x))dt$, we can reinterpret (4.3) as a weighted average of local IV parameters where the weighting is similar to that obtained from a length-biased, size-biased, or *P*-biased sample.

$$\begin{split} \Delta^{\text{TT}}(x) &= \frac{1}{\Pr(D=1|X=x)} \\ &\cdot \int_{0}^{1} \left(\int_{0}^{1} \mathbf{1} (u_{D} \leq p) E(\Delta|X=x, U_{D}=u_{D}) du_{D} \right) dF_{P(Z)|X}(p|x) \\ &= \frac{1}{\int (1-F_{P(Z)|X}(t|x)) dt} \\ &\int_{0}^{1} \left(\int_{0}^{1} E(\Delta|X=x, U_{D}=u_{D}) \mathbf{1} (u_{D} \leq p) dF_{P(Z)|X}(p|x) \right) du_{D} \\ &= \int_{0}^{1} E(\Delta|X=x, U_{D}=u_{D}) \left(\frac{1-F_{P(Z)|X}(u_{D}|x)}{\int (1-F_{P(Z)|X}(t|x)) dt} \right) du_{D} \\ &= \int_{0}^{1} E(\Delta|X=x, U_{D}=u_{D}) g_{x}(u_{D}) du_{D} \end{split}$$

where $g_x(u_D) = \frac{1 - F_{P(Z)|X}(u_D|x)}{\int (1 - F_{P(Z)|X}(t|x))dt}$.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0000000000000000		0.0000000000000000000000000000000000000	000000000000000

- Thus $g_x(u_D)$ is a weighted distribution (Rao, 1985).
- Since $g_x(u_D)$ is a nonincreasing function of u_D , we have that drawings from $g_x(u_D)$ oversample persons with low values of U_D , i.e., values of unobserved characteristics that make them the most likely to participate in the program no matter what their value of P(Z).

Since

$$\Delta^{\mathsf{MTE}}(x, u_D) = E(\Delta | X = x, U_D = u_D)$$

it follows that

$$\Delta^{\mathsf{TT}}(x) = \int_0^1 \Delta^{\mathsf{MTE}}(x, u_D) g_x(u_D) du_D.$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	

• The TT parameter is thus a weighted version of MTE, where $\Delta^{\text{MTE}}(x, u_D)$ is given the largest weight for low u values and is given zero weight for $u_D \ge p_x^{max}$, where p_x^{max} is the maximum value in the support of P(Z) conditional on X = x.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0 0000000000		010020000000000000000000000000000000000	000000000000000000000000000000000000000

- Figure A-1 graphs the relationship between Δ^{MTE}(u_D), Δ^{ATE} and Δ^{TT}(P(z)), assuming that the gains are the greatest for those with the lowest U_D values and that the gains decline as U_D increases.
- The curve is the MTE parameter as a function of u_D , and is drawn for the special case where the outcome variable is binary so that MTE parameter is bounded between -1 and 1.
- The ATE parameter averages $\Delta^{MTE}(u_D)$ over the full unit interval (i.e. is the area under A minus the area under B and C in the figure).

Figure A-1. MTE Integrates to ATE and TT Under Full Support (for dichotomous outcome)

Source: Heckman and Vytlacil (2000).

Figure 9: treatment parameters and OLS matching as a function of P(Z) = p

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000	

- $\Delta^{TT}(P(z))$ averages $\Delta^{MTE}(u_D)$ up to the point P(z) (is the area under A minus the area under B in the figure).
- Because $\Delta^{\text{MTE}}(u_D)$ is assumed to be declining in u, the TT parameter for any given P(z) evaluation point is larger than the ATE parameter.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.41403440400000000	000000000000000000000000000000000000000

- Equation (4.2) relates each of the other parameters to the MTE parameter.
- One can also relate each of the other parameters to the LATE parameter.
- This relationship turns out to be useful later on in this chapter when we encounter conditions where LATE can be identified but MTE cannot.
- MTE is the limit form of LATE:

$$\Delta^{\mathsf{MTE}}(x,p) = \lim_{p' \to p} \Delta^{\mathsf{LATE}}(x,p,p').$$

- Direct relationships between LATE and the other parameters are easily derived.
- The relationship between LATE and ATE is immediate:

$$\Delta^{\mathsf{ATE}}(x) = \Delta^{\mathsf{LATE}}(x, 0, 1).$$

• Using Bayes' rule, the relationship between LATE and TT is

$$\Delta^{\mathsf{TT}}(x) = \int_{0}^{1} \Delta^{\mathsf{LATE}}(x, 0, p) \frac{p}{\mathsf{Pr}(D = 1 | X = x)} dF_{P(Z)|X}(p|x).$$
(4.4)

Derivation of PRTE and Implications of Noninvariance for PRTE

$$E(Y_{p} | X) = \int_{0}^{1} E(Y_{p} | X, P_{p}(Z_{p}) = t) dF_{P_{p}|X}(t)$$

$$= \int_{0}^{1} \left[\int_{0}^{1} [\mathbf{1}_{[0,t]}(u_{D})E(Y_{1,p} | X, U_{D} = u_{D}) + \mathbf{1}_{(t,1]}(u_{D})E(Y_{0,p} | X, U_{D} = u_{D})] du \right] dF_{P_{p}|X}(t)$$

$$= \int_{0}^{1} \left[\int_{0}^{1} [\mathbf{1}_{[u_{D},1]}(t)E(Y_{1,p} | X, U_{D} = u_{D}) + \mathbf{1}_{(0,u_{D}]}(t)E(Y_{0,p} | X, U_{D} = u_{D})] dF_{P_{p}|X}(t) \right] du_{D}$$

$$= \int_{0}^{1} \left[(1 - F_{P_{p}|X}(u_{D}))E(Y_{1,p} | X, U_{D} = u_{D}) + F_{P_{p}|X}(u_{D})E(Y_{0,p} | X, U_{D} = u_{D}) \right] du_{D}.$$

- This derivation involves changing the order of integration.
- Note that from (A-4),

$$E\Big|\mathbf{1}_{[0,t]}(u_D)E(Y_{1,p} \mid X, U_D = u_D) + \mathbf{1}_{(t,1]}(u_D)E(Y_{0,p} \mid X, U_D = u_D)\Big|$$

$$\leq E(|Y_1| + |Y_0|) < \infty,$$

so the change in the order of integration is valid by Fubini's theorem.

• Comparing policy p to policy p',

$$E(Y_{p} | X) - E(Y_{p'} | X)$$

= $\int_{0}^{1} E(\Delta | X, U_{D} = u_{D})(F_{P_{p'}|X}(u_{D}) - F_{P_{p}|X}(u_{D})) du_{D},$

which gives the required weights.

Recall Δ = Y₁ - Y₀ and we can drop the p, p' subscripts on outcomes and errors.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
Roy Model									

$$\begin{array}{rcl} Y_1 &=& \mu_1 + U_1; \\ Y_0 &=& \mu_0 + U_0; \\ I &=& Z\gamma - V; \\ D &=& \mathbf{1} [I > 0] \end{array}$$
Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Propensity Score									

The propensity score conditional on Z:

$$D = \mathbf{1} [I > 0] = \mathbf{1} [Z\gamma > V]$$
The propensity score:

$$P(Z) \equiv E[D|Z] = \Pr(D = 1|Z) = \Pr(\gamma Z > V) = F_V(Z\gamma)$$
Definition:

$$F_V(V) \equiv U_D$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Propensity Score									

therefore

$$\gamma Z > V \Leftrightarrow F_V(\gamma Z) > U_D \Leftrightarrow P(Z) > U_D$$
$$E[D] = \int_{-\infty}^{\infty} P(z) f_Z(z) dz$$
$$E(D) = E(E(\mathbf{1}[P(Z) > U_D] | U_D))$$
$$= 1 - E(F_{P(Z)}(U_D))$$
$$F_{P(Z)}(p) = \Pr(Z < F_V^{-1}(p)) = F_Z(F_V^{-1}(p))$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	
Propensity Score									

Normality assumptions

$$\begin{pmatrix} U_{1} \\ U_{0} \\ V \end{pmatrix} \sim N(0, \Sigma); \Sigma \equiv \begin{pmatrix} \sigma_{1}^{2} & \sigma_{10} & \sigma_{V1} \\ \cdot & \sigma_{0}^{2} & \sigma_{V0} \\ \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix}$$
$$\Rightarrow \begin{bmatrix} U_{1} - U_{0} \\ V \end{bmatrix} \sim N\left(\mathbf{0}, \begin{bmatrix} \sigma_{1}^{2} + \sigma_{0}^{2} - 2\sigma_{10} & \sigma_{1V} - \sigma_{0V} \\ \sigma_{1V} - \sigma_{0V} & \sigma_{V}^{2} \end{bmatrix}\right)$$
The Propensity Score $P(Z)$
$$P(Z) = \Pr(\gamma Z > V) = \Phi\left(\frac{\gamma Z}{\sigma_{V}}\right)$$

Propensity Score under normality assumptions

$$F_{P(Z)}(t) = \Pr(F_V(Z) < t) = \Pr(Z < F_V^{-1}(t)) = F_{P(Z)}(F_V^{-1}(t))$$

$$= \Phi\left(\frac{F_V^{-1}(t) - \mu_Z}{\sigma_Z}\right) = \Phi\left(\frac{\Phi^{-1}(t) \cdot \sigma_V - \mu_Z}{\sigma_Z}\right)$$

$$f_{P(Z)}(t) = \frac{\partial F_{P(Z)}(t)}{\partial t} = \phi\left(\frac{\Phi^{-1}(t) \cdot \sigma_V - \mu_Z}{\sigma_Z}\right) \frac{\sigma_V}{\sigma_Z} \cdot \frac{1}{\phi(\Phi^{-1}(t))}$$

Marginal Treatment Effect (MTE) and Average Treatment Effect (ATE):

$$ATE = E[Y_1 - Y_0] = \mu_1 - \mu_0$$

$$MTE(v) = E[Y_1 - Y_0|V = v]$$

$$= ATE + E[U_1 - U_0|V = v]$$

The MTE based on U_D :

$$MTE(u_D) = E[Y_1 - Y_0 | U_D = u_D] = ATE - E[U_1 - U_0 | U_D = u_D]$$

Whenever $U_D = P(Z)$ the agent is indifferent between treatments.

Under Normality Assumptions $\Rightarrow [U_1 - U_0 | V = v] \sim N\left(\frac{\sigma_{1-0,V}}{\sigma_V^2} \cdot v, \sigma^2 \left(1 - \rho^2\right)\right)$ $\Rightarrow MTE(v) = ATE + \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \frac{v}{\sigma_V}$

Writing in terms of

$$U_D = F_V(V) = \Phi\left(\frac{V}{\sigma_V}\right) \Rightarrow V = \sigma_V \cdot \Phi^{-1}(U_D)$$

$$MTE(u_D) = ATE + \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V^2} \cdot F_V^{-1}(u_D)$$

$$MTE(u_D) = ATE + \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \Phi^{-1}(u_D)$$

Average Treatment Effect (ATE):

$$ATE = E[E[Y_1 - Y_0 | V = v]] = \mu_1 - \mu_0$$

$$= E[E[MTE(v) | V = v]]$$

$$= \int_{-\infty}^{\infty} MTE(v) \cdot \omega_{ATE}(v) f_v(v) dv$$

$$\omega_{ATE}(v) = 1$$

Using U_D approach we obtain:

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	
The Average Tre	atme	nt Effect							

$$F_{V}(V) \equiv U_{D}$$

$$ATE = E[E[MTE(v) | U_{D} = u_{D}]]$$

$$ATE = \int_{0}^{1} MTE(u_{D}) \cdot \omega_{ATE}(u_{D}) du_{D}$$

$$\omega_{ATE}(u_{D}) = 1$$

Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

The relationship between the treatment on treated parameter and the marginal treatment effect is obtained below. First we do treatment on the treated given z.

$$TT(z) = E[Y_1 - Y_0 | I > 0, Z = z] = TT(P(Z))$$

$$= \frac{E[Y_1 - Y_0 \cdot \mathbf{1} [I > 0], Z = z]}{\Pr(I > 0)}$$
by law of iterated expectations
$$= \frac{E[(Y_1 - Y_0) \cdot \mathbf{1} [z\gamma > V]]}{\Pr(P(z) > U_D)}$$

$$= \frac{\int_{-\infty}^{z\gamma} MTE(v) f_V(v) dv}{P(z)}$$

The Treatment on the Treated

$$TT(P(Z)) = E[Y_1 - Y_0 | I > 0]$$

$$= \frac{E[Y_1 - Y_0 \cdot \mathbf{1}[I > 0]]}{\Pr(I > 0)}$$
by law of iterated expectations
$$= \frac{E[(Y_1 - Y_0) \cdot \mathbf{1}[P(Z) > U_D], Z = z]}{\Pr(P(Z) > U_D)}$$

$$= \frac{\int_{0}^{P(z)} MTE(u_D) du_D}{P(z)}$$

Using Normality Assuptions

$$TT(Z) = E[Y_1 - Y_0 | I > 0, Z = z]$$

$$= ATE + E[U_1 - U_0 | z\gamma > V, Z = z]$$
define $\sigma \equiv \sqrt{\sigma_1^2 + \sigma_0^2 - 2\sigma_{10}}$

$$= ATE + \sigma E\left[\frac{U_1 - U_0}{\sigma} | -\frac{V}{\sigma_V} > -\frac{z\gamma}{\sigma_V}\right]$$

$$\Rightarrow TT(z\gamma) = x(\beta_1 - \beta_0) - \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \lambda\left(-\frac{z\gamma}{\sigma_V}\right)$$
Where :

$$\lambda(x) \equiv \frac{\phi(x)}{1-\Phi(x)} = \frac{\phi(x)}{\Phi(-x)}$$

The propensity score is defined as Pr(D = 1|Z = z), where the conditional on Z is not used below in order to save notation. Based on the normality assumptions, we can obtain the following formulas:

$$P(z) = \Phi\left(rac{z\gamma}{\sigma_V}
ight)$$
 (Under Normality)

Including this equation in the Treatment on treated effect we obtain:

$$TT(z) = ATE - \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \lambda \left(-\frac{z\gamma}{\sigma_V}\right)$$
$$TT(P(z)) = ATE - \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \frac{\phi \left(\Phi^{-1}\left(P(z)\right)\right)}{P(z)}$$

$$TT = E[Y_1 - Y_0|I > 0]$$

=
$$\frac{E[Y_1 - Y_0 \cdot \mathbf{1}[I > 0]]}{\Pr(I > 0)}$$

by law of iterated expectations
$$= \frac{E[E[Y_1 - Y_0 \cdot \mathbf{1}[Z\gamma > v]]|V = v]}{\Pr(Z\gamma > V)}$$

but $Y_1, Y_0|V \perp D|V,$

The Treatment on the Treated

$$\begin{aligned}
& \text{using Fubini's theorem} \\
&= \frac{E\left[E\left[Y_{1}-Y_{0}|V=v\right] \cdot E\left[\mathbf{1}\left[Z\gamma > v\right]|V=v\right]\right]}{\Pr\left(Z\gamma > V\right)} \\
&= E\left[MTE\left(v\right) \cdot \frac{E\left[\mathbf{1}\left[Z\gamma > v\right]|V=v\right]}{\Pr\left(Z\gamma > V\right)}\right] \\
&= \int_{-\infty}^{\infty} E\left[MTE\left(v\right) \cdot \omega_{TT}\left(v\right)f_{v}\left(v\right)dv\right] \\
&= \frac{E\left[\mathbf{1}\left[Z\gamma > v\right]|V=v\right]}{\Pr\left(Z\gamma > V\right)} = \frac{1-F_{Z\gamma}\left(v\right)}{E\left(D\right)}
\end{aligned}$$

The same analysis using the propensity score:

$$TT = E[Y_1 - Y_0 | l > 0]$$

=
$$\frac{E[Y_1 - Y_0 \cdot \mathbf{1}[l > 0]]}{\Pr(l > 0)}$$

by law of iterated expectations
=
$$\frac{E[E[Y_1 - Y_0 \cdot \mathbf{1}[P(Z) > u_D]] | U_D = u_D]}{\Pr(P(Z) > U_D)}; U_D \equiv F_V(V)$$

but $Y_1, Y_0 | U_D \perp D | U_D,$

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

The Treatment on the Treated

using Fubini's theorem

$$= \frac{E[E[Y_1 - Y_0|U_D = u_D] \cdot E[\mathbf{1}[P(Z) > u_D]|U_D = u_D]]}{E(P(Z))}$$

$$= E\left[MTE(u_D) \cdot \frac{E[\mathbf{1}[P(Z) > u_D]|U_D = u_D]}{E(P(Z))}\right]$$

$$= \int_{-\infty}^{\infty} MTE(u_D) \cdot \omega_{TT}(u_D) du_D$$

Observe that
$$U_D \sim Uniform [0, 1]$$

$$\omega_{TT} (u_D) = \frac{E \left[\mathbf{1} \left[P(Z) > u_D \right] | U_D = u_D \right]}{E \left(P(Z) \right)}$$

$$= \frac{\int_{u_D}^1 f_{P(Z)} (p) \, dp}{E \left(P(Z) \right)} = \frac{1 - F_{P(Z)} (u_D)}{E \left(P(Z) \right)}$$

The relationship between the treatment on untreated parameter and the marginal treatment effect is obtained below:

Т

$$UT = E[Y_1 - Y_0 | I \leq 0, Z = z]$$

=
$$\frac{E[(Y_1 - Y_0) \cdot \mathbf{1}[I \leq 0], Z = z]}{\Pr(I \leq 0)}$$

by law of iterated expectations
$$= \frac{E[E[Y_1 - Y_0 \cdot \mathbf{1}[z\gamma \leq v]] | V = v]}{\Pr(z\gamma \leq V)}$$

but $Y_1, Y_0 | V \perp D | V$,

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

The Treatment on the Untreated

using Fubini's theorem

$$= \frac{E\left[E\left[Y_{1}-Y_{0}|V=v\right] \cdot E\left[\mathbf{1}\left[z\gamma \leqslant v\right]|V=v\right]\right]}{\Pr\left(z\gamma \leqslant V\right)}$$

$$= E\left[MTE\left(v\right) \cdot \frac{E\left[\mathbf{1}\left[z\gamma \leqslant v\right]|V=v\right]}{\Pr\left(z\gamma \leqslant V\right)}\right]$$

$$= \int_{-\infty}^{\infty} MTE\left(v\right) \cdot \omega_{TUT}\left(v\right) f_{v}\left(v\right) dv$$

$$\omega_{TUT}(\mathbf{v}) = \frac{E\left[\mathbf{1}\left[z\gamma \leqslant \mathbf{v}\right] | \mathbf{V} = \mathbf{v}\right]}{\Pr\left(z\gamma \leqslant \mathbf{V}\right)} = \frac{E\left[\mathbf{1}\left[z\gamma \leqslant \mathbf{v}\right] | \mathbf{V} = \mathbf{v}\right]}{1 - \Pr\left(z\gamma > \mathbf{v}\right)}$$
$$= \frac{\int_{-\infty}^{\mathbf{v}} f_{z\gamma}(z) \, dz}{1 - \Pr\left(z\gamma > \mathbf{V}\right)} = \frac{F_{z\gamma}(\mathbf{v})}{1 - E\left(D\right)}$$

The same analysis can be done with the propensity score approach:

$$TUT = E[Y_1 - Y_0 | I \leq 0]$$

=
$$\frac{E[Y_1 - Y_0 \cdot \mathbf{1} [I \leq 0]]}{\Pr(I \leq 0)}$$

by law of iterated expectations
=
$$\frac{E[E[Y_1 - Y_0 \cdot \mathbf{1} [P(Z) \leq u_D]] | U_D = u_D]}{\Pr(P(Z) \leq U_D)}$$

$$U_D \equiv F_V(V)$$

but $Y_1, Y_0 | U_D \perp D | U_D,$

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

The Treatment on the Untreated

using the Fubini's theorem

$$= \frac{E[E[Y_1 - Y_0|U_D = u_D] \cdot E[\mathbf{1}[P(Z) \le u_D]|U_D = u_D]]}{1 - E(P(Z))}$$

$$= E\left[MTE(u_D) \cdot \frac{E[\mathbf{1}[P(Z) \le u_D]|U_D = u_D]}{1 - E(P(Z))}\right]$$

Observe that
$$U_D \sim Uniform [0, 1]$$

$$= \int_{-\infty}^{\infty} E[MTE(u_D) \cdot \omega_{TUT}(u_D) du_D]$$

$$\omega_{TUT}(u_D) = \frac{E[\mathbf{1}[P(Z) \leq u_D] | U_D = u_D]}{1 - E(P(Z))}$$

$$= \frac{\int_{0}^{u_D} f_{P(Z)}(p) dp}{1 - E(P(Z))} = \frac{F_{P(Z)}(u_D)}{1 - E(P(Z))}$$

The Treatment on the Untreated

$$TUT(Z) = E[Y_1 - Y_0 | I < 0]$$

$$= \frac{E[Y_1 - Y_0 \cdot \mathbf{1}[I < 0]]}{\Pr(I < 0)}$$
by law of iterated expectations
$$= \frac{E[(Y_1 - Y_0) \cdot \mathbf{1}[\gamma Z < V]]}{\Pr(P(Z) < U_D)}$$

$$= \frac{\int_{\gamma Z}^{\infty} MTE(v) f_V(v) dv}{1 - P(Z)}$$

The Treatment on the Untreated

Т

$$\begin{aligned} FUT(P(Z)) &= E\left[Y_1 - Y_0 | I < 0\right] \\ &= \frac{E\left[Y_1 - Y_0 \cdot \mathbf{1}\left[I < 0\right]\right]}{\Pr\left(I < 0\right)} \\ &\text{by law of iterated expectations} \\ &= \frac{E\left[(Y_1 - Y_0) \cdot \mathbf{1}\left[P\left(Z\right) < U_D\right]\right]}{\Pr\left(P\left(Z\right) < U_D\right)} \\ &= \frac{\int\limits_{P(Z)}^{1} MTE\left(u_D\right) du_D}{1 - P\left(Z\right)} \end{aligned}$$

Using Normality Assumptions

$$TUT(Z\gamma) = E[Y_1 - Y_0 | I \leq 0]$$

$$= \alpha_1 - \alpha_0 + X(\beta_1 - \beta_0) + E[U_1 - U_0 | Z\gamma \leq V]$$

$$= ATE + E[U_1 - U_0 | Z\gamma \leq V]$$

define
$$\sigma = \sqrt{\sigma_1^2 + \sigma_0^2 - 2\sigma_{10}}, \lambda(x) \equiv \frac{\phi(x)}{\Phi(-x)}$$

 $= ATE + \sigma E \left[\frac{U_1 - U_0}{\sigma} | \frac{V}{\sigma_V} \ge \frac{Z\gamma}{\sigma_V} \right]$
 $\Rightarrow TUT(Z\gamma) = X (\beta_1 - \beta_0) + \frac{\sigma_{1V} - \sigma_{0V}}{\sigma_V} \cdot \lambda \left(\frac{Z\gamma}{\sigma_V} \right)$

The relationship between the OLS parameter and the marginal treatment effect is obtained below:

$$\begin{split} \Delta_{matching} &= E\left[Y_1|D=1\right] - E\left[Y_0|D=0\right] \\ &= ATE + E\left[U_1|Z\gamma > V\right] - E\left[U_0|Z\gamma \leqslant V\right] \\ &= ATE + \frac{E\left[U_1 \cdot \mathbf{1}\left[Z\gamma > V\right]\right]}{\Pr\left(Z\gamma > V\right)} - \frac{E\left[U_0 \cdot \mathbf{1}\left[Z\gamma \leqslant V\right]\right]}{\Pr\left(Z\gamma \leqslant V\right)} \\ &= ATE + E\left[\frac{\frac{E\left[U_1 \cdot \mathbf{1}\left[Z\gamma > v\right]|V=v\right]}{\Pr(Z\gamma \leqslant V)}}{\frac{E\left[U_0 \cdot \mathbf{1}\left[Z\gamma \leqslant v\right]|V=v\right]}{\Pr(Z\gamma \leqslant V)}}\right] \end{split}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000		000000	0.0000000000000000000000000000000000000	
OLS (Matching)									

$$= E \begin{bmatrix} ATE(v) + \frac{E[U_1 \cdot 1[Z_{\gamma} > v]|V = v]}{\Pr[Z_{\gamma} > V)} \\ - \frac{E[U_0 \cdot 1[Z_{\gamma} \leqslant v]|V = v]}{\Pr[Z_{\gamma} \leqslant V]} \end{bmatrix}$$

$$= E \begin{bmatrix} MTE(v) \cdot \begin{pmatrix} \omega_{ATE}(v) + \frac{E[U_1 \cdot 1[Z_{\gamma} > v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} > V)} - \\ \frac{E[U_0 \cdot 1[Z_{\gamma} \leqslant v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} \leqslant V)} \end{pmatrix} \end{bmatrix}$$

$$= E \begin{bmatrix} MTE(v) \cdot \begin{pmatrix} 1 + \frac{E[U_1 \cdot 1[Z_{\gamma} > v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} \leqslant V)} - \\ \frac{E[U_0 \cdot 1[Z_{\gamma} \leqslant v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} \leqslant V)} \end{pmatrix} \end{bmatrix}$$

$$= E \begin{bmatrix} MTE(v) \cdot \begin{pmatrix} 1 + \frac{E[U_1 \cdot 1[Z_{\gamma} > v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} \leqslant V)} - \\ \frac{E[U_0 \cdot 1[Z_{\gamma} \leqslant v]|V = v]}{MTE(v) \cdot \Pr(Z_{\gamma} \leqslant V)} \end{pmatrix} \end{bmatrix}$$

$$\omega_{match} \left(\mathbf{v} \right) = 1 + \frac{E[U_1 \cdot \mathbf{1}[Z\gamma > \mathbf{v}]|V = \mathbf{v}]}{MTE(\mathbf{v}) \cdot \Pr(Z\gamma > V)} \\ - \frac{E[U_0 \cdot \mathbf{1}[Z\gamma \leqslant \mathbf{v}]|V = \mathbf{v}]}{MTE(\mathbf{v}) \cdot \Pr(Z\gamma \leqslant V)} \\ U_1, U_0 | V \perp Z$$

$$E[U_{1} \cdot \mathbf{1}[Z\gamma > v] | V = v] = E[U_{1} | V = v] \cdot (1 - F_{Z\gamma}(v))$$

$$E[U_{0} \cdot \mathbf{1}[Z\gamma \leq v] | V = v] = E[U_{0} | V = v] \cdot F_{Z\gamma}(v)$$

$$\omega_{match}(v) = 1 + \frac{E[U_1|V=v] \cdot (1 - F_{Z\gamma}(v))}{MTE(v) \cdot \Pr(Z\gamma > V)} - \frac{E[U_0|V=v] \cdot F_{Z\gamma}(v)}{MTE(v) \cdot \Pr(Z\gamma \leq V)}$$

The same analysis can be done with the propensity score:

$$\begin{split} \Delta_{matching} &= E\left[Y_{1}|D=1\right] - E\left[Y_{0}|D=0\right] \\ &= ATE + E\left[U_{1}|P(Z) > U_{D}\right] - E\left[U_{0}|P(Z) \leqslant U_{D}\right] \\ &= E\left[\begin{array}{c} ATE\left(u_{D}\right) + \frac{E\left[U_{1}\cdot\mathbf{1}\left[P(Z)>u_{D}\right]\right]U_{D}=u_{D}\right]}{\Pr(P(Z)>U_{D})} \\ &- \frac{E\left[U_{0}\cdot\mathbf{1}\left[P(Z)\leqslant u_{D}\right]\right]U_{D}=u_{D}\right]}{\Pr(P(Z)\leqslant U_{D})} \end{array}\right] \\ &= E\left[MTE\left(u_{D}\right) \cdot \left(\begin{array}{c} 1 + \frac{E\left[U_{1}\cdot\mathbf{1}\left[P(Z)>u_{D}\right]\right]U_{D}=u_{D}\right]}{MTE\left(u_{D}\right)\cdot\Pr(P(Z)\geq U_{D})} - \\ &- \frac{E\left[U_{0}\cdot\mathbf{1}\left[P(Z)\leqslant u_{D}\right]\right]U_{D}=u_{D}\right]}{MTE\left(u_{D}\right)\cdot\Pr(P(Z)\leqslant U_{D})} \end{array}\right) \right] \\ &= E\left[MTE\left(u_{D}\right) \cdot \omega_{OLS}\left(u_{D}\right)\right] \\ &= \int_{-\infty}^{\infty} MTE\left(u_{D}\right) \cdot \omega_{OLS}\left(u_{D}\right) du_{D} \end{split}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	00000000000000000		000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
OLS (Matching)									

$$\omega_{match} (u_D) = 1 + \frac{E[U_1 \cdot \mathbf{1}[P(Z) > u_D]|U_D = u_D]}{MTE(u_D) \cdot \Pr(P(Z) > U_D)} - \frac{E[U_0 \cdot \mathbf{1}[P(Z) \leqslant u_D]|U_D = u_D]}{MTE(u_D) \cdot \Pr(P(Z) \leqslant U_D)}$$

Using Normality Assumption

$$\begin{split} \omega_{match}\left(u_{D}\right) &= 1 + \frac{E[U_{1} \cdot \mathbf{1}[Z\gamma > v]|V=v]}{MTE(v) \cdot \Pr(Z\gamma > V)} \\ &- \frac{E[U_{0} \cdot \mathbf{1}[Z\gamma \leqslant v]|V=v]}{MTE(v) \cdot \Pr(Z\gamma \leqslant V)} \\ &= 1 + \frac{E[U_{1}|V=v] \cdot E[\mathbf{1}[Z\gamma > v]]}{MTE(v) \cdot \Pr(Z\gamma > V)} \\ &- \frac{E[U_{0} \cdot |V=v] \cdot E[\mathbf{1}[Z\gamma \leqslant v]]}{MTE(v) \cdot \Pr(Z\gamma \leqslant V)} \end{split}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	0000000000000000	••••••		010000000000000000000000000000000000000	
OLS (Matching)									

$$= 1 + \frac{\left(\frac{\sigma_{1V}}{\sigma_V^2} \cdot v\right) \cdot \Phi\left(\frac{\gamma \cdot \mu_Z - v}{\sqrt{\gamma' \Sigma \gamma}}\right)}{MTE(v) \cdot \Phi\left(\frac{\gamma \cdot \mu_Z}{\sqrt{\gamma' \Sigma \gamma + \sigma_V}}\right)} \\ - \frac{\left(\frac{\sigma_{0V}}{\sigma_V^2} \cdot v\right) \cdot \Phi\left(\frac{v - \gamma \cdot \mu_Z}{\sqrt{\gamma' \Sigma Z \gamma}}\right)}{MTE(v) \cdot \Phi\left(-\frac{\gamma \cdot \mu_Z}{\sqrt{\gamma' \Sigma Z \gamma + \sigma_V}}\right)}$$

Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Matching in Z:

$$= ATE + E(U_1|Z\gamma' > V) - E(U_0|Z\gamma' < V)$$

$$= ATE + E(U_1| - V > -Z\gamma') - E(U_0|V > Z\gamma')$$

$$= ATE + E\left(U_1| - \frac{V}{\sigma_V} > -\frac{Z\gamma'}{\sigma_V}\right) - E\left(U_0|\frac{V}{\sigma_V} > \frac{Z\gamma'}{\sigma_V}\right)$$

$$= ATE + \sigma_{1}E\left(\frac{U_{1}}{\sigma_{1}}|-\frac{V}{\sigma_{V}}>-\frac{Z\gamma'}{\sigma_{V}}\right) - \sigma_{0}E\left(\frac{U_{0}}{\sigma_{0}}|\frac{V}{\sigma_{V}}>\frac{Z\gamma'}{\sigma_{V}}\right)$$
$$= ATE - \frac{\sigma_{1V}}{\sigma_{V}}\cdot\lambda\left(-\frac{\gamma Z}{\sigma_{V}}\right) - \frac{\sigma_{0V}}{\sigma_{V}}\cdot\lambda\left(\frac{\gamma Z}{\sigma_{V}}\right)$$
$$= ATE - \left(\frac{\frac{\sigma_{1V}}{\sigma_{V}}\cdot\Phi\left(-\frac{Z\cdot\gamma'}{\sigma_{V}}\right) + \frac{\sigma_{0V}}{\sigma_{V}}\cdot\Phi\left(\frac{Z\cdot\gamma'}{\sigma_{V}}\right)}{\Phi\left(\frac{Z\cdot\gamma'}{\sigma_{V}}\right)\Phi\left(-\frac{Z\cdot\gamma'}{\sigma_{V}}\right)}\right)\phi\left(\frac{Z\cdot\gamma'}{\sigma_{V}}\right)$$

Matching in
$$P(Z)$$
 using normality assumptions
 $\Delta_{matching} = E(Y_1|D=1) - E(Y_0|D=0)$

Matching in P(Z):

$$= ATE + E(U_1|Z\gamma' > V) - E(U_0|Z\gamma' < V)$$

$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \lambda \left(-\frac{\gamma Z}{\sigma_V}\right) - \frac{\sigma_{0V}}{\sigma_V} \cdot \lambda \left(\frac{\gamma Z}{\sigma_V}\right)$$

$$= ATE - \left(\frac{\sigma_{1V}}{\sigma_V} \cdot \frac{1}{P(Z)} + \frac{\sigma_{0V}}{\sigma_V} \cdot \frac{1}{1 - P(Z)}\right) \phi\left(\Phi^{-1}(P(Z))\right)$$

$$= ATE - \left(\frac{\frac{\sigma_{1V}}{\sigma_V} \cdot (1 - P(Z)) + \frac{\sigma_{0V}}{\sigma_V} \cdot P(Z)}{P(Z)(1 - P(Z))}\right) \phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$E(Y_{1} - Y_{0}|P(Z) - U_{D} = t)$$

$$= E(Y_{1} - Y_{0}|F_{V}(Z) - U_{D} = t)$$

$$= E(E(Y_{1} - Y_{0}|F_{V}(Z) = p, p - U_{D} = t)|F_{V}(Z) - U_{D} = t)$$

$$= E(E(Y_{1} - Y_{0}|U_{D} = p - t)|F_{V}(Z) - U_{D} = t)$$

$$= E[MTE(p - t)|P(Z) - U_{D} = t]$$

$$= \int_{0}^{1} MTE(p - t)f_{P}(p)dp = \int_{0}^{1} MTE(p)f_{P}(p + t)dp$$

$$\notin [0, 1] \Rightarrow f_{P}(v) = MTE(v) = 0$$

v

IV

General model Index Derivation Comparing models Examples GED Separability Conclusion

The PRTE

$$E(Y_1 - Y_0| - t < P(Z) - U_D < t)$$

= $E(E(Y_1 - Y_0|P(Z) - U_D = \xi)| - t < P(Z) - U_D < t)$
 $\Theta \equiv P(Z) - U_D$

$$f_{\Theta}(\theta) = \int f_{P(Z)}(\theta) \cdot f_{U_D}(\theta)$$

= $E(E(Y_1 - Y_0|\Theta = \xi) | -t < \Theta < t)$
= $\frac{E(E(Y_1 - Y_0|\Theta = \xi) \cdot \mathbf{1} [-t < \Theta < t])}{\Pr(-t < \Theta < t)}$
= $\frac{E\left(\int_{-t}^{t} E(Y_1 - Y_0|\Theta = \xi) F_{P(Z)}(\xi + 1) d\xi\right)}{\Pr(-t < \Theta < t)}$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$= \frac{E\left(\left(\int_{0}^{1} MTE(p)f_{P}(p+\xi)dp\right) \cdot \mathbf{1}\left[-t < P(Z) - U_{D} < t\right]\right)}{\Pr\left(-t < \Theta < t\right)}$$
$$= \frac{\int_{-t}^{t} \left(\int_{0}^{1} MTE(p)f_{P}(p+\xi)dp\right)f_{P(Z)}\left(\xi + u_{D}\right)d\xi}{\Pr\left(-t < \Theta < t\right)}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$= \frac{E\left(\left(\int_{0}^{1} MTE(p)f_{P}(p+\xi)dp\right) \cdot \mathbf{1}\left[-t < P(Z) - U_{D} < t\right]\right)}{\Pr\left(-t < \Theta < t\right)}$$
$$= \frac{\int_{-t}^{t} \int_{0}^{1} MTE(u_{D})f_{P}(u_{D} + t^{*})du_{D}dt^{*}}{\Pr\left(-t < P(Z) - U_{D} < t\right)}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$\begin{aligned} \Pr(-t < \Theta < t) &= \Pr(-t < P(Z) - U_D < t) \\ &= E(\mathbf{1}[-t < P(Z) - U_D < t]) \\ &= E(E(\mathbf{1}[u_D - t < P(Z) < t + u_D] | U_D = u_D)) \\ &= E(F_{P(Z)}(t + U_D) - F_{P(Z)}(-t + U_D)) \\ &= \int_0^1 \left[F_{P(Z)}(t + u_D) - F_{P(Z)}(-t + u_D) \right] du_D \\ F_{P(Z)}(p) &= \Phi\left(\frac{\Phi^{-1}(p) \cdot \sigma_V - \mu_Z}{\sigma_Z} \right) \end{aligned}$$
Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$E(Y_{1} - Y_{0}|Z - V = t)$$

$$= \int_{0}^{1} MTE(u_{D}) \frac{f_{Z}(F_{V}^{-1}(u_{D}) + t)}{E(f_{V}(Z - t))} du_{D}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion	
		0000000		00000000	000000000000000000000000000000000000000					200
The PRTE										

therefore

$$E(Y_{1} - Y_{0}| - t < Z - V < t)$$

$$= E(E(Y_{1} - Y_{0}|Z - V = t)| - t < Z - V < t)$$

$$= \frac{E(E(Y_{1} - Y_{0}|Z - V = t) \cdot \mathbf{1}[-t < Z - V < t])}{\Pr(-t < Z - V < t)}$$

$$= \frac{\int_{-t}^{t} \int_{0}^{1} MTE(u_{D}) \frac{f_{Z}(F_{V}^{-1}(u_{D}) + t^{*})}{E(f_{V}(Z - t^{*}))} du_{D} dt^{*}}{\Pr(-t < Z - V < t)}$$

Adoption model IV General model Index Operation Comparing models Examples GED Separability Conclusion

The PRTE

$$\Pr(-t < Z - V < t)$$

$$= \int_{-\infty}^{\infty} [F_Z(t+v) - F_Z(-t+v)] f_V(v) dv$$

$$F_Z(z) = \Phi\left(\frac{z - \mu_Z}{\sigma_Z}\right)$$

$$f_V(v) = \phi\left(\frac{v}{\sigma_V}\right) \frac{1}{\sigma_V}$$

$$E(Y_{1} - Y_{0}|P(Z)/U_{D} = 1 - t)$$

$$= \int_{0}^{1} MTE(u_{D}) \frac{f_{P}(u_{D}/(1 - t))(1 - t)^{2}u_{D}}{E(D)} du_{D}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion	
		0000000		00000000	000000000000000000000000000000000000000					200
The PRTE										

therefore

$$E(Y_{1} - Y_{0}|1 - t < P(Z)/U_{D} < 1 + t)$$

$$= E(E(Y_{1} - Y_{0}|P(Z)/U_{D} - 1 = -t^{*})|1 - t < P(Z)/U_{D} < 1 + t)$$

$$= \frac{E(E((Y_{1} - Y_{0}|P(Z)/U_{D} - 1 = -t^{*}) \cdot 1[-t < P(Z)/U_{D} - 1 < t]))}{Pr(1 - t < P(Z)/U_{D} < 1 + t)}$$

$$= \frac{E\left(\left(\int_{0}^{1} MTE(u_{D})\frac{f_{P}(u_{D}/(1 - t^{*}))(1 - t^{*})^{2}u_{D}}{E(D)}du_{D}\right) \cdot 1[-t < P(Z)/U_{D} - 1 < t]\right)}{Pr(1 - t < P(Z)/U_{D} < 1 + t)}$$

$$= \frac{\int_{1 - t}^{1 + t} \int_{0}^{1} MTE(u_{D})\frac{f_{P}(u_{D}/(1 - t^{*}))(1 - t^{*})^{2}u_{D}}{E(D)}du_{D}dt^{*}}{E(D)}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000				000000000000000000000000000000000000000
The PRTE									

$$\begin{aligned} &\Pr\left(1 - t < P(Z)/U_D < 1 + t\right) \\ &= E\left(\mathbf{1}\left[1 - t < P(Z)/U_D < 1 + t\right]\right) \\ &= E\left(E\left(\mathbf{1}\left[(1 - t) u_D < P(Z) < (1 + t) u_D\right] | U_D = u_D\right)\right) \\ &= E\left(\left[F_{P(Z)}\left((1 + t) \cdot U_D\right) - F_{P(Z)}\left((1 - t) \cdot U_D\right)\right]\right) \\ &= \int_{0}^{1} \left[F_{P(Z)}\left((1 + t) \cdot u_D\right) - F_{P(Z)}\left((1 - t) \cdot u_D\right)\right] du_D \end{aligned}$$

$$F_{P(Z)}(p) = \Phi\left(\frac{\Phi^{-1}(p)\cdot\sigma_V-\mu_Z}{\sigma_Z}\right)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000	100000	000000000000000	
The PRTE									

Treatment Effects in (u_D)

Treatment Effects in (v)

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000	00000	00000000000000	
The PRTE									

$$Y_{1} = \alpha_{1} + U_{1}; Y_{0} = \alpha_{0} + U_{0} \qquad Z \perp U_{1}, U_{0}, V$$

$$I = Z - V; D = \mathbf{1} [I > 0] = \mathbf{1} [Z > V]$$

$$Y = DY_{1} + (1 - D) Y_{0} \qquad (U_{1}, U_{0}, V) \sim N(\mathbf{0}, \mathbf{\Sigma}_{U,V});$$

$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_{1}^{2} & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_{0}^{2} & \sigma_{10} \\ \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix} = \begin{pmatrix} 1.26 & 0.51 & -0.40 \\ \cdot & 2.01 & -0.90 \\ \cdot & \cdot & 3 \end{pmatrix}$$

 $\mu_1 = 1; \mu_0 = 0;$

Treatment Effects Bias in (v)

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000	100000	0000000000000	000000000000000000000000000000000000000
The PRTE									

$$Y_{1} = \alpha_{1} + U_{1}; Y_{0} = \alpha_{0} + U_{0} \qquad Z \perp U_{1}, U_{0}, V$$

$$I = Z - V; D = \mathbf{1} [I > 0] = \mathbf{1} [Z > V] \qquad Z \sim N (\mu_{Z}, \sigma_{Z}^{2}) = N (1, 1)$$

$$Y = DY_{1} + (1 - D) Y_{0} \qquad (U_{1}, U_{0}, V) \sim N (\mathbf{0}, \boldsymbol{\Sigma}_{U,V});$$

$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_{1}^{2} & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_{0}^{2} & \sigma_{10} \\ \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix} = \begin{pmatrix} 1.26 & 0.51 & -0.40 \\ \cdot & 2.01 & -0.90 \\ \cdot & \cdot & 3 \end{pmatrix}$$

 $\mu_1 = 1; \mu_0 = 0;$

Treatment Effects Bias in (v)

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000	100000	000000000	000000000000000000000000000000000000000
The PRTE									

$$Y_{1} = \alpha_{1} + U_{1}; Y_{0} = \alpha_{0} + U_{0} \qquad Z \perp U_{1}, U_{0}, V$$

$$I = Z - V; D = \mathbf{1} [I > 0] = \mathbf{1} [Z > V] \qquad Z \sim N (\mu_{Z}, \sigma_{Z}^{2}) = N (1, 1)$$

$$Y = DY_{1} + (1 - D) Y_{0} \qquad (U_{1}, U_{0}, V) \sim N (\mathbf{0}, \boldsymbol{\Sigma}_{U,V});$$

$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_{1}^{2} & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_{0}^{2} & \sigma_{10} \\ \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix} = \begin{pmatrix} 1.26 & 0.51 & -0.40 \\ \cdot & 2.01 & -0.90 \\ \cdot & \cdot & 3 \end{pmatrix}$$

 $\mu_1 = 1; \mu_0 = 0;$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.000000000000000	
The Model:									

$$\begin{array}{rcl} Y_{1} & = & \mu_{1} + U_{1}; \\ Y_{0} & = & \mu_{0} + U_{0}; \\ I & = & Z \cdot \gamma' - V; \\ D & = & \mathbf{1} \left[I > 0 \right] \end{array}$$

$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_1^2 & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_0^2 & \sigma_{10} \\ \cdot & \cdot & \sigma_V^2 \end{pmatrix} \\ \begin{bmatrix} U_1 - U_0 \\ V \end{bmatrix} \sim N \begin{pmatrix} \mathbf{0}, & \sigma_{1-0}^2 & \sigma_{V1} - \sigma_{V0} \\ \cdot & \sigma_V^2 \end{pmatrix} \\ \sigma_{1-0} = \sqrt{\sigma_{U1}^2 + \sigma_{U0}^2 - 2\sigma_{10}} \end{pmatrix}$$

120 / 286

The Model:

Propensity score:

$$P(Z) \equiv \Pr(D = 1|Z) = P\left(\frac{Z \cdot \gamma'}{\sigma_V} > \frac{V}{\sigma_V}\right)$$
$$= \Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)$$

The transformation of variables:

$$P(Z) = \Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right) \Rightarrow \frac{Z \cdot \gamma'}{\sigma_V} = \Phi^{-1}\left(P(Z)\right)$$

$$1 - P(Z) = \Phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right) \Rightarrow -\frac{Z \cdot \gamma'}{\sigma_V} = \Phi^{-1}\left(1 - P(Z)\right)$$

$$\Phi\left(\cdot\right) \equiv \text{Standard Normal Probability Function.}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.000000000000000	
The Model:									

Definitions:

$$\lambda(x) = \frac{\phi(x)}{1 - \Phi(x)} = \frac{\phi(x)}{\Phi(-x)}; \phi(x) = \frac{\partial \Phi(x)}{\partial x}$$
$$\lambda(x) = E(X|X > x); X \sim N(0, 1)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0100000000000000000	

The Model:

Observe that:

$$\begin{split} \lambda \left(-\frac{Z \cdot \gamma'}{\sigma_V} \right) &= \frac{\phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right)}{\Phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right)} \\ \phi \left(\Phi^{-1} \left(1 - P(Z) \right) \right) &= \phi \left(-\frac{Z \cdot \gamma'}{\sigma_V} \right) = \phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right) \\ &= \phi \left(\Phi^{-1} \left(P(Z) \right) \right) \\ \Phi \left(-\Phi^{-1} \left(P(Z) \right) \right) &= \Phi \left(-\frac{Z \cdot \gamma'}{\sigma_V} \right) = 1 - \Phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right) \\ &= 1 - \Phi \left(\Phi^{-1} \left(P(Z) \right) \right) \\ &= 1 - P(Z) \\ \Phi \left(-\Phi^{-1} \left(1 - P(Z) \right) \right) &= \Phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right) = \Phi \left(\Phi^{-1} \left(P(Z) \right) \right) = P(Z) \end{split}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.000000000000000	
The Model:									

The Ratio :

$$\lambda \left(\Phi^{-1} \left(P(Z) \right) \right) = \frac{\phi \left(\Phi^{-1} \left(P(Z) \right) \right)}{1 - P(Z)}$$
$$\lambda \left(\Phi^{-1} \left(1 - P(Z) \right) \right) = \frac{\phi \left(\Phi^{-1} \left(P(Z) \right) \right)}{P(Z)}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000		
The Model:									

Treatment parameters :

$$ATE \equiv E(Y_1 - Y_0) = \mu_1 - \mu_0$$

$$MTE \text{ in } V = v:$$

$$MTE(v) \equiv E(Y_1 - Y_0 | V = v)$$

$$= ATE + E\left(U_1 - U_0 | \frac{V}{\sigma_V} = \frac{v}{\sigma_V}\right)$$

$$= ATE + \sigma_{1-0}E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} = \frac{v}{\sigma_V}\right)$$

$$= ATE + \frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V} \cdot \frac{v}{\sigma_V}$$

If $v = Z \cdot \gamma' \Rightarrow I = Z \cdot \gamma' - V = 0$
There is economic initian.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.000000000000000	
The Model:									

$$\begin{aligned} \text{MTE in } F_V(V) &= p: \\ MTE(p) &\equiv E(Y_1 - Y_0 | F_V(V) = p) \\ &= ATE + E\left(U_1 - U_0 | \frac{V}{\sigma_V} = \Phi^{-1}(p)\right) \\ &= ATE + \frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V} \cdot \Phi^{-1}(p) \\ &\text{If } p &= F_V(Z \cdot \gamma') \Rightarrow I = F_V^{-1}(p) - V = 0 \\ &\text{There is economic intition.} \end{aligned}$$

I

Treatment parameters:

Т

$$T \text{ in } Z :$$

$$TT(Z) \equiv E(Y_1 - Y_0 | D = 1, Z)$$

$$= ATE + \sigma_{1-0}E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{\gamma Z}{\sigma_V} > \frac{V}{\sigma_V}\right)$$

$$= ATE + \sigma_{1-0}E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | -\frac{V}{\sigma_V} > -\frac{\gamma Z}{\sigma_V}\right)$$

$$= ATE - \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right)\lambda\left(-\frac{\gamma Z}{\sigma_V}\right)$$

$$= ATE - \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right)\frac{\phi\left(\frac{Z\cdot\gamma'}{\sigma_V}\right)}{\phi\left(\frac{Z\cdot\gamma'}{\sigma_V}\right)}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.000000000000000	
The Model:									

$$TT \text{ in } P(Z) :$$

$$TT (P(Z)) \equiv E(Y_1 - Y_0 | D = 1, Z)$$

$$= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} > \frac{\gamma Z}{\sigma_V}\right)$$

$$= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | -\frac{V}{\sigma_V} > -\frac{\gamma Z}{\sigma_V}\right)$$

$$= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | -\frac{V}{\sigma_V} > \Phi^{-1} (1 - P(Z))\right)$$

$$= ATE - \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \lambda \left(\Phi^{-1} (1 - P(Z))\right)$$

$$= ATE - \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \frac{\phi(\Phi^{-1}(P(Z)))}{P(Z)}$$

Treatment parameters:

$$\begin{aligned} TUT \text{ in } Z &: \\ TUT(Z) &\equiv E(Y_1 - Y_0 | D = 0, Z) \\ &= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{\gamma Z}{\sigma_V} < \frac{V}{\sigma_V}\right) \\ &= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} > \frac{\gamma Z}{\sigma_V}\right) \\ &= ATE + \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \lambda\left(\frac{\gamma Z}{\sigma_V}\right) \\ &= ATE + \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \frac{\phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)}{\phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right)} \end{aligned}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.000000000000000	
The Model:									

$$\begin{aligned} TUT \text{ in } P(Z) &: \\ TUT (P(Z)) &\equiv E(Y_1 - Y_0 | D = 0, Z) \\ &= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} < \frac{\gamma Z}{\sigma_V}\right) \\ &= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} > \frac{\gamma Z}{\sigma_V}\right) \\ &= ATE + \sigma_{1-0} E\left(\frac{U_1 - U_0}{\sigma_{1-0}} | \frac{V}{\sigma_V} > \Phi^{-1}(P(Z))\right) \\ &= ATE + \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \lambda \left(\Phi^{-1}(P(Z))\right) \\ &= ATE + \left(\frac{\sigma_{V1} - \sigma_{V0}}{\sigma_V}\right) \frac{\phi \left(\Phi^{-1}(P(Z))\right)}{1 - P(Z)} \end{aligned}$$

130 / 286

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	
Matching									

$$\Delta_{matching} = E(Y_1|D=1) - E(Y_0|D=0)$$

Matching in Z:

$$= ATE + E(U_1|Z\gamma' > V) - E(U_0|Z\gamma' < V)$$

$$= ATE + E(U_1|-V > -Z\gamma') - E(U_0|V > Z\gamma')$$

$$= ATE + E\left(U_1| - \frac{V}{\sigma_V} > -\frac{Z\gamma'}{\sigma_V}\right) - E\left(U_0|\frac{V}{\sigma_V} > \frac{Z\gamma'}{\sigma_V}\right)$$

$$= ATE + \sigma_1 E\left(\frac{U_1}{\sigma_1}| - \frac{V}{\sigma_V} > -\frac{Z\gamma'}{\sigma_V}\right) - \sigma_0 E\left(\frac{U_0}{\sigma_0}|\frac{V}{\sigma_V} > \frac{Z\gamma'}{\sigma_V}\right)$$

$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \lambda \left(-\frac{\gamma Z}{\sigma_V}\right) - \frac{\sigma_{0V}}{\sigma_V} \cdot \lambda \left(\frac{\gamma Z}{\sigma_V}\right)$$

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

 Matching
 <td

$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \frac{\phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)}{\Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)} - \frac{\sigma_{0V}}{\sigma_V} \cdot \frac{\phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)}{\Phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right)}$$
$$= ATE - \left(\frac{\sigma_{1V}}{\sigma_V} \cdot \frac{1}{\Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)} + \frac{\sigma_{0V}}{\sigma_V} \cdot \frac{1}{\Phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right)}\right) \phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)$$
$$= ATE - \left(\frac{\frac{\sigma_{1V}}{\sigma_V} \cdot \Phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right) + \frac{\sigma_{0V}}{\sigma_V} \cdot \Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)}{\Phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)} \Phi\left(-\frac{Z \cdot \gamma'}{\sigma_V}\right)\right) \phi\left(\frac{Z \cdot \gamma'}{\sigma_V}\right)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	
Matching									

$$\Delta_{matching} = E(Y_1|D=1) - E(Y_0|D=0)$$

Matching in P(Z):

$$= ATE + E(U_1|Z\gamma' > V) - E(U_0|Z\gamma' < V)$$

$$= ATE + E(U_1|-V > -Z\gamma') - E(U_0|V > Z\gamma')$$

$$= ATE + E\left(U_1| - \frac{V}{\sigma_V} > -\frac{Z\gamma'}{\sigma_V}\right) - E\left(U_0|\frac{V}{\sigma_V} > \frac{Z\gamma'}{\sigma_V}\right)$$

$$= ATE + \sigma_1 E\left(\frac{U_1}{\sigma_1}| - \frac{V}{\sigma_V} > -\frac{Z\gamma'}{\sigma_V}\right) - \sigma_0 E\left(\frac{U_0}{\sigma_0}|\frac{V}{\sigma_V} > \frac{Z\gamma'}{\sigma_V}\right)$$

$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \lambda \left(-\frac{\gamma Z}{\sigma_V}\right) - \frac{\sigma_0}{\sigma_V} \cdot \lambda \left(\frac{\gamma Z}{\sigma_V}\right)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Matching									

$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \lambda \left(\Phi^{-1} \left(1 - P(Z) \right) \right) - \frac{\sigma_0}{\sigma_V} \cdot \lambda \left(\Phi^{-1} \left(P(Z) \right) \right)$$
$$= ATE - \frac{\sigma_{1V}}{\sigma_V} \cdot \frac{\phi \left(\Phi^{-1} \left(P(Z) \right) \right)}{P(Z)} - \frac{\sigma_0}{\sigma_V} \cdot \frac{\phi \left(\Phi^{-1} \left(P(Z) \right) \right)}{1 - P(Z)}$$
$$= ATE - \left(\frac{\sigma_{1V}}{\sigma_V} \cdot \frac{1}{P(Z)} + \frac{\sigma_0}{\sigma_V} \cdot \frac{1}{1 - P(Z)} \right) \phi \left(\Phi^{-1} \left(P(Z) \right) \right)$$
$$= ATE - \left(\frac{\frac{\sigma_{1V}}{\sigma_V} \cdot \left(1 - P(Z) \right) + \frac{\sigma_0}{\sigma_V} \cdot P(Z)}{P(Z) \left(1 - P(Z) \right)} \right) \phi \left(\frac{Z \cdot \gamma'}{\sigma_V} \right)$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	
Matching Bias									

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	00000000000000000		0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Empirical Example	le								

$$Y_{1} = \mu_{1} + U_{1}; U_{1} = \alpha_{11} \cdot f_{1} + \alpha_{12} \cdot f_{2} + \varepsilon_{1}$$

$$Y_{0} = \mu_{0} + U_{0}; U_{0} = \alpha_{01} \cdot f_{1} + \alpha_{02} \cdot f_{2} + \varepsilon_{0}$$

$$I = Z \cdot \gamma' - V; V = \alpha_{V1} \cdot f_{1} + \alpha_{V2} \cdot f_{2} + \varepsilon_{V}$$

$$D = \mathbf{1} [I > 0]$$

$$\begin{pmatrix} f_{1} & f_{2} & \varepsilon_{1} & \varepsilon_{0} & \varepsilon_{V} \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \Sigma); \Sigma \equiv Diag \begin{pmatrix} \sigma_{f_{1}}^{2} & \sigma_{f_{2}}^{2} & \sigma_{V}^{2} & \sigma_{1}^{2} & \sigma_{0}^{2} \end{pmatrix}$$

$$\begin{bmatrix} U_{1} \\ U_{0} \\ V \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \Sigma_{U1, U0, V}) \equiv \mathcal{N}\begin{pmatrix} \sigma_{1}^{2} & \sigma_{V1} & \sigma_{V0} \\ \mathbf{0}, & \cdot & \sigma_{0}^{2} & \sigma_{10} \\ & \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix}$$

$$\sigma_{1}^{2} = \alpha_{11}^{2}\sigma_{f_{1}}^{2} + \alpha_{12}^{2}\sigma_{f_{2}}^{2} + \sigma_{1}^{2}; \quad \sigma_{V0} = \alpha_{V1}\alpha_{01}\sigma_{f_{1}}^{2} + \alpha_{V2}\alpha_{02}\sigma_{f_{2}}^{2}$$

$$\sigma_{0}^{2} = \alpha_{01}^{2}\sigma_{f_{1}}^{2} + \alpha_{02}^{2}\sigma_{f_{2}}^{2} + \sigma_{0}^{2}; \quad \sigma_{10} = \alpha_{11}\alpha_{01}\sigma_{f_{1}}^{2} + \alpha_{12}\alpha_{02}\sigma_{f_{2}}^{2}$$

$$\sigma_{V}^{2} = \alpha_{V1}^{2}\sigma_{f_{1}}^{2} + \alpha_{V2}^{2}\sigma_{f_{2}}^{2} + \sigma_{V}^{2}; \quad \sigma_{V} = \alpha_{V1}\alpha_{11}\sigma_{f_{1}}^{2} + \alpha_{V2}\alpha_{12}\sigma_{f_{2}}^{2}$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Empirical Example	e								

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & 1 & 0 & 0 \\ \alpha_{01} & \alpha_{02} & 0 & 1 & 0 \\ \alpha_{V1} & \alpha_{V2} & 0 & 0 & 1 \end{pmatrix}$$
$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_{1}^{2} & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_{0}^{2} & \sigma_{10} \\ \cdot & \cdot & \sigma_{V}^{2} \end{pmatrix} = A\Sigma A'$$
$$\begin{bmatrix} U_{1} - U_{0} \\ V \end{bmatrix} \sim N \begin{pmatrix} \mathbf{0}, & \sigma_{1-0}^{2} & \sigma_{V1} - \sigma_{V0} \\ \cdot & \sigma_{V}^{2} \end{pmatrix}$$
$$\sigma_{1-0} = \sqrt{\sigma_{U1}^{2} + \sigma_{U0}^{2} - 2\sigma_{10}}$$

Adoption model IV General model Index Operation Comparing models Examples GED Separability Conclusion

Empirical Example

$$\mu_{0} = 0; \quad \mu_{0} = 1;$$

$$\alpha_{11} \text{ varies} \quad \alpha_{12} = 0.1;$$

$$\alpha_{01} = 1; \quad \alpha_{02} = 0.1;$$

$$\alpha_{V1} = 1; \quad \alpha_{V2} = 1;$$

$$\sigma_{f_{1}}^{2} = \sigma_{f_{2}}^{2} = \sigma_{V}^{2} = \sigma_{1}^{2} = \sigma_{0}^{2} = 1$$

$$A = \begin{pmatrix} \alpha_{11} & 0.1 & 1 & 0 & 0 \\ 1 & 0.1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 \end{pmatrix}; \Sigma = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\Sigma_{U1,U0,V} \equiv \begin{pmatrix} \sigma_1^2 & \sigma_{V1} & \sigma_{V0} \\ \cdot & \sigma_0^2 & \sigma_{10} \\ \cdot & \cdot & \sigma_V^2 \end{pmatrix} = A\Sigma A'$$

parameters

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.000000000000000000000	000000000000000000000000000000000000000
Empirical Exampl	le								

- $E(\beta \mid U_D = u_D)$ does not vary with u_D .
- "Standard case."
- ATE = TT = LATE = policy counterfactuals = plim IV.

When will $E(\beta \mid U_D = u_D)$ not vary with u_D ?

• If
$$U_1 = U_0 \Rightarrow \beta$$
 a Constant.

² More Generally, if $U_1 - U_0$ is mean independent of U_D , so treatment effect heterogeneity is allowed but individuals do not act upon their own idiosyncratic effect.

Consider standard analysis.

$$\ln Y = \alpha + (\bar{\beta} + U_1 - U_0)D + U_0$$

plim of OLS:

$$E (\ln Y \mid D = 1) - E (\ln Y \mid D = 0)$$

$$= \overline{\beta} + E(U_1 - U_0 \mid D = 1) + \begin{cases} E(U_0 \mid D = 1) \\ -E(U_0 \mid D = 0) \end{cases}$$

$$= \underbrace{ATE + Sorting Gain}_{\text{Homoson}} + Ability Bias$$

$$= TT + Ability Bias$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	
Empirical Example	le								

- If ATE is a parameter of interest, OLS suffers from both sorting bias and ability bias.
- If TT is parameter of interest, OLS suffers from ability bias.
- Using IV removes ability bias, but changes the parameter being estimated (neither ATE nor TT in general).
- Different IV Weight MTE differently.
- We derive IV weights below.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	
Empirical Exampl	le								

- \therefore IV Instrument Dependent (which Z used and which values of Z used).
- Hence studies using different Z are not comparable.
- How to make studies comparable?
- We can test to see if these complications are required in any particular empirical analysis.

Testing for essential heterogeneity

$$E(Y | Z = z) = E(Y | P(Z) = p) \text{ (index sufficiency)} = E(DY_1 + (1 - D)Y_0 | P(Z) = p) = E(Y_0) + E(D(Y_1 - Y_0) | P(Z) = p) = E(Y_0) + \begin{bmatrix} E(Y_1 - Y_0 | D = 1, P(Z) = p) \\ \cdot Pr(D = 1 | Z = z) \end{bmatrix} = E(Y_0) + \int_0^p E(Y_1 - Y_0 | U_D = u_D) du_D.$$

Testing for essential heterogeneity

As a consequence, we get LIV (Local Instrumental Variables), which identifies MTE

$$\underbrace{\frac{\partial}{\partial P(z)} E\left(Y \mid Z = z\right) \Big|_{P(Z) = u_D}}_{LIV} = \underbrace{E(Y_1 - Y_0 \mid U_D = u_D)}_{MTE}.$$
 (5.1)

• When $\beta \perp D$, Y is linear in P(Z):

$$E(Y \mid Z) = a + bP(Z)$$
(5.2)

where $b = \Delta^{MTE} = \Delta^{ATE} = \Delta^{TT}$.

- These results are valid whether or not Y_1 and Y_0 are separable in U_1 and U_0 .
- Therefore we can identify the treatment parameters using estimated weights and estimated MTE.

Example: college attendance on wages for high school graduates

 $E(Y \mid X, P)$ as a function of P for average X

Source: Carneiro, Heckman and Vytlacil (2006)

Example: college attendance on wages for high school graduates

 $E(Y_1 - Y_0 \mid X, U_S)$ estimated using locally quadratic regression (averaged over X)

Source: Carneiro, Heckman and Vytlacil (2006)

instruments in P(Z)

instruments in P(Z)

 $\omega_{\text{ATE}}(\eta_a, u_D)$

.4

UD

.6

.8

 $\omega_{\rm IV}(\eta_a, u_D)$

IV Weights with IV = NORTH

Example: unionism on wages

Source: Heckman, Schmierer and Urzua (2006)

Example: unionism on wages, continued

IV weight (P as instrument)

Source: Heckman, Schmierer and Urzua (2006)

Example: Chile voucher schools on test scores

Source: Heckman, Schmierer and Urzua (2006)

Example: Chile voucher schools on test scores, continued

IV weight (P as instrument)

Source: Heckman, Schmierer and Urzua (2006)

Example: High school on wages

Source: Heckman, Schmierer and Urzua (2006)

Example: High school on wages, continued

IV weight (P as instrument)

Source: Heckman, Schmierer and Urzua (2006)

Understanding what linear IV estimates

• Consider J(Z) as an instrument, a scalar function of Z.

$$\Delta_J^{\mathsf{IV}} = rac{\mathsf{Cov}(Y, J(Z))}{\mathsf{Cov}(D, J(Z))}$$

- Express it as a weighted average of MTE.
- Z can be a vector of instruments.

Understanding what linear IV estimates

Digression: Yitzhaki's theorem and extensions

Theorem

Assume (Y, X) i.i.d. $E(|Y|) < \infty$ $E(|X|) < \infty$

$$\mu_Y = E(Y) \qquad \mu_X = E(X)$$

 $E(Y \mid X) = g(X)$ Assume g'(X) exists and $E(|g'(X)|) < \infty$. Understanding what linear IV estimates

Yitzhaki's theorem

Theorem (cont.)

Then,

$$rac{Cov(Y,X)}{Var(X)} = \int_{-\infty}^{\infty} g'(t) \, \omega(t) \, dt,$$

where

$$\begin{split} \omega(t) &= \frac{1}{Var(X)} \int_{t}^{\infty} (x - \mu_X) f_X(x) \, dx \\ &= \frac{1}{Var(X)} E \left(X - \mu_X \mid X > t \right) \Pr\left(X > t \right) \end{split}$$

$$Y = \pi X + \eta,$$

$$\pi = \frac{Cov(Y, X)}{Var(X)}.$$

Understanding what linear IV estimates

Proof of Yitzhaki's theorem

Proof.

$$Cov(Y,X) = Cov(E(Y | X),X) = Cov(g(X),X)$$
$$= \int_{-\infty}^{\infty} g(t)(t - \mu_X) f_X(t) dt$$

where t is an argument of integration.

Understanding what linear IV estimates

Proof of Yitzhaki's theorem

cont.

Integration by parts:

$$Cov(Y,X) = g(t) \int_{-\infty}^{t} (x - \mu_X) f_X(x) dx \Big|_{-\infty}^{\infty}$$
$$- \int_{-\infty}^{\infty} g'(t) \int_{-\infty}^{t} (x - \mu_X) f_X(x) dx dt$$
$$= \int_{-\infty}^{\infty} g'(t) \int_{t}^{\infty} (x - \mu_X) f_X(x) dx dt,$$
since $E(X - \mu_X) = 0.$

Understanding what linear IV estimates

Proof of Yitzhaki's theorem

cont.

Therefore,

$$\operatorname{Cov}(Y,X) = \int_{-\infty}^{\infty} g'(t) E(X - \mu_X \mid X > t) \operatorname{Pr}(X > t) dt.$$

 \therefore Result follows with

$$\omega(t) = rac{1}{Var(X)} E\left(X - \mu_X \mid X > t
ight) \Pr\left(X > t
ight)$$

- Weights positive.
- Integrate to one (use integration by parts formula).
- = 0 when $t \to \infty$ and $t \to -\infty$.
- Weight reaches its peak at $t = \mu_X$, if f_X has density at $x = \mu_X$:

$$\frac{d}{dt}\int_t^\infty (x-\mu_X) f_X(x) dx dt = -(t-\mu_X) f_X(t)$$

= 0 at $t = \mu_X$.

Understanding what linear IV estimates

Yitzhaki's weights for $X \sim \text{BetaPDF}(x, \alpha, \beta)$

Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Understanding what linear IV estimates

Yitzhaki's weights for $X \sim \text{BetaPDF}(x, \alpha, \beta)$

$$E(Y|X = x) = g(x) \Rightarrow \frac{Cov(X,Y)}{Var(X)} = \int_{-\infty}^{\infty} g'(t)w(t)dx$$
$$w(t) = \frac{1}{Var(X)}E(X|X > t) \cdot \Pr(X > t)$$
$$\mathbf{X} \sim BetaPDF(x,\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}; \ \alpha = 5;$$
$$\mathbf{g}(\mathbf{x}) = \mathbf{0.5} \cdot \mathbf{x} + \mathbf{0.5} \cdot \log(\mathbf{X})$$

• Can apply Yitzhaki's analysis to the treatment effect model

 $Y = \alpha + \beta D + \varepsilon$

• P(Z), the propensity score is the instrument:

$$E(Y \mid Z = z) = E(Y \mid P(Z) = p)$$

Understanding what linear IV estimates

$$E(Y | P(Z) = p) = \alpha + E(\beta D | P(Z) = p)$$

= $\alpha + E(\beta | D = 1, P(Z) = p)p$
= $\alpha + E(\beta | P(Z) > U_D, P(Z) = p)p$
= $\alpha + E(\beta | p > U_D)p$
= $\alpha + \underbrace{\int \beta \int_0^p f(\beta, u_D) du_D}_{g(p)}$

• Derivative with respect to *p* is MTE.

• g'(p) = MTE and weights as before.

Adoption model IV General model Index

Understanding what linear IV estimates

• Under uniformity,

$$\frac{\partial E(Y \mid P(Z) = p)}{\partial p} = E(Y_1 - Y_0 \mid U_D = u_D)$$
$$= \Delta^{MTE}(u_D).$$

• More generally, it is
$$LIV = \frac{\partial E(Y|P(Z)=p)}{\partial p}$$
.

- Yitzhaki's result does not rely on uniformity; true of any regression of Y on P.
- Estimates a weighted net effect.
- The expression can be generalized.
- It produces Heckman-Vytlacil weights.

Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

Proof.

$$Cov (J(Z), Y) = E (Y \cdot \widetilde{J}) = E (E (Y | Z) \cdot \widetilde{J}(Z))$$

$$= E (E (Y | P(Z)) \cdot \widetilde{J}(Z))$$

$$= E (g (P(Z)) \cdot \widetilde{J}(Z)).$$

$$\widetilde{J} = J(Z) - E (J(Z) | P(Z) \ge u_D),$$

$$E (Y | P(Z)) = g (P(Z)).$$

Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

$$\operatorname{Cov}(J(Z), Y) = \int_{0}^{1} \int_{\underline{J}}^{\overline{J}} g(u_{D}) \widetilde{j} f_{P,J}(u_{D}, j) \, dj du_{D}$$
$$= \int_{0}^{1} g(u_{D}) \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J}(u_{D}, j) \, dj du_{D}.$$

Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

Use integration by parts:

$$Cov (J(Z), Y)$$

$$= g (u_D) \int_0^{u_D} \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J} (p,j) dj dp \Big|_0^1$$

$$- \int_0^1 g' (u_D) \int_0^{u_D} \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J} (p,j) dj dp du_D$$

$$= \int_0^1 g' (u_D) \int_{u_D}^1 \int_{\underline{J}}^{\overline{J}} \widetilde{j} f_{P,J} (p,j) dj dp du_D$$

$$= \int_0^1 g' (u_D) E (\widetilde{J}(Z) | P(Z) \ge u_D) Pr (P(Z) \ge u_D) du_D.$$

Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

Cont.
Thus:

$$g'(u_D) = \frac{\partial E(Y | P(Z) = p)}{\partial P(Z)} \Big|_{p=u_D} = \Delta^{\text{MTE}}(u_D).$$

Understanding what linear IV estimates

۲

• Under our assumptions the Yitzhaki weights and ours are equivalent.

$$\operatorname{Cov}(J(Z), Y)$$

$$= \int_0^1 \Delta^{\mathsf{MTE}}(u_D) E(J(Z) - E(J(Z)) \mid P(Z) \ge u_D) \operatorname{Pr}(P(Z) \ge u_D) du_D.$$
(5.3)

• Using (5.3),

$$Cov(J(Z), Y) = E(Y \cdot \tilde{J}) = E(E(Y | Z) \cdot \tilde{J}(Z))$$
$$= E(E(Y | P(Z)) \cdot \tilde{J}(Z))$$
$$= E(g(P(Z)) \cdot \tilde{J}(Z)).$$

Understanding what linear IV estimates

- The third equality follows from index sufficiency and $\tilde{J} = J(Z) E(J(Z) | P(Z) \ge u_D)$, where E(Y | P(Z)) = g(P(Z)).
- Writing out the expectation and assuming that J(Z) and P(Z) are continuous random variables with joint density f_{P,J} and that J(Z) has support [J, J],

$$Cov(J(Z), Y) = \int_0^1 \int_{\underline{J}}^{\overline{J}} g(u_D) \tilde{j} f_{P,J}(u_D, j) dj du_D$$
$$= \int_0^1 g(u_D) \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}(u_D, j) dj du_D.$$

Adoption model IV General model Index Operation Comparing models Examples GED Separability Conclusion

Understanding what linear IV estimates

С

 Using an integration by parts argument as in Yitzhaki (1989) and as summarized in Heckman, Urzua, Vytlacil (2006), we obtain

$$\begin{aligned} \mathsf{ov}\left(J\left(Z\right),Y\right) \\ &= g\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \mathrm{d}j \mathrm{d}p \bigg|_{0}^{1} \\ &- \int_{0}^{1} g'\left(u_{D}\right) \int_{0}^{u_{D}} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) \int_{u_{D}}^{1} \int_{\underline{J}}^{\overline{J}} \tilde{j} f_{P,J}\left(p,j\right) \, \, \mathrm{d}j \mathrm{d}p \mathrm{d}u_{D} \\ &= \int_{0}^{1} g'\left(u_{D}\right) E\left(\tilde{J}\left(Z\right) \mid P\left(Z\right) \ge u_{D}\right) \mathsf{Pr}\left(P\left(Z\right) \ge u_{D}\right) \, \mathrm{d}u_{D}, \end{aligned}$$

which is then exactly the expression given in (5.3), where

$$g'(u_D) = \frac{\partial E(Y \mid P(Z) = p)}{\partial P(Z)} \bigg|_{p=u_D} = \Delta^{\mathsf{MTE}}(u_D).$$

Under (A-1)-(A-5) and separable choice model

$$\Delta_{J}^{IV} = \int_{0}^{1} \Delta^{MTE} \left(u_{D} \right) \, \omega_{IV}^{J} \left(u_{D} \right) \, du_{D} \tag{5.4}$$

$$\omega_{IV}^{J}(u_{D}) = \frac{E\left(J(Z) - \overline{J}(Z) \mid P(Z) > u_{D}\right) \Pr\left(P(Z) > u_{D}\right)}{\operatorname{Cov}\left(J(Z), D\right)}.$$
 (5.5)

J(Z) and P(Z) do not have to be continuous random variables.

Functional forms of P(Z) and J(Z) are general.

- Dependence between J(Z) and P(Z) gives shape and sign to the weights.
- If J(Z) = P(Z), then weights obviously non-negative.
- If $E(J(Z) \overline{J}(Z) | P(Z) \ge u_D)$ not monotonic in u_D , weights can be negative.

Derivation Comparing models Examples GED Separability Conclusion

Understanding what linear IV estimates

Therefore, with positive (or negative) regression, can get negative IV weight.

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

Understanding what linear IV estimates

When J(Z) = P(Z), weight (5.5) follows from Yitzhaki (1989).

- He considers a regression function E(Y | P(Z) = p).
- Linear regression of Y on P identifies

$$\beta_{Y,P} = \int_{0}^{1} \left[\frac{\partial E(Y \mid P(Z) = p)}{\partial p} \right] \omega(p) dp,$$
$$\omega(p) = \frac{\int_{p}^{1} (t - E(P)) dF_{P}(t)}{Var(P)}.$$

- This is the weight (5.5) when P is the instrument.
- This expression **does not** require uniformity or monotonicity for the model; consistent with 2-way flows.

Understanding the structure of the IV weights

Recapitulate:

$$\Delta_{IV}^{J} = \int \Delta^{MTE}(u_D) \,\omega_{IV}^{J}(u_D) \,du_D$$
$$\omega_{IV}^{J}(u_D) = \frac{\int (j - E(J(Z))) \int_{u_D}^1 f_{J,P}(j,t) \,dt \,dj}{Cov \left(J(Z), D\right)}$$
(5.6)

- The weights are always positive if J(Z) is monotonic in the scalar Z.
- In this case J(Z) and P(Z) have the same distribution and $f_{J,P}(j,t)$ collapses to a single distribution.

- The possibility of negative weights arises when J(Z) is not a monotonic function of P(Z).
- It can also arise when there are two or more instruments, and the analyst computes estimates with only one instrument or a combination of the Z instruments that is not a monotonic fuction of P(Z) so that J(Z) and P(Z) are not perfectly dependent.

Understanding the structure of the IV weights

- The weights can be constructed from data on (J, P, D).
- Data on (J(Z), P(Z)) pairs and (J(Z), D) pairs (for each X value) are all that is required.

Discrete Case

- Support of the distribution of P(Z) contains a finite number of values p₁ < p₂ < ··· < p_K.
- Support of the instrument J(Z) is also discrete, taking I distinct values.
- $E(J(Z)|P(Z) \ge u_D)$ is constant in u_D for u_D within any $(p_{\ell}, p_{\ell+1})$ interval, and $Pr(P(Z) \ge u_D)$ is constant in u_D for u_D within any $(p_{\ell}, p_{\ell+1})$ interval.
- Let λ_ℓ denote the weight on the LATE for the interval (p_ℓ, p_{ℓ+1}).

Adoption model IV General model Index

Discrete instruments J(Z)

• Under monotonicity, or uniformity

$$\Delta_{J}^{IV} = \int E(Y_{1} - Y_{0}|U_{D} = u_{D})\omega_{IV}^{J}(u_{D}) du_{D}$$
(5.7)
$$= \sum_{\ell=1}^{K-1} \lambda_{\ell} \int_{p_{\ell}}^{p_{\ell+1}} E(Y_{1} - Y_{0}|U_{D} = u_{D}) \frac{1}{(p_{\ell+1} - p_{\ell})} du_{D}$$
$$= \sum_{\ell=1}^{K-1} \Delta^{LATE}(p_{\ell}, p_{\ell+1})\lambda_{\ell}.$$

Adoption model IV General model Index

Understanding the structure of the IV weights

Discrete instruments J(Z)

Let j_i be the i^{th} smallest value of the support of J(Z).

$$\lambda_{\ell} = \frac{\sum_{i=1}^{l} (j_i - E(J(Z))) \sum_{t>\ell}^{K} (f(j_i, p_t))}{Cov(J(Z), D)} (p_{\ell+1} - p_{\ell})$$
(5.8)

```
      Adoption model
      IV
      General model
      Index
      Derivation
      Comparing models
      Examples
      GED
      Separability
      Conclusion

      Understanding the structure of the IV weights
      Discrete instruments
      J(Z)
      J(Z)
      J(Z)
      J(Z)
```

- In general, this formula is true, under index sufficiency even if monotonicity is violated.
- It's certainly true under (A-1)–(A-5).
- True where Δ^{LATE} (p_ℓ, p_{ℓ+1}) is replaced by the Wald estimator, based on P(z_ℓ), ℓ = 1,..., L, instruments.
- Observe, LATE here defined in terms of P(Z), the "natural" instrument.

```
Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion
```

- Generalizes the expression presented by Imbens and Angrist (1994) and Yitzhaki (1989, 1996)
- Their analysis of the case of vector Z only considers the case where J(Z) and P(Z) are perfectly dependent because J(Z) is a monotonic function of P(Z).
- More generally, the weights can be positive or *negative* for any *l* but they must sum to 1 over the *l*.

- For the IV weight to be correctly constructed and interpreted, we need to know the correct model for P(Z).
- IV depends on:
 - **1** the choice of the instrument J(Z),
 - 2) its dependence with P(Z),
 - the specification of the propensity score (i.e., what variables go into Z).
- "Structural" LATE or MTE identified by P(Z).
- Can derive all other instrumental variable estimators in terms of weighted averages of MTE or LATE.

Monotonicity, uniformity and conditional instruments

- Monotonicity or uniformity condition (IV-3) rules out general heterogeneous responses to treatment choices in response to changes in Z.
- The recent literature on instrumental variables with heterogeneous responses is asymmetric.
- The uniformity condition can be violated even when all components of γ are of the same sign if Z is a vector and γ is a nondegenerate random variable.

$$D = \mathbf{1} \left[\gamma Z > \gamma \right]$$

- Uniformity is a condition on a vector.
- Changing one coordinate of Z, holding the other coordinates at different values across people, will not necessarily produce uniformity.
- Let $\mu_D(z) = \gamma_0 + \gamma_1 z_1 + \gamma_2 z_2 + \gamma_3 z_1 z_2$, where $\gamma_0, \gamma_1, \gamma_2$ and γ_3 are constants.
- Consider changing z₁ from a common base state while holding z₂ fixed at different values across people.
- If γ₃ < 0 then μ_D (z) does not necessarily satisfy the uniformity condition.

Monotonicity, uniformity and conditional instruments

- Positive weights and uniformity are distinct issues.
- Under uniformity, and assumptions (A-1)-(A-5), the weights on MTE or LIV for any particular instrument may be positive or negative.

Monotonicity, uniformity and conditional instruments

- If we condition on $Z_2 = z_2, \ldots, Z_K = z_K$ using Z_1 as an instrument, then uniformity is satisfied.
- Effectively convert the problem back to that of a scalar instrument where the weights must be positive.
- The concept of conditioning on other instruments to produce positive weights for the selected instrument is a new idea.

- Monotonicity is a property needed to get treatment effects with just two values of Z, $Z = z_1$ and $Z = z_2$, to guarantee that IV estimates a treatment effect.
- With multiple values of Z we need to weight to produce linear IV.
- If our IV shifts P(Z) in same way for everyone, it shifts D in the same way for everyone,

$$D = \mathbf{1} \left[P(Z) \geq U_D \right].$$

- If P(Z) is instrument, monotonicity is obviously satisfied.
- If J(Z) is an instrument and not a monotonic function of P(Z), may not shift P(Z) in same way for all people.
- We can get two-way flows if, e.g., we use only one Z or else have a random coefficient model,

$$D = \mathbf{1} [\gamma Z \ge V].$$

• Negative weights are a tip off of two-way flows.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000
Monotonicity and	l weig	thts							

- If we do not want a treatment effect, who cares?
- We do not always want a treatment effect.
- Go back to ask "What economic question am I trying to answer?"

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	
Treatment effects	s vs.	policy effects							

- Even if uniformity condition (IV-3) fails, IV may answer relevant policy questions.
- IV or TSLS estimates a weighted average of marginal responses which may be pointwise positive or negative.
- Policies may induce some people to switch into and others to switch out of choices.
- Net effects are sometimes of interest in many policy analyses.

- Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

 Treatment effects vs.
 policy effects
 solicy effects
 solicy effects
 solicy effects
 solicy effects
 - Thus, subsidized housing in a region supported by higher taxes may attract some to migrate to the region and cause others to leave. The net effect on earnings from the policy is all that is required to perform cost benefit calculations of the policy on outcomes.
 - If the housing subsidy is the instrument, the issue of monotonicity is a red herring.
 - If the subsidy is exogenously imposed, IV estimates the net effect of the policy on mean outcomes.
 - Only if the effect of migration induced by the subsidy on outcomes is the question of interest, and not the effect of the subsidy, does uniformity emerge as an interesting question.

- Angrist and Krueger (1999) compare IV with selection models and view the former with favor.
- Useful to understand this comparison in a model with essential heterogeneity.
- IV is estimating the derivative (or finite changes) of the parameters of a selection model.
- IV only conditions on Z (and X).

- The control function approach conditions on Z and D (and X).
- From index sufficiency, equivalent to conditioning on P(Z) and D:

$$E(Y | X, D, Z)$$

$$= \mu_{0}(X) + [\mu_{1}(X) - \mu_{0}(X)] D$$

$$+ K_{1}(P(Z), X) D + K_{0}(P(Z), X) (1 - D)$$
(6.1)

$$K_1(P(Z), X) = E(U_1 \mid D = 1, X, P(Z))$$

and
 $K_0(P(Z), X) = E(U_0 \mid D = 0, X, P(Z)).$

- IV approach does not condition on *D*.
- It works with the integral (over D) of (6.1).

$$E(Y | X, P(Z))$$

$$= \mu_0(X) + [\mu_1(X) - \mu_0(X)] P(Z)$$

$$+ K_1(P(Z), X) P(Z) + K_0(P(Z), X) (1 - P(Z))$$
(6.2)

Under monotonicity and (A-1)–(A-5)

$$\frac{\partial E(Y \mid X, P(Z))}{\partial P(Z)} \Big|_{P(Z)=p} = \text{LIV}(X, p) = \text{MTE}(X, p).$$

- Control function builds up MTE from components.
- IV gets it in one fell swoop.

- With rank and limit conditions (Heckman and Robb, 1985; Heckman, 1990), using control functions, one can identify μ₁(X), μ₀(X), K₁(P(Z), X), and K₀(P(Z), X).
- The selection (control function) estimator identifies the conditional means

$$E(Y_1 | X, P(Z), D = 1) = \mu_1(X) + K_1(X, P(Z))$$
(6.3a)
and
$$E(Y_0 | X, P(Z), D = 0) = \mu_0(X) + K_0(X, P(Z)).$$
(6.3b)

- To decompose these means and separate µ₁(X) from K₁(X, P(Z)) without invoking functional form assumptions, it is necessary to have an exclusion (a Z not in X).
- This allows $\mu_1(X)$ and $K_1(X, P(Z))$ to be independently varied with respect to each other.
- We can also invoke curvature conditions without exclusion of variables.
- In addition there must exist a limit set for Z given X such that K₁(X, P(Z)) = 0 for Z in that limit set.

 Adoption model
 IV
 General model
 Index
 Derivation
 Comparing models
 Examples
 GED
 Separability
 Conclusion

- Limit set not required for selection model if we are interested only in MTE or LATE.
- Not required in IV either if we only seek MTE or LATE.

- Without functional form assumptions, it is not possible to disentangle μ₁(X) from K₁(X, P(Z)) which may contain constants and functions of X that do not interact with P(Z) (see Heckman (1990)).
- These limit set arguments are needed for ATE or TT, not LATE or LIV.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000			0.41403440400000000	000000000000000000000000000000000000000

IV method

- IV method works with derivatives of (6.2) and not levels.
- Cannot directly recover the constant terms in (6.3a) and (6.3b).

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000		0.0000000000000000000000000000000000000	000000000000000

IV method

- In summary, the control function method directly identifies levels while the LIV approach works with slopes.
- Constants that do not depend on P(Z) disappear from the LIV estimates of the model.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000000000000000000000000000000000000	

IV method

- The distributions of U_1 , U_0 and V do not need to be specified to estimate control function models (see Powell, 1994).
- In particular, there is no reliance on normality.

- Support conditions with control function models have their counterparts in IV models.
- One common criticism of selection models is that without invoking functional form assumptions, identification of μ₁(X) and μ₀(X) requires that P(Z) → 1 and P(Z) → 0 in limit sets.
- Identification in limit sets is sometimes called "identification at infinity."
- In order to identify $ATE = E(Y_1 Y_0|X)$, IV methods also require that $P(Z) \rightarrow 1$ and $P(Z) \rightarrow 0$ in limit sets, so an identification at infinity argument is implicit when IV is used to identify this parameter.

- The LATE parameter avoids this problem by moving the goal posts and redefining the parameter of interest from a level parameter like ATE or TT to a slope parameter like LATE which differences out the unidentified constants.
- We can identify this parameter by selection models or IV models without invoking identification at infinity.

- The IV estimator is model dependent, just like the selection estimator, but in application, the model does not have to be fully specified to obtain Δ^{IV} using Z (or J(Z)).
- However the distribution of P(Z) and the relationship between P(Z) and J(Z) generates the weights on MTE (or LIV).
- The interpretation placed on Δ^{IV} in terms of weights on Δ^{MTE} depends crucially on the specification of P(Z). In both control function and IV approaches for the general model of heterogeneous responses, P(Z) plays a central role.

- Two economists using the same instrument will obtain the same point estimate using the same data.
- Their *interpretation* of that estimate will differ depending on how they specify the arguments in P(Z), even if neither uses P(Z) as an instrument.
- By conditioning on P(Z), the control function approach makes the dependence of estimates on the specification of P(Z)explicit.
- The IV approach is less explicit and masks the assumptions required to economically interpret the empirical output of an IV estimation.

Examples based on choice theory

- Suppose cost of adopting the policy *C* is the same across all countries.
- Countries choose to adopt the policy if D^{*} > 0 where D^{*} is the net benefit: D^{*} = (Y₁ − Y₀ − C) and
- $ATE = E(\beta) = E(Y_1 Y_0) = \mu_1 \mu_0$
- Treatment on the treated is

$$\begin{split} E\left(\beta \mid D=1\right) &= E\left(Y_1 - Y_0 \mid D=1\right) \\ &= \mu_1 - \mu_0 + E\left(U_1 - U_0 \mid D=1\right). \end{split}$$

Figure 1: distribution of gains

The Roy Economy $U_1 - U_0 \not\perp D$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		201010101		

The model

Outcomes	Choice Model
$Y_1 = \mu_1 + U_1 = \alpha + \overline{\beta} + U_1$ $Y_0 = \mu_0 + U_0 = \alpha + U_0$	$D=\left\{ egin{array}{c} 1 ext{ if } D^*>0 \ 0 ext{ if } D^*\leq 0 \end{array} ight.$

General Case

 $(U_1 - U_0) \not\perp D$ ATE \neq TT \neq TUT

The model

The Researcher Observes
$$(Y, D, C)$$

$$Y = \alpha + \beta D + U_0$$
 where $\beta = Y_1 - Y_0$

Parameterization

$$\alpha = 0.67 \quad (U_1, U_0) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \quad D^* = Y_1 - Y_0 - C$$

$$\bar{\beta} = 0.2 \quad \mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix} \qquad C = 1.5$$

• Let $C = \gamma Z$, $\gamma \ge 0$.

Discrete instruments and the weights for LATE

Figure 4A: monotonicity, the extended Roy economy Standard case

Discrete instruments and the weights for LATE

Figure 4B: monotonicity, the extended Roy economy Changing Z_1 without controlling for Z_2

Discrete instruments and the weights for LATE

Figure 4C: monotonicity, the extended Roy economy Random coefficient case

Discrete instruments and the weights for LATE

Figure 4: monotonicity, the extended Roy economy

A. Standard Case	B. Changing Z_1 without Controlling for Z_2	C. Random Coefficient Case
$z \longrightarrow z'$	$z \longrightarrow z' \text{ or } z \longrightarrow z''$	$z \longrightarrow z'$
z = (0, 1) and $z' = (1, 1)$	z = (0, 1), z' = (1, 1) and z'' = (1, -1)	z = (0, 1) and $z' = (1, 1)$
		γ is a random vector $\tilde{\gamma} = (0.5, 0.5)$ and $\tilde{\tilde{\gamma}} = (-0.5, 0.5)$ where $\tilde{\gamma}$ and $\tilde{\tilde{\gamma}}$ are two realizations of γ
$D(\gamma z) \ge D(\gamma z')$	$D(\gamma z) \ge D(\gamma z')$ or $D(\gamma z) < D(\gamma z'')$	$D\left(\tilde{\widetilde{\gamma}}z\right) \geq D\left(\tilde{\widetilde{\gamma}}z'\right) \text{ and } D\left(\tilde{\gamma}z\right) < D\left(\tilde{\gamma}z'\right)$
For all individuals	Depending on the value of z' or z''	Depending on value of γ

Discrete instruments and the weights for LATE

Figure 4: monotonicity, the extended Roy economy model

Outcomes	Choice Model				
$\begin{aligned} \mathbf{Y}_1 &= \alpha + \bar{\beta} + U_1 \\ \mathbf{Y}_0 &= \alpha + U_0 \end{aligned}$	$D = \begin{cases} 1 & \text{if} Y_1 - Y_0 - \gamma Z > 0\\ 0 & \text{if} Y_1 - Y_0 - \gamma Z \le 0\\ & \text{with} \gamma Z = \gamma_1 Z_1 + \gamma_2 Z_2 \end{cases}$				
Par	rameterization				
$(U_1, U_0) \sim N(0, \mathbf{\Sigma})$, $\mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}$, $\begin{array}{c} \alpha = 0.67, \ \overline{\beta} = 0.2, \\ \gamma = (0.5, 0.5) \ (ext{except in Case C}) \end{array}$					
$Z_1 = \{-1,0,1\}$ and $Z_2 = \{-1,0,1\}$					

Discrete instruments and the weights for LATE

Figure 5: IV weights and its components under discrete instruments when P(Z) is the instrument

$$\begin{split} \Delta^{\text{LATE}} \left(p_{\ell}, p_{\ell+1} \right) \\ &= \frac{E\left(Y | P(Z) = p_{\ell+1} \right) - E\left(Y | P(Z) = p_{\ell} \right)}{p_{\ell+1} - p_{\ell}} \\ &= \frac{\overline{\beta} \left(p_{\ell+1} - p_{\ell} \right) + \sigma_{U_1 - U_0} \left(\phi \left(\Phi^{-1} \left(1 - p_{\ell+1} \right) \right) - \phi \left(\Phi^{-1} \left(1 - p_{\ell} \right) \right) \right)}{p_{\ell+1} - p_{\ell}} \end{split}$$

$$\lambda_{\ell} = (p_{\ell+1} - p_{\ell}) \frac{\sum_{i=1}^{K} (p_i - E(P(Z))) \sum_{t>\ell}^{K} f(p_i, p_t)}{\text{Cov}(Z_1, D)}$$
$$= (p_{\ell+1} - p_{\ell}) \frac{\sum_{t>\ell}^{K} (p_t - E(P(Z))) f(p_t)}{\text{Cov}(Z_1, D)}$$

Discrete instruments and the weights for LATE

Joint probability distribution of (Z_1, Z_2) and the propensity score

$Z_1 \setminus Z_2$	-1	0	1			
-1	0.02	0.02	0.36			
	0.7309	0.6402	0.5409			
0	0.3	0.01	0.03			
	0.6402	0.5409	0.4388			
1	0.2	0.05	0.01			
	0.5409	0.4388	0.3408			
$Cov(Z_1, Z_2) = -0.5468$						

(joint probabilities in ordinary type ($Pr(Z_1 = z_1, Z_2 = z_2)$); propensity score in italics ($Pr(D = 1|Z_1 = z_1, Z_2 = z_2)$))

Discrete instruments and the weights for LATE

Figure 5: IV weights and its components under discrete instruments when P(Z) is the instrument

$$\mathsf{ATE} = 0.2, \ \mathsf{TT} = 0.5942, \ \mathsf{TUT} = -0.4823$$

and

$$\Delta_{P(Z)}^{\mathsf{IV}} = \sum_{\ell=1}^{K-1} \Delta^{\mathsf{LATE}} \left(p_{\ell}, p_{\ell+1}
ight) \lambda_{\ell} = -0.09$$

Discrete instruments and the weights for LATE

Figure 5A: IV weights and its components under discrete instruments when P(Z) is the instrument (IV Weights)

Discrete instruments and the weights for LATE

Figure 5B: IV weights and its components under discrete instruments when P(Z) is the instrument ($E(P(Z) | P(Z) > p_{\ell})$ and E(P(Z)))

230 / 286

Discrete instruments and the weights for LATE

Figure 5C: IV weights and its components under discrete instruments when P(Z) is the instrument (Local average treatment effects)

Discrete instruments and the weights for LATE

Consider using Z_1 as instrument

- If Z_1 and Z_2 are negatively dependent and $E(Z_1 | P(Z) > u_D)$ is not monotonic in u_D , weights negative.
- This nonmonotonicity is evident in Figure 6B.
- This produces the pattern of negative weights shown in Figure 6A.
- Associated with two way flows.
- Two way flows are induced by uncontrolled variation in Z_2 .

Discrete instruments and the weights for LATE

Figure 4B: monotonicity, the extended Roy economy Changing Z_1 without controlling for Z_2

Discrete instruments and the weights for LATE

Figure 6: IV weights and its components under discrete instruments when Z_1 is the instrument

The model is the same as the one presented after figure 4.

Discrete instruments and the weights for LATE

Figure 5C: IV weights and its components under discrete instruments when P(Z) is the instrument (local average treatment effects)

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0000000	00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Discrete instruments and the weights for LATE

$$\Delta_{Z_{1}}^{\mathsf{IV}} = \sum_{\ell=1}^{K-1} \Delta^{\mathsf{LATE}} (p_{\ell}, p_{\ell+1}) \lambda_{\ell} = 0.1833$$
$$\lambda_{\ell} = (p_{\ell+1} - p_{\ell}) \frac{\sum_{i=1}^{I} (z_{1,i} - E(Z_{1})) \sum_{t>\ell}^{K} f(z_{1,i}, p_{t})}{\mathsf{Cov}(Z_{1}, D)}$$

Discrete instruments and the weights for LATE

Joint probability distribution of (Z_1, Z_2) and the propensity score

$Z_1 \setminus Z_2$	-1	0	1			
-1	0.02	0.02	0.36			
	0.7309	0.6402	0.5409			
0	0.3	0.01	0.03			
	0.6402	0.5409	0.4388			
1	0.2	0.05	0.01			
	0.5409	0.4388	0.3408			
$Cov(Z_1, Z_2) = -0.5468$						

(joint probabilities in ordinary type ($Pr(Z_1 = z_1, Z_2 = z_2)$); propensity score in italics ($Pr(D = 1|Z_1 = z_1, Z_2 = z_2)$))

Discrete instruments and the weights for LATE

Conditional variable estimator and conditional local average treatment effect when Z_1 is the instrument (given $Z_2 = z_2$)

	$Z_2 = -1$	$Z_2 = 0$	$Z_2 = 1$
$P(-1, Z_2) = p_3$	0.7309	0.6402	0.5409
$P(0, Z_2) = p_2$	0.6402	0.5409	0.4388
$P(1, Z_2) = p_1$	0.5409	0.4388	0.3408
$\lambda_1 \ \lambda_2$	0.8418	0.5384	0.2860
	0.1582	0.4616	0.7140
$\Delta^{\text{LATE}}\left(p_{1},p_{2} ight) \ \Delta^{\text{LATE}}\left(p_{2},p_{3} ight)$	-0.2475	0.2497	0.7470
	-0.7448	0.2475	0.2497
$\Delta^{IV}_{Z_1 Z_2=z_2}$	-0.3262	0.0202	0.3920

Discrete instruments and the weights for LATE

Conditional instrumental variable estimator

$$\Delta_{Z_1|Z_2=z_2}^{\mathsf{IV}} = \sum_{\ell=1}^{I-1} \Delta^{\mathsf{LATE}} \left(p_{\ell}, p_{\ell+1} | Z_2 = z_2 \right) \lambda_{\ell|Z_2=z_2} = \sum_{\ell=1}^{I-1} \Delta^{\mathsf{LATE}} \left(p_{\ell}, p_{\ell+1} | Z_2 = z_2 \right) \lambda_{\ell|Z_2=z_2}$$

$$\Delta^{\text{LATE}}(p_{\ell}, p_{\ell+1}|Z_2 = z_2) = \frac{E(Y|P(Z) = p_{\ell+1}, Z_2 = z_2) - E(Y|P(Z) = p_{\ell}, Z_2 = z_2)}{p_{\ell+1} - p_{\ell}}$$

$$\lambda_{\ell|Z_2=z_2} = (p_{\ell+1} - p_{\ell}) \frac{\sum_{i=1}^{l} (z_{1,i} - E(Z_1|Z_2 = z_2)) \sum_{t>\ell}^{l} f(z_{1,i}, p_t|Z_2 = z_2)}{\operatorname{Cov}(Z_1, D)}$$
$$= (p_{\ell+1} - p_{\ell}) \frac{\sum_{t>\ell}^{l} (z_{1,t} - E(Z_1|Z_2 = z_2)) f(z_{1,t}, p_t|Z_2 = z_2)}{\operatorname{Cov}(Z_1, D)}$$

Discrete instruments and the weights for LATE

Conditional instrumental variable estimator

Probability Distribution of Z_1 Conditional on Z_2 (Pr($Z_1 = z_1 | Z_2 = z_2$))

<i>z</i> ₁	$\Pr(Z_1 = z_1 Z_2 = -1)$	$\Pr(Z_1=z_1 Z_2=0)$	$\Pr(Z_1 = z_1 Z_2 = 1)$
-1	0.0385	0.25	0.9
0	0.5769	0.125	0.075
1	0.3846	0.625	0.025

- Figure 7 plots E(Y | P(Z)) and MTE for the models displayed at the base of the figure. In cases I and II, $\beta \perp D$.
- In case I, this is trivial since β is a constant. In case II, β is random but selection into D does not depend on β .
- Case III is the model with essential heterogeneity ($\beta \not\perp D$).
- Figure 7A depicts E(Y | P(Z)) in the three cases.

Figure 7: conditional expectation of Y on P(Z) and the marginal treatment effect (MTE)

A. E(Y|P(Z) = p)

B. $\Delta^{\rm MTE}(u_D)$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	00000000000000000	0.0000000000000000000000000000000000000			•00000000000

OutcomesChoice Model
$$Y_1 = \alpha + \bar{\beta} + U_1$$
 $D = \begin{cases} 1 \text{ if } D^* > 0 \\ 0 \text{ if } D^* \le 0 \end{cases}$ $Y_0 = \alpha + U_0$

Case I	Case II	Case III
$U_1 = U_0$	$U_1 - U_0 \perp D$	$U_1 - U_0 \not\perp D$
$\bar{\beta} = ATE = TT = TUT = IV$	$\bar{\beta} = ATE = TT = TUT = IV$	$\bar{\beta} = ATE \neq TT \neq TUT \neq IV$

Parameterization

Cases I, II and III	Cases II and III	Case III
$lpha=$ 0.67 $ar{eta}=$ 0.2	$(U_1, U_0) \sim N(0, \mathbf{\Sigma})$ with $\mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}$	$D^* = Y_1 - Y_0 - \gamma Z$ $Z \sim N(\mu_Z, \boldsymbol{\Sigma}_Z)$ $\mu_Z = (2, -2) \text{ and } \boldsymbol{\Sigma}_Z = \begin{bmatrix} 9 & -2\\ -2 & 9 \end{bmatrix}$ $\gamma = (0.5, 0.5)$

- Cases I and II make E(Y | P(Z)) linear in P(Z) (see equation 5.2). Case III is nonlinear in P(Z) which arises when β μ D. The derivative of E(Y | P(Z)) is presented in the right panel (Figure 7B).
- It is a constant in cases I and II (flat MTE) but declining in $U_D = P(Z)$ for the case with selection on the gain.

- MTE gives the mean marginal return for persons who have utility $P(Z) = u_D \ (P(Z) = u_D \text{ is the margin of indifference}).$
- Figure 7 highlights that MTE (and LATE) identify average returns for persons at the margin of indifference at different levels of the mean utility function P(Z).
- Figure 8 plots MTE and LATE for different intervals of u_D using the model plotted in Figure 7.
- LATE is the chord of E(Y | P(Z)) evaluated at different points.
- The relationship between LATE and MTE is presented in the right panel of Figure 8.

Figure 8: the local average treatment effect

Figure 8: the local average treatment effect

$$\Delta^{\text{LATE}}(p_{\ell}, p_{\ell+1}) = \frac{E(Y|P(Z) = p_{\ell+1}) - E(Y|P(Z) = p_{\ell})}{p_{\ell+1} - p_{\ell}}$$
$$= \frac{\int_{p_{\ell}}^{p_{\ell+1}} \Delta^{\text{MTE}}(u_D) du_D}{p_{\ell+1} - p_{\ell}}$$

$$\begin{array}{rcl} \Delta^{\text{LATE}}(0.1, 0.35) &=& 1.719 \\ \Delta^{\text{LATE}}(0.6, 0.9) &=& -1.17 \end{array}$$

Figure 8: the local average treatment effect

Outcomes	Choice Model
$Y_1 = \alpha + \bar{\beta} + U_1$ $Y_0 = \alpha + U_0$	$D=egin{cases} 1 ext{ if } D^*>0\ 0 ext{ if } D^*\leq 0\ ext{with } D^*=Y_1-Y_0-\gamma Z \end{cases}$

Parameterization

$$(U_1, U_0) \sim N(\mathbf{0}, \mathbf{\Sigma}) \text{ and } Z \sim N(\mu_Z, \mathbf{\Sigma}_Z)$$

 $\mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}, \ \mu_Z = (2, -2) \text{ and } \mathbf{\Sigma}_Z = \begin{bmatrix} 9 & -2 \\ -2 & 9 \end{bmatrix}$
 $\alpha = 0.67, \overline{\beta} = 0.2, \gamma = (0.5, 0.5)$

- The treatment parameters as a function of *p* associated with case III are plotted in Figure 9.
- MTE is the same as that reported in Figure 7.
- ATE is the same for all *p*.
- $\Delta^{TT}(p) = E(Y_1 Y_0 \mid D = 1, P(Z) = p)$ declines in p (equivalently, it declines in u_D).

$$LATE(p, p') = \frac{\Delta^{TT}(p')p' - \Delta^{TT}(p)p}{p' - p}, \qquad p' \neq p$$
$$MTE = \frac{\partial [\Delta^{TT}(p)p]}{\partial p}.$$

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion	
		0000000		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	N
Continuous instru	iment	ts								

Parameter	Definition	Under Assumptions (*)
Marginal Treatment Effect	$E[Y_1 - Y_0 D^* = 0, P(Z) = p]$	$\bar{\beta} + \sigma_{U_1 - U_0} \Phi^{-1} (1 - p)$
Average Treatment Effect	$E\left[Y_1 - Y_0 P(Z) = p\right]$	$\overline{\beta}$
Treatment on the Treated	$E[Y_1 - Y_0 D^* > 0, P(Z) = p]$	$\bar{\beta} + \sigma_{U_1 - U_0} \frac{\phi\left(\Phi^{-1}(1-p)\right)}{p}$
Treatment on the Untreated	$E[Y_1 - Y_0 D^* \le 0, P(Z) = p]$	$\overline{\beta} - \sigma_{U_1-U_0} \frac{\phi(\Phi^{-1}(1-p))}{1-p}$
OLS/Matching on $\mathbb{P}(\mathbb{Z})$	$E\left[Y_{1} D^{*}>0, P(Z)=p\right] - E\left[Y_{0} D^{*}\leq 0, P(Z)=p\right]$	$\bar{\beta} + \left(\frac{\sigma_{U_1}^2 - \sigma_{U_1, U_0}}{\sqrt{\sigma_{U_1 - U_0}}}\right) \left(\frac{1 - 2p}{p(1 - p)}\right) \phi \left(\Phi^{-1}(1 - p)\right)$

Note: $\Phi(\cdot)$ and $\phi(\cdot)$ represent the cdf and pdf of a standard normal distribution, respectively. $\Phi^{-1}(\cdot)$ represents the inverse of $\Phi(\cdot)$.

(*): The model in this case is the same as the one presented below Figure 6.

P(Z) = p

Continuous instruments

Another nonmonotonicity example

A mixture of two normals:

$$Z \sim P_1 N(\mu_1, \Sigma_1) + P_2 N(\mu_2, \Sigma_2)$$

 P_1 is the proportion in population 1, P_2 is the proportion in population 2 and $P_1 + P_2 = 1$.

Continuous instruments

Another nonmonotonicity example

- Conventional normal outcome selection model generated by the parameters at the base of Figure 11.
- The discrete choice equation is a conventional probit: $\Pr(D = 1 \mid Z = z) = \Phi\left(\frac{\gamma z}{\sigma_V}\right).$
- The $\Delta^{\text{MTE}}(v)$,

$$E(Y_1 - Y_0 \mid V = v) = \mu_1 - \mu_0 + \frac{Cov(U_1 - U_0, V)}{Var(V)}v.$$

 We show results for models with vector Z that satisfies (IV-1) and (IV-2) and with γ > 0 componentwise.

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion	
		0000000		00000000	000000000000000	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	N
Continuous instru	iment	te								

Outcomes	Choice Model
$Y_1 = \alpha + \overline{\beta} + U_1$ $Y_0 = \alpha + U_0$	$D = \left\{egin{array}{cccc} 1 & ext{if} & D^* > 0 \ 0 & ext{if} & D^* \leq 0 \ D^* = Y_1 - Y_0 - \gamma Z \ ext{and} & V = - (U_1 - U_0) \end{array} ight.$

Parameterization

$$\left(\textit{U}_{1},\textit{U}_{0}
ight) \sim \textit{N}\left(\mathbf{0},\mathbf{\Sigma}
ight), \hspace{1em} \mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}, \hspace{1em} lpha = 0.67, \hspace{1em} ar{eta} = 0.2$$

$$Z = (Z_1, Z_2) \sim p_1 N(\kappa_1, \Sigma_1) + p_2 N(\kappa_2, \Sigma_2)$$
$$p_1 = 0.45, \ p_2 = 0.55 \qquad ; \quad \Sigma_1 = \begin{bmatrix} 1.4 & 0.5 \\ 0.5 & 1.4 \end{bmatrix}$$
$$Cov(Z_1, \gamma Z) = \gamma \Sigma_1^1 = 0.98 \quad ; \qquad \gamma = (0.2, 1.4)$$

Continuous instruments

Figure 11: marginal treatment effect and IV weights using Z_1 as the instrument when $Z = (Z_1, Z_2) \sim p_1 N(\mu_1, \Sigma_1) + p_2 N(\mu_2, \Sigma_2)$ for different values of Σ_2

Adoption model IV General model Index Operivation Comparing models Examples GED Separability Conclusion

Continuous instruments

Table 3: IV estimator and ${\rm Cov}(Z_2,\gamma'Z)$ associated with each value of Σ_2

Weights	Σ_2	κ_1	κ_2	IV	ATE	TT	TUT	$\operatorname{Cov}(Z_2, \gamma Z) = \gamma \Sigma_2^1$
ω_1	$\begin{bmatrix} 0.6 & -0.5 \\ -0.5 & 0.6 \end{bmatrix}$	[00]	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.434	0.2	1.401	-1.175	-0.58
ω_2	$\begin{bmatrix} 0.6 & 0.1 \\ 0.1 & 0.6 \end{bmatrix}$	[00]	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.078	0.2	1.378	-1.145	0.26
ω_3	$\begin{bmatrix} 0.6 & -0.3 \\ -0.3 & 0.6 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & -1 \end{array}\right]$	$\left[\begin{array}{cc} 0 & 1 \end{array}\right]$	-2.261	0.2	1.310	-0.859	-0.30

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000		000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000

Consider the study of the GED.

Figure 12: frequency of the propensity score by final schooling decision

Table 4: instrumental variables estimates

Instruments	Standard IV (f)			
	Full Sample ^(a)	Common Support ^(b)		
Father Highest Grade Completed	0.194	0.005		
	(0.384)	(0.391)		
Mother Highest Grade Completed	1.106	0.588		
	(3.030)	(2.981)		
Number of Siblings	-0.311	-0.471		
	(0.618)	(0.725)		
Ged Cost	1.938	1.994		
	(2.414)	(2.544)		
Family income in 1979	0.656	0.636		
	(0.534)	(0.571)		
Dropout's local wage at age 17	-1.812	-1.612		
	(1.228)	(1.037)		
High School Graduate's local wage at age 17	-2.197	-1.872		
	(1.441)	(1.143)		
Dropout's local unemployment rate at age 17	0.164	0.203		
	(1.071)	(0.853)		
High School Graduate's local unemployment rate at age 17	0.142	0.202		
	(1.537)	(1.261)		
Propensity Score (d)	-0.276	-0.305		
	(0.134)	(0.140)		

Sample of GEDs and dropouts - males at age 30

260 / 286

Figure 13: MTE of the GED with confidence interval

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenume, tenure squared, experience, corrected AFQT, black (dummy), hispain: (dummy), mainif astass, and years or schooling. Let D=0 denote depoput status, and D=1 denote GED statuss. The model for D (choice model) includes as controls the corrected AFQT, number of siblings, father's calcuation, mother's education, finding the outcome at age 17, local GED costs, blocks hower at ge 14, areneip local wage at age 12 for dropouts and high school graduates, local unequipoinment rate at age 17 for dropouts and high school graduates, local unequipoinment rate at age 17 of orderpouts and high using a probit model. In computing the MTE, the landwidth in the first step is selected using the know-one-our costs-ublaciton method. In the second step, following Camerior COSIO and Heckman et al. (1998), we set the bandwidth to C3. We use bivegoit thereal functions.

Figure 14: IV weights

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience, corrected AFQT, black (dummy), hispaine (dummy), mainti astans, and years or schooling. Let D=0 denote theory tastas, and D=1 denote GED stanss. The model for D (blocke model) includes as controls the corrected AFQT, number of siblings, father's calucation, mother's education, mitmly income at age 17, local GED blocke model) includes as controls the corrected AFQT, number of siblings, father's calucation, mother's education, mitmly income at age 17, local GED school graduates, the dimensy variables tasks and hispatings, and as ter of dummy variables extromoling for the gar of Jarth. The chance model is estimated using a probit model. In computing the MTE, the bandwidth in the first step is selected using the kerve – one-out cross-valuation method. In the second step, following Carmeiro (2003) and Heckmann et al. (1998), we set the bandwidth to G.S. We us biveguit themed functions.

Figure 15: IV weights

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience, corrected AFQT, black (hummy), hispain (dummy), marini status, and years or schooling. Let D = 0 denote dropout status, and D = 1 denote GFD status. The model for D (house model) includes as controls the corrected AFQT, number of silkings, father's education, mother's elucation, mother's elucation, mother's elucation, the model produces at age 17, lecal GFD color benefits and the status of the statu

Adoption model	IV	General model	Index	Derivation	Comparing models	Examples	GED	Separability	Conclusion
		0000000		00000000	000000000000000000000000000000000000000	0000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000

Table 5: treatment parameter estimates

Treatment Parameter	Parametric (b)	Polynomial (c)	Nonparametric (d)
Treatment on the Treated	-0.152	-0.183	-0.241
	(0.166)	(0.201)	(0.180)
Treatment on the Untreated	-0.369	-0.119	-0.304
	(0.170)	(0.231)	(0.223)
Average Treatment Effect	-0.279	-0.145	-0.278
0	(0.151)	(0.184)	(0.174)
LATE(0.38,0.62)	-0.335	-0.404	-0.261
	(0.160)	(0.275)	(0.221)
LATE(0.55,0.79)	-0.453	0.106	-0.327
,	(0.205)	(0.377)	(0.416)
LATE(0.21.0.45)	-0.216	-0.462	-0.396
	(0.153)	(0.210)	(0.164)

Sample of GED and Dropouts - Males at age 30 (a)

Notes: (a) We excluded the oversample of poor whites, the military sample, and those who attended college. (b) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using the parametric approach. (c) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using A polynomial of degree 4 to approximate E(Y | P). (d) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using the nonparametric approach. The standard deviations (in parenthesis) are computed using bootstrapping (100 draws).

- The analysis of this lecture and the entire recent literature on instrumental variables estimators for models with essential heterogeneity relies on the assumption that the treatment choice equation is in additively separable form (3.2).
- Imparts an asymmetry to the entire instrumental variable enterprise for estimating treatment effects.

- This asymmetry is also present in conventional selection models even in their semiparametric version.
- Parameters can be defined as weighted averages of an MTE but MTE and the derived parameters cannot be identified using any instrumental variables strategy.

- Natural benchmark nonseparable model:
 - random coefficient model of choice $D = \mathbf{1} \left(\gamma Z \ge 0
 ight)$
 - γ is a random coefficient vector and $\gamma \perp (Z, U_0, U_1)$.

Relaxing additive separability in the choice equation and allowing for random coefficient choice models

- Consider a more general case.
- Relax the separability assumption of equation (3.2).

$$D^* = \mu_D(Z, V), \quad D = \mathbf{1}(D^* \ge 0),$$
 (9.1)

 $\mu_D(Z, V)$ is not necessarily additively separable in Z and V, and V is not necessarily a scalar.

Relaxing additive separability in the choice equation and allowing for random coefficient choice models

We maintain assumptions (A-1)-(A-2) and (A-5).

• As we have shown, relationships among treatment parameters as weighted averages of generator functions (not MTEs) hold in this case even if we fail monotonicity.

Figure 4C: monotonicity, the extended Roy economy Random coefficient case

Figure 4C: monotonicity, the extended Roy economy Random coefficient case

$$egin{array}{c} z \longrightarrow z' \ z = (0,1) ext{ and } z' = (1,1) \end{array}$$

$$\gamma$$
 is a random vector
 $\widetilde{\gamma} = (0.5, 0.5)$ and $\widetilde{\widetilde{\gamma}} = (-0.5, 0.5)$
where $\widetilde{\gamma}$ and $\widetilde{\widetilde{\gamma}}$ are two realizations of γ

$$D\left(\widetilde{\widetilde{\gamma}}z
ight) \geq D\left(\widetilde{\widetilde{\gamma}}z'
ight)$$
 and $D\left(\widetilde{\gamma}z
ight) < D\left(\widetilde{\gamma}z'
ight)$

Depending on value of γ

- In the additively separable case, MTE has three equivalent interpretations:
 - $U_D(=F_V(V))$ is the only unobservable in the first stage decision rule, and MTE is the average effect of treatment given the unobserved characteristics in the decision rule $(U_D = u_D)$;
 - MTE is the average effect of treatment given that the individual would be indifferent between treatment or not if P(Z) = u_D, where P(Z) is a mean utility function;
 - the MTE is an average effect conditional on the additive error term from the first stage choice model.

- Under all interpretations of the MTE, and under the assumptions (A-1)–(A-5), MTE can be identified by LIV.
- Three definitions are not the same in the general nonseparable case (9.1). Heckman and Vytlacil (2001, 2005) extend MTE to the nonseparable case.

Failure of index sufficiency in general nonseparable models

• For any version of the nonseparable model, index sufficiency fails.

• Define
$$\Omega(z) = \{ v : \mu_D(z, v) \ge 0 \}.$$

• In the additively separable case, $P(z) \equiv \Pr(D = 1 | Z = z)$ = $\Pr(V_D \in \Omega(z)), P(z) = P(z') \Leftrightarrow \Omega(z) = \Omega(z').$

Failure of index sufficiency in general nonseparable models

- This produces index sufficiency so the propensity score orders the unobservables generating choices.
- In the more general case (9.1), it is possible to have (z, z') values such that P(z) = P(z') and $\Omega(z) \neq \Omega(z')$ so index sufficiency does not hold.
- The Z's enter the model more generally, and the propensity score no longer plays the central role it plays in separable models.

- The nonseparable model can also restrict the support of P(Z).
- For example, consider a normal random coefficient choice model with a scalar regressor $(Z = (1, Z_1))$.
- Assume $\gamma_0 \sim N(0, \sigma_0^2)$, $\gamma_1 \sim N(\bar{\gamma}_1, \sigma_1^2)$, and $\gamma_0 \perp \perp \gamma_1$.

$$\mathcal{P}\left(z_{1}
ight)=\Phi\left(rac{ar{\gamma}_{1}z_{1}}{\sqrt{\sigma_{0}^{2}+\sigma_{1}^{2}z_{1}^{2}}}
ight).$$

Φ is the cumulative distribution of a standard normal.
σ₁² > 0.

- The support is strictly within the unit interval.
- The case when $\sigma_0^2 = 0$, the support is one point,

$$\left(P\left(z\right)=\Phi\left(\frac{\bar{\gamma}_{1}}{\sigma_{1}}\right)\right).$$

• Cannot, in general, identify ATE, TT or any treatment effect requiring the endpoints 0 or 1 using IV or control function strategies.

- One source of violations of monotonicity is nonseparability between Z and V in (9.1).
- The random coefficient model is one intuitive model where separability fails.
- Even if (9.1) is separable in Z and V, uniformity may fail in the case of vector Z, where we use only one function of Z as the instrument, and do not condition on the remaining sources of variation in Z.
- If we condition appropriately, we retain monotonicity but get a new form of instrumental variable estimator that is sensitive to the specification of the Z not used as an instrument.

• We have studied the estimation of treatment effects in a model

$$Y = \alpha + \beta D + \varepsilon$$

- We have contrasted this with a structural Roy model.
- Considered cases where β is constant and where β is heterogeneous.

- Consider what IV estimates and its relationship with Economic Choice and Selection Models.
- In general heterogeneous response models, the two approaches have strong similarities.
- Selection models identify levels (conditional means).
- IV models identify slopes.

- We lose constants in estimating IV models.
- We get back level parameters by integration.
- This accounts for the weighting schemes that appear in the literature.
- We must recover the constants to get levels parameters. (Classical treatment effects like ATE and TT).
- We restore the constants to estimate classical treatment parameters using the same limit arguments used to identify selection models.

- If we are only concerned with slope treatment parameters, we can avoid limit arguments in IV or selection models.
- Explore the role of "monotonicity" or "uniformity" assumptions in IV.
- Concept used by Imbens and Angrist (1994) to define LATE.
- Monotonicity is not needed to define treatment parameters or establish the relationship among them (Heckman and Vytlacil).
- Under monotonicity or uniformity, LIV = MTE.

- Can express all classical treatment parameters as weighted averages of MTE.
- Monotonicity is needed to use IV to identify MTE and LATE.
- Treatment parameters can be defined; relationships among them established and IV weights defined without monotonicity or uniformity.

- Much of the literature is for two outcome models.
- Angrist and Imbens (1995) consider the case of an ordered choice model with a scalar instrument that affects choices at all margins.
- We develop the case of a general ordered choice model with transition-specific instruments.
- We also develop a general unordered model.
- The most general case requires a marriage of semiparametric selection models (e.g. Heckman, 1990) and IV intuition to identify general parameters.

- Need to identify semiparametric discrete choice models to get classical pairwise properties.
- We have an analysis for bounds which we defer to another occasion.

References