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Policy adoption problem

Suppose a policy is proposed for adoption in a country.

What can we conclude about the likely effectiveness of the
policy in countries?

Build a model of counterfactuals.

Y1 = µ1(X ) + U1 (1.1)

Y0 = µ0(X ) + U0.
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Consider the basic generalized Roy model

Two potential outcomes (Y0, Y1).

A choice equation

D = 1[µD(Z , V )︸ ︷︷ ︸
net utility

> 0].

Observed outcomes are

Y = DY1 + (1− D)Y0

Assume µD(Z , V ) = µD(Z )− V .
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Switching Regression Notation

Y = Y0 + (Y1 − Y0)D (1.2)

= µ0 + (µ1 − µ0 + U1 − U0)D + U0.

(Quandt, 1958, 1972)

In Conventional Regression Notation

Y = α + βD + ε (1.3)

α = µ0, β = (Y1 − Y0) = µ1 − µ0 + U1 − U0, ε = U0.

β is the “treatment effect.”
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Figure 1: distribution of gains, a Roy economy
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The model

Outcomes Choice Model

Y1 = µ1 + U1 = α + β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = µ0 + U0 = α + U0

General Case

(U1 − U0) ⊥�⊥ D
ATE 6=TT 6=TUT
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The model

The Researcher Observes (Y , D, C )

Y = α + βD + U0 where β = Y1 − Y0

Parameterization

α = 0.67 (U1, U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − C

β̄ = 0.2 Σ =

[
1 −0.9

−0.9 1

]
C = 1.5
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In the case when U1 = U0 = ε0, simple least squares regression
of Y on D subject to a selection bias.

This is a form of endogeneity bias considered by the Cowles
analysts.

Upward biased for β if Cov(D, ε) > 0.
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Three main approaches have been adopted to solve this
problem:

1 Selection models
2 Instrumental variable models
3 Matching: assumes that ε ⊥⊥ D | X .

Matching is just nonparametric least squares and assumes
access to rich data which happens to guarantee this condition.
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Case I, the traditional case: β is a constant

If there is an instrument Z , with the property that

Cov(Z , D) 6= 0 (1.4)

Cov(Z , ε) = 0, (1.5)

then

plim β̂IV =
Cov(Z , Y )

Cov(Z , D)
= β.

If other instruments exist, each identifies the same β.
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Case II, heterogeneous response case: β is a random variable even
conditioning on X

Sorting bias or sorting on the gain which is distinct from sorting on
the level.

Essential heterogeneity

Cov(β, D) 6= 0.

Suppose (1.4), (1.5) and

Cov(Z , β) = 0. (1.6)

Can we identify the mean of (Y1 − Y0) using IV?
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In general we cannot (Heckman and Robb, 1985).

Let

β̄ = (µ1 − µ0)

β = β̄ + η

U1 − U0 = η

Y = α + β̄D + [ε + ηD] .

Need Z to be uncorrelated with [ε + ηD] to use IV to
identify β̄.

This condition will be satisfied if policy adoption is made
without knowledge of η (= U1 − U0).

If decisions about D are made with partial or full knowledge of
η, IV does not identify β̄.
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The IV condition is

E [ε + ηD | Z ] = 0.

E (ε | Z ) = 0, E (η | Z ) = 0.

Even if η ⊥⊥ Z , η ⊥�⊥ Z | D = 1.

E (ηD | Z ) = E (η | D = 1, Z ) Pr(D = 1 | Z ).

But E (η | Z , D = 1) 6= 0, in general, if agents have some
information about the gains.
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Draft Lottery example (Heckman, 1997).

Linear IV does not identify ATE or any standard treatment
parameters.
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Imbens Angrist conditions (1994)

Imbens and Angrist (1994) establish that IV can identify an
interpretable parameter in the model with essential
heterogeneity.

Their parameter is a discrete approximation to the marginal
gain parameter of Björklund and Moffitt (1987).

This parameter can be interpreted as the marginal gain to
outcomes induced from a marginal change in the costs of
participating in treatment (Björklund-Moffitt).
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Imbens Angrist conditions (1994)

Imbens and Angrist assume the existence of an instrument Z
that takes two or more distinct values.

Keep conditioning on X implicit.

Let Di (z) be the indicator (= 1 if adopted; = 0 if not)

It is a random variable for choice when we set Z = z .
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Imbens Angrist conditions (1994)

IV-1 (Independence)

Z ⊥⊥
(
Y1, Y0, {D (z)}z∈Z

)
.

IV-2 (Rank)

Pr(D = 1 | Z ) depends on Z.

They supplement the standard IV assumption with a
“monotonicity” assumption.

IV-3 (Monotonicity or Uniformity)

Di (z) ≥ Di (z
′) or Di (z) ≤ Di (z

′) i = 1, . . . , I .
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Imbens Angrist conditions (1994)

Uniformity of responses across persons.

Uniformity is satisfied when, for z < z ′, Di (z) ≤ Di (z
′) for all

i , while for z ′′ > z ′, Di (z
′′) ≤ Di (z

′) for all i .

18 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Imbens Angrist conditions (1994)

These conditions imply the LATE parameter.

E (Y | Z = z)− E (Y | Z = z ′)

= E ((D(z)− D(z ′)) (Y1 − Y0)) (Independence)
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Imbens Angrist conditions (1994)

Using iterated expectations,

E (Y | Z = z)− E (Y | Z = z ′) (1.7)

=

(
E (Y1 − Y0 | D (z)− D (z ′) = 1)

·Pr (D (z)− D (z ′) = 1)

)
−
(

E (Y1 − Y0 | D (z)− D (z ′) = −1)
·Pr (D (z)− D (z ′) = −1)

)
.

Monotonicity allows us to drop out one term.
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Imbens Angrist conditions (1994)

Suppose, for example, that Pr(D(z)− D(z ′) = −1) = 0. Thus,

E (Y | Z = z)− E (Y | Z = z ′)

= E (Y1 − Y0 | D(z)− D(z ′) = 1) Pr (D(z)− D(z ′) = 1) .

LATE =
E (Y | Z = z)− E (Y | Z = z ′)

Pr(D = 1 | Z = z)− Pr(D = 1 | Z = z ′)

= E (Y1 − Y0 | D(z)− D(z ′) = 1) (1.8)

The mean gain to those induced to switch from “0” to “1” by
a change in Z from z ′ to z .
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Imbens Angrist conditions (1994)

Observe LATE = ATE if

Pr (D = 1 | Z = z) = 1 while Pr (D = 1 | Z = z ′) = 0.

“Identification at infinity” plays a crucial role throughout the
entire literature on policy evaluation.
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Imbens Angrist conditions (1994)

In general, LATE 6= E (Y1 − Y0) = E (β).

Not treatment on the treated: E (β | D = 1).

Different instruments define different parameters.

Having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter (Heckman and Robb, 1986).

When there are more than two distinct values of Z , Imbens and
Angrist use Yitzhaki (1989) weights.
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Imbens Angrist conditions (1994)

Goal of our work: unify literature with a common set of
underlying parameters interpretable across studies.

To understand how to connect the results of various disparate
IV estimands within a unified framework.
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IV in choice models

D = 1 [D∗ > 0] (2.1)

1[·] is an indicator (1[A] = 1 if A true; 0 otherwise).

D∗ = µD(Z )− V (2.2)

Example: µD(Z ) = γZ

D∗ = γZ − V
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Examples

(V ⊥⊥ Z ) | X .

The propensity score:

P(z) = Pr(D = 1 | Z = z) = Pr(γz > V ) = FV (γz)

FV is the distribution of V .
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Examples

Generalized Roy model

D = 1[Y1 − Y0 − C > 0]

Costs C = µC (W ) + UC

Z = (X , W )

µD (Z ) = µ1 (X )− µ0 (X )− µC (W )

V = − (U1 − U0 − UC ) .
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Heterogeneous response model

In a general model with heterogenous responses, specification of
P(Z ) and its relationship with the instrument play a crucial role.

Cov (Z , ηD) = E
((

Z − Z̄
)
ηD
)

= E
((

Z − Z̄
)
η | D = 1

)
Pr (D = 1)

= E (
(
Z − Z̄

)
η | γZ > V︸ ︷︷ ︸

FV (γZ ) > FV (V )
P(Z ) > UD

)Pr (γZ > V )︸ ︷︷ ︸
P(Z)

.

Probability of selection enters the covariance even though we
use only one component of Z as an instrument.
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Selection models control for this dependence induced by choice.
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Selection models

Assume
(U1, U0, V ) ⊥⊥ Z (2.3)

[Alternatively (ε, η, V ) ⊥⊥ Z ].

η = (U1 − U0), ε = U0 (2.4)

E (Y | D = 0, Z = z) = E (Y0 | D = 0, Z = z)

= α + E (U0 | γz < V )

E (Y | D = 0, Z = z) = α + K0(P(z)︸ ︷︷ ︸)
control function
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Selection models

E (Y | D = 1, Z = z) = E (Y1 | D = 1, Z = z)

= α + β̄ + E (U1 | γz > V )

= α + β̄ + K1(P(z))︸ ︷︷ ︸
control function

K0(P(z)) and K1(P(z)) are control functions in the sense of
Heckman and Robb (1985, 1986).

P(z) is an essential ingredient.

Matching: K1 (P(z)) = K0 (P(z)).
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In a model where β is variable and not independent of V ,
misspecification of Z affects the interpretation of what IV
estimates analogous to its role in selection models.

Misspecification of Z affects both approaches to identification.

This is a new phenomenon in models with heterogenous β.

32 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Model for outcomes

Y1 = µ1 (X , U1) (3.1)

Y0 = µ0 (X , U0) .

X are observed and (U1, U0) are unobserved by the analyst.

The X may be dependent on U0 and U1.

Generalize choice model (2.1) and (2.2) for D∗, a latent utility.
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Model for outcomes

D∗ = µD (Z )− V and D = 1 (D∗ ≥ 0) (3.2)

µD (Z )− V can be interpreted as a net utility for a person with
characteristics (Z , V ).

β = Y1 − Y0 = µ1 (X , U1)− µ0 (X , U0) (Treatment Effect)
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Model for outcomes

A special case that links our analysis to standard models in
econometrics:

Y1 = Xβ1 + U1 and

Y0 = Xβ0 + U0; so

β = X (β1 − β0) + (U1 − U0).

In the case of separable outcomes, heterogeneity in β arises
because in general U1 6= U0 and people differ in their X .

Heckman-Vytlacil conditions (1999,2001, 2005)
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Assumptions

A-1

The distribution of µD (Z ) conditional on X is nondegenerate (Rank
Condition for IV). This says that we can vary Z (excluded from
outcome equations) given X . Key property of an instrument.

A-2

(U0, U1, V ) are independent of Z conditional on X (Independence
Condition for IV). Z is not affecting potential outcomes or affecting
the unobservables affecting choices.
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Assumptions

A-3

The distribution of V is continuous (not essential).

A-4

E |Y1| < ∞, and E |Y0| < ∞ (Finite Means).
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Assumptions

A-5

1 > Pr (D = 1 | X ) > 0 (For each X there is a treatment group and
a comparison group).

A-6

Let X0 denote the counterfactual value of X that would have been
observed if D is set to 0. X1 is defined analogously. Thus Xd = X ,
for d = 0, 1 (The Xd are invariant to counterfactual manipulations).
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Separability between V and µD(Z ) in choice equation is
conventional.

Plays an important role in the properties of instrumental
variable estimators in models with essential heterogeneity.

It implies monotonicity (uniformity) condition (IV-3) from
choice equation (3.2).

Vytlacil (2002) shows that independence and monotonicity
(IV-3) imply the existence of a V and representation (3.2)
given some regularity conditions.
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Use probability integral transform to write

D = 1 [FV (µD (Z )) > FV (V )] = 1 [P (Z ) > UD ] (3.3)

UD = FV (V ) and P (Z ) = FV (µD(Z )) = Pr[D = 1 | Z ]

P(Z ) is transformation of mean scale utility in a discrete choice
model.
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LATE, the marginal treatment effect and instrumental variables

A basic parameter that can be used to unify the treatment
effect literature:

∆MTE (x , uD) = E (Y1 − Y0 | X = x , UD = uD).

= E (β | X = x , V = v)

MTE and the local average treatment effect (LATE) parameter
are closely related.

For (z , z ′) ∈ Z(x)×Z(x) so that P(z) > P(z ′), under (IV-3)
and independence (A-2), LATE is:

∆LATE (z ′, z) = E (Y1 − Y0 | D (z) = 1, D (z ′) = 0) (3.4)
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LATE, the marginal treatment effect and instrumental variables

LATE can be written in a fashion free of any instrument:

E (Y1 − Y0 | D(z) = 1, D(z ′) = 0) (3.5)

= E (Y1 − Y0 | u′D < UD < uD)

= ∆LATE(u′D , uD)

uD = Pr(D (z) = 1) = Pr (D (z) = 1 | Z = z) = Pr(D (z) = 1) = P(z),

u′D = Pr (D (z ′) = 1 | Z = z ′) = Pr(D (z ′) = 1) = P(z ′)

The z just help us define evaluation points for the uD .
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LATE, the marginal treatment effect and instrumental variables

Under (A-1)–(A-5), all standard treatment parameters are
weighted averages of MTE with weights that can be estimated.
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LATE, the marginal treatment effect and instrumental variables

Table 1A: treatment effects and estimands as weighted averages of
the marginal treatment effect

ATE(x) = E (Y1 − Y0 | X = x) =
∫ 1

0
∆MTE(x , uD) duD

TT(x) = E (Y1 − Y0 | X = x ,D = 1) =
∫ 1

0
∆MTE(x , uD)ωTT(x , uD) duD

TUT(x) = E (Y1 − Y0 | X = x ,D = 0) =
∫ 1

0
∆MTE (x , uD) ωTUT (x , uD) duD

Policy Relevant Treatment Effect (x)

= E (Ya′ | X = x)− E (Ya | X = x) =
∫ 1

0
∆MTE (x , uD) ωPRTE (x , uD) duD

for two policies a and a′ that affect the Z but not the X

IVJ(x) =
∫ 1

0
∆MTE(x , uD) ωJ

IV(x , uD) duD , given instrument J

OLS(x) =
∫ 1

0
∆MTE(x , uD) ωOLS(x , uD) duD
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LATE, the marginal treatment effect and instrumental variables

Table 1B: weights

ωATE(x , uD) = 1

ωTT(x , uD) =
[∫ 1

uD
f (p | X = x)dp

] 1

E (P | X = x)

ωTUT (x , uD) =
[∫ uD

0
f (p|X = x) dp

] 1

E ((1− P) |X = x)

ωPRTE(x , uD) =

[
FPa′ ,X

(uD)− FPa,X (uD)

∆P

]
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LATE, the marginal treatment effect and instrumental variables

Table 1B: weights

ωJ
IV(x , uD)

=

∫ 1

uD
(J(Z )− E (J(Z ) | X = x))

∫
fJ,P|X (j , t | X = x) dt dj

Cov(J(Z ), D | X = x)

ωOLS(x , uD)

= 1 +

{
E (U1 | X = x , UD = uD) ω1(x , uD)
−E (U0 | X = x , UD = uD) ω0(x , uD)

}
∆MTE(x , uD)
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LATE, the marginal treatment effect and instrumental variables

Table 1B: weights

ω1(x , uD) =
[∫ 1

uD
f (p | X = x) dp

] [ 1

E (P | X = x)

]

ω0(x , uD) =
[∫ uD

0
f (p | X = x) dp

] 1

E ((1− P) | X = x)

Source: Heckman and Vytlacil (2005)
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Relationships Among Parameters Using the Index Structure

From the definition D(z) = 1 (UD ≤ P(z)),

∆TT(x ,P(z)) = E (∆|X = x ,UD ≤ P(z)). (4.1)

Consider ∆LATE(x ,P(z),P(z ′)).

E (Y |X = x ,P(Z ) = P(z))

= P(z)

[
E (Y1|X = x ,P(Z ) = P(z),D = 1)

]
+ (1− P(z))

[
E (Y0|X = x ,P(Z ) = P(z),D = 0)

]
=

∫ P(z)

0

E (Y1|X = x ,UD = uD)duD +

∫ 1

P(z)

E (Y0|X = x ,UD = uD)duD .
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So that

E (Y |X = x ,P(Z ) = P(z))− E (Y |X = x ,P(Z ) = P(z ′))

=

∫ P(z)

P(z′)

E (Y1|X = x ,UD = uD)duD −
∫ P(z)

P(z′)

E (Y0|X = x ,UD = uD)duD ,

and thus

∆LATE(x ,P(z),P(z ′)) = E (∆|X = x ,P(z ′) ≤ UD ≤ P(z)).
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Notice that this expression could be taken as an alternative
definition of LATE.

Note that in this expression we could replace P (z) and P (z ′)
with uD and u′D .

No instrument needs to be available to define LATE.
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Rewrite these relationships in succinct form:

∆MTE(x , uD) = E (∆|X = x ,UD = uD) (4.2)

∆ATE(x) =

∫ 1

0

E (∆|X = x ,UD = uD)duD

P(z)[∆TT(x ,P(z))] =

∫ P(z)

0

E (∆|X = x ,UD = uD)duD

(P(z)− P(z ′))[∆LATE(x ,P(z),P(z ′))] =

∫ P(z)

P(z′)

E (∆|X = x ,UD = uD)duD
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Everywhere in these expressions can replace P (z) with uD and
P (z ′) with u′D .

Each parameter is an average value of MTE,
E (∆ | X = x , UD = uD), but for values of UD lying in different
intervals and with different weighting functions.

MTE defines the treatment effect more finely than do LATE,
ATE, or TT.

The relationship between MTE and LATE or TT conditional on
P(z) is analogous to the relationship between a probability
density function and a cumulative distribution function.
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The probability density function and the cumulative distribution
function represent the same information, but for some purposes
the density function is more easily interpreted.

Likewise, knowledge of TT for all P(z) evaluation points is
equivalent to knowledge of the MTE for all u evaluation points,
so it is not the case that knowledge of one provides more
information than knowledge of the other.

However, in many choice-theoretic contexts it is often easier to
interpret MTE than the TT or LATE parameters.

It has the interpretation as a measure of willingness to pay on
the part of people on a specified margin of participation in the
program.
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∆MTE(x , uD) is the average effect for people who are just
indifferent between participation in the program (D = 1) or not
(D = 0) if the instrument is externally set so that P(Z ) = uD .

For values of uD close to zero, ∆MTE(x , uD) is the average
effect for individuals with unobservable characteristics that
make them the most inclined to participate in the program
(D = 1), and for values of uD close to one it is the average
treatment effect for individuals with unobserved (by the
econometrician) characteristics that make them the least
inclined to participate.
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ATE integrates ∆MTE(x , uD) over the entire support of UD

(from uD = 0 to uD = 1).

It is the average effect for an individual chosen at random from
the entire population.
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∆TT(x , P(z)) is the average treatment effect for persons who
chose to participate at the given value of P(Z ) = P(z); it
integrates ∆MTE(x , uD) up to uD = P(z).

As a result, it is primarily determined by the MTE parameter
for individuals whose unobserved characteristics make them the
most inclined to participate in the program.

LATE is the average treatment effect for someone who would
not participate if P(Z ) ≤ P(z ′) and would participate if
P(Z ) ≥ P(z).

The parameter ∆LATE(x , P(z), P(z ′)) integrates ∆MTE(x , uD)
from uD = P(z ′) to uD = P(z).
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Using the third expression in equation (4.2) to substitute into
equation (4.1), we obtain an alternative expression for the TT
parameter as a weighted average of MTE parameters:

∆TT(x) =

∫ 1

0

1

p

[∫ p

0

E (∆|X = x ,UD = uD)duD

]
dFP(Z)|X ,D(p|x ,D = 1).

Using Bayes’ rule, it follows that

dFP(Z)|X ,D(p|x , 1) =
Pr(D = 1|X = x , P(Z ) = p)

Pr(D = 1|X = x)
dFP(Z)|X (p|x).
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Since Pr(D = 1|X = x , P(Z ) = p) = p, it follows that

∆TT(x) (4.3)

=
1

Pr(D = 1|X = x)

∫ 1

0

(∫ p

0

E (∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x).
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Note further that since
Pr(D = 1|X = x) = E (P(Z )|X = x) =

∫ 1

0
(1−FP(Z)|X (t|x))dt,

we can reinterpret (4.3) as a weighted average of local IV
parameters where the weighting is similar to that obtained from
a length-biased, size-biased, or P-biased sample.
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∆TT(x)

=
1

Pr(D = 1|X = x)

·
∫ 1

0

(∫ 1

0

1(uD ≤ p)E (∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x)

=
1∫

(1− FP(Z)|X (t|x))dt∫ 1

0

(∫ 1

0

E (∆|X = x ,UD = uD)1(uD ≤ p)dFP(Z)|X (p|x)

)
duD

=

∫ 1

0

E (∆|X = x ,UD = uD)

(
1− FP(Z)|X (uD |x)∫
(1− FP(Z)|X (t|x))dt

)
duD

=

∫ 1

0

E (∆|X = x ,UD = uD)gx(uD)duD

where gx(uD) =
1−FP(Z)|X (uD |x)R
(1−FP(Z)|X (t|x))dt

.
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Thus gx(uD) is a weighted distribution (Rao, 1985).

Since gx(uD) is a nonincreasing function of uD , we have that
drawings from gx(uD) oversample persons with low values of
UD , i.e., values of unobserved characteristics that make them
the most likely to participate in the program no matter what
their value of P(Z ).

Since
∆MTE(x , uD) = E (∆|X = x , UD = uD)

it follows that

∆TT(x) =

∫ 1

0

∆MTE(x , uD)gx(uD)duD .
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The TT parameter is thus a weighted version of MTE, where
∆MTE(x , uD) is given the largest weight for low u values and is
given zero weight for uD ≥ pmax

x , where pmax
x is the maximum

value in the support of P(Z ) conditional on X = x .
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Figure A-1 graphs the relationship between ∆MTE(uD), ∆ATE

and ∆TT(P(z)), assuming that the gains are the greatest for
those with the lowest UD values and that the gains decline as
UD increases.

The curve is the MTE parameter as a function of uD , and is
drawn for the special case where the outcome variable is binary
so that MTE parameter is bounded between −1 and 1.

The ATE parameter averages ∆MTE(uD) over the full unit
interval (i.e. is the area under A minus the area under B and C
in the figure).
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Figure A-1. MTE Integrates to ATE and TT Under Full Support (for
dichotomous outcome)

Figure A-1. MTE Integrates to ATE and TT Under Full Support
(for dichotomous outcome)
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Figure 9: treatment parameters and OLS matching as a function of
P(Z ) = pFigure 7. Treatment Parameters and OLS/Matching as a function of P (Z) = p
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∆TT(P(z)) averages ∆MTE(uD) up to the point P(z) (is the
area under A minus the area under B in the figure).

Because ∆MTE(uD) is assumed to be declining in u, the TT
parameter for any given P(z) evaluation point is larger then the
ATE parameter.
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Equation (4.2) relates each of the other parameters to the
MTE parameter.

One can also relate each of the other parameters to the LATE
parameter.

This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.

MTE is the limit form of LATE:

∆MTE(x , p) = lim
p′→p

∆LATE(x , p, p′).
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Direct relationships between LATE and the other parameters
are easily derived.

The relationship between LATE and ATE is immediate:

∆ATE(x) = ∆LATE(x , 0, 1).

Using Bayes’ rule, the relationship between LATE and TT is

∆TT(x) =

∫ 1

0

∆LATE(x , 0, p)
p

Pr(D = 1|X = x)
dFP(Z)|X (p|x).

(4.4)
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Derivation of PRTE and Implications of Noninvariance for PRTE

E (Yp | X ) =

∫ 1

0

E (Yp|X ,Pp(Zp) = t) dFPp|X (t)

=

∫ 1

0

[∫ 1

0

[1[0,t](uD)E (Y1,p | X ,UD = uD)

+1(t,1](uD)E (Y0,p | X ,UD = uD)] du
]

dFPp|X (t)

=

∫ 1

0

[∫ 1

0

[1[uD ,1](t)E (Y1,p | X ,UD = uD)

+1(0,uD ](t)E (Y0,p | X ,UD = uD)] dFPp|X (t)
]

duD

=

∫ 1

0

[
(1− FPp|X (uD))E (Y1,p | X ,UD = uD)

+FPp|X (uD)E (Y0,p | X ,UD = uD)
]

duD .
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This derivation involves changing the order of integration.

Note that from (A-4),

E
∣∣∣1[0,t](uD)E (Y1,p | X ,UD = uD) + 1(t,1](uD)E (Y0,p | X ,UD = uD)

∣∣∣
≤ E (|Y1|+ |Y0|) < ∞,

so the change in the order of integration is valid by Fubini’s
theorem.
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Comparing policy p to policy p′,

E (Yp | X )− E (Yp′ | X )

=

∫ 1

0

E (∆ | X , UD = uD)(FPp′ |X (uD)− FPp |X (uD)) duD ,

which gives the required weights.

Recall ∆ = Y1 − Y0 and we can drop the p, p′ subscripts on
outcomes and errors.
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Roy Model

Y1 = µ1 + U1;

Y0 = µ0 + U0;

I = Zγ − V ;

D = 1 [I > 0]
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Propensity Score

The propensity score conditional on Z:

D = 1 [I > 0] = 1 [Zγ > V ]

The propensity score:

P (Z ) ≡ E [D|Z ] = Pr (D = 1|Z ) = Pr (γZ > V ) = FV (Zγ)

Definition:

FV (V ) ≡ UD
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Propensity Score

therefore

γZ > V ⇔ FV (γZ ) > UD ⇔ P (Z ) > UD

E [D] =

∞∫
−∞

P (z) fZ (z) dz

E (D) = E (E (1 [P (Z ) > UD ] |UD))

= 1− E
(
FP(Z) (UD)

)
FP(Z) (p) = Pr

(
Z < F−1

V (p)
)

= FZ

(
F−1

V (p)
)
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Propensity Score

Normality assumptions U1

U0

V

 ∼ N (0, Σ) ; Σ ≡

 σ2
1 σ10 σV 1

· σ2
0 σV 0

· · σ2
V


⇒
[

U1 − U0

V

]
∼ N

(
0,

[
σ2

1 + σ2
0 − 2σ10 σ1V − σ0V

σ1V − σ0V σ2
V

])
The Propensity Score P (Z )

P (Z ) = Pr (γZ > V ) = Φ

(
γZ

σV

)
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Propensity Score

Propensity Score under normality assumptions

FP(Z) (t) = Pr (FV (Z ) < t) = Pr
(
Z < F−1

V (t)
)

= FP(Z)

(
F−1

V (t)
)

= Φ

(
F−1

V (t)− µZ

σZ

)
= Φ

(
Φ−1 (t) · σV − µZ

σZ

)
fP(Z) (t) =

∂FP(Z) (t)

∂t
= φ

(
Φ−1 (t) · σV − µZ

σZ

)
σV

σZ
· 1

φ (Φ−1 (t))
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ATE and MTE

Marginal Treatment Effect (MTE ) and Average Treatment Effect
(ATE ):

ATE = E [Y1 − Y0] = µ1 − µ0

MTE (v) = E [Y1 − Y0|V = v ]

= ATE + E [U1 − U0|V = v ]

The MTE based on UD :

MTE (uD) = E [Y1 − Y0|UD = uD ]

= ATE − E [U1 − U0|UD = uD ]

Whenever UD = P (Z ) the agent is indifferent between treatments.
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ATE and MTE

Under Normality Assumptions

⇒ [U1 − U0|V = v ] ∼ N

(
σ1−0,V

σ2
V

· v , σ2
(
1− ρ2

))
⇒ MTE (v) = ATE +

σ1V − σ0V

σV
· v

σV

Writing in terms of

UD = FV (V ) = Φ

(
V

σV

)
⇒ V = σV · Φ−1 (UD)

MTE (uD) = ATE +
σ1V − σ0V

σ2
V

· F−1
V (uD)

MTE (uD) = ATE +
σ1V − σ0V

σV
· Φ−1 (uD)
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The Average Treatment Effect

Average Treatment Effect (ATE ):

ATE = E [E [Y1 − Y0|V = v ]] = µ1 − µ0

= E [E [MTE (v) |V = v ]]

=

∞∫
−∞

MTE (v) · ωATE (v) fv (v) dv

ωATE (v) = 1

Using UD approach we obtain:
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The Average Treatment Effect

FV (V ) ≡ UD

ATE = E [E [MTE (v) |UD = uD ]]

ATE =

1∫
0

MTE (uD) · ωATE (uD) duD

ωATE (uD) = 1
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The Treatment on the Treated

The relationship between the treatment on treated parameter and
the marginal treatment effect is obtained below. First we do
treatment on the treated given z .

TT (z) = E [Y1 − Y0|I > 0, Z = z ] = TT (P(Z ))

=
E [Y1 − Y0 · 1 [I > 0] , Z = z ]

Pr (I > 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [zγ > V ]]

Pr (P (z) > UD)

=

zγ∫
−∞

MTE (v) fV (v)dv

P (z)
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The Treatment on the Treated

TT (P(Z )) = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [P (Z ) > UD ] , Z = z ]

Pr (P (Z ) > UD)

=

P(z)∫
0

MTE (uD) duD

P (z)
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The Treatment on the Treated

Using Normality Assuptions

TT (Z ) = E [Y1 − Y0|I > 0, Z = z ]

= ATE + E [U1 − U0|zγ > V , Z = z ]

define σ ≡
√

σ2
1 + σ2

0 − 2σ10

= ATE + σE

[
U1 − U0

σ
| − V

σV
> − zγ

σV

]
⇒ TT (zγ) = x (β1 − β0)−

σ1V − σ0V

σV
· λ
(
− zγ

σV

)
Where :

λ (x) ≡ φ (x)

1− Φ (x)
=

φ (x)

Φ (−x)
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The Treatment on the Treated

The propensity score is defined as Pr (D = 1|Z = z), where the
conditional on Z is not used below in order to save notation. Based
on the normality assumptions, we can obtain the following formulas:

P (z) = Φ

(
zγ

σV

)
(Under Normality)

Including this equation in the Treatment on treated effect we
obtain:

TT (z) = ATE − σ1V − σ0V

σV
· λ
(
− zγ

σV

)
TT (P (z)) = ATE − σ1V − σ0V

σV
· φ (Φ−1 (P (z)))

P (z)
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The Treatment on the Treated

TT = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [Zγ > v ]] |V = v ]

Pr (Zγ > V )

but Y1, Y0|V ⊥⊥ D|V ,
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The Treatment on the Treated

using Fubini’s theorem

=
E [E [Y1 − Y0|V = v ] · E [1 [Zγ > v ] |V = v ]]

Pr (Zγ > V )

= E

[
MTE (v) · E [1 [Zγ > v ] |V = v ]

Pr (Zγ > V )

]
=

∞∫
−∞

E [MTE (v) · ωTT (v) fv (v) dv ]

ωTT (v) =
E [1 [Zγ > v ] |V = v ]

Pr (Zγ > V )
=

1− FZγ (v)

E (D)

The same analysis using the propensity score:
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The Treatment on the Treated

TT = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [P (Z ) > uD ]] |UD = uD ]

Pr (P (Z ) > UD)
; UD ≡ FV (V )

but Y1, Y0|UD ⊥⊥ D|UD ,
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The Treatment on the Treated

using Fubini’s theorem

=
E [E [Y1 − Y0|UD = uD ] · E [1 [P (Z ) > uD ] |UD = uD ]]

E (P (Z ))

= E

[
MTE (uD) · E [1 [P (Z ) > uD ] |UD = uD ]

E (P (Z ))

]
=

∞∫
−∞

MTE (uD) · ωTT (uD) duD

Observe that UD ∼ Uniform [0, 1]

ωTT (uD) =
E [1 [P (Z ) > uD ] |UD = uD ]

E (P (Z ))

=

∫ 1

uD
fP(Z) (p) dp

E (P (Z ))
=

1− FP(Z) (uD)

E (P (Z ))
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The Treatment on the Untreated

The relationship between the treatment on untreated parameter
and the marginal treatment effect is obtained below:

TUT = E [Y1 − Y0|I 6 0, Z = z ]

=
E [(Y1 − Y0) · 1 [I 6 0] , Z = z ]

Pr (I 6 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [zγ 6 v ]] |V = v ]

Pr (zγ 6 V )

but Y1, Y0|V ⊥⊥ D|V ,
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The Treatment on the Untreated

using Fubini’s theorem

=
E [E [Y1 − Y0|V = v ] · E [1 [zγ 6 v ] |V = v ]]

Pr (zγ 6 V )

= E

[
MTE (v) · E [1 [zγ 6 v ] |V = v ]

Pr (zγ 6 V )

]
=

∞∫
−∞

MTE (v) · ωTUT (v) fv (v) dv

ωTUT (v) =
E [1 [zγ 6 v ] |V = v ]

Pr (zγ 6 V )
=

E [1 [zγ 6 v ] |V = v ]

1− Pr (zγ > v)

=

∫ v

−∞ fzγ (z) dz

1− Pr (zγ > V )
=

Fzγ (v)

1− E (D)
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The Treatment on the Untreated

The same analysis can be done with the propensity score
approach:

TUT = E [Y1 − Y0|I 6 0]

=
E [Y1 − Y0 · 1 [I 6 0]]

Pr (I 6 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [P (Z ) 6 uD ]] |UD = uD ]

Pr (P (Z ) 6 UD)

UD ≡ FV (V )

but Y1, Y0|UD ⊥⊥ D|UD ,
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The Treatment on the Untreated

using the Fubini’s theorem

=
E [E [Y1 − Y0|UD = uD ] · E [1 [P (Z ) 6 uD ] |UD = uD ]]

1− E (P (Z ))

= E

[
MTE (uD) · E [1 [P (Z ) 6 uD ] |UD = uD ]

1− E (P (Z ))

]

Observe that UD ∼ Uniform [0, 1]

=

∞∫
−∞

E [MTE (uD) · ωTUT (uD) duD ]

ωTUT (uD) =
E [1 [P (Z ) 6 uD ] |UD = uD ]

1− E (P (Z ))

=

∫ uD

0
fP(Z) (p) dp

1− E (P (Z ))
=

FP(Z) (uD)

1− E (P (Z ))
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The Treatment on the Untreated

TUT (Z ) = E [Y1 − Y0|I < 0]

=
E [Y1 − Y0 · 1 [I < 0]]

Pr (I < 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [γZ < V ]]

Pr (P (Z ) < UD)

=

∞∫
γZ

MTE (v) fV (v) dv

1− P (Z )
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The Treatment on the Untreated

TUT (P(Z )) = E [Y1 − Y0|I < 0]

=
E [Y1 − Y0 · 1 [I < 0]]

Pr (I < 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [P (Z ) < UD ]]

Pr (P (Z ) < UD)

=

1∫
P(Z)

MTE (uD) duD

1− P (Z )
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The Treatment on the Untreated

Using Normality Assumptions

TUT (Zγ) = E [Y1 − Y0|I 6 0]

= α1 − α0 + X (β1 − β0) + E [U1 − U0|Zγ 6 V ]

= ATE + E [U1 − U0|Zγ 6 V ]

define σ =
√

σ2
1 + σ2

0 − 2σ10, λ (x) ≡ φ (x)

Φ(−x)

= ATE + σE

[
U1 − U0

σ
| V
σV

>
Zγ

σV

]
⇒ TUT (Zγ) = X (β1 − β0) +

σ1V − σ0V

σV
· λ
(

Zγ

σV

)
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OLS (Matching)

The relationship between the OLS parameter and the marginal
treatment effect is obtained below:

∆matching = E [Y1|D = 1]− E [Y0|D = 0]

= ATE + E [U1|Zγ > V ]− E [U0|Zγ 6 V ]

= ATE +
E [U1 · 1 [Zγ > V ]]

Pr (Zγ > V )
− E [U0 · 1 [Zγ 6 V ]]

Pr (Zγ 6 V )

= ATE + E

[
E [U1·1[Zγ>v ]|V=v ]

Pr(Zγ>V )

−E [U0·1[Zγ6v ]|V=v ]
Pr(Zγ6V )

]
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OLS (Matching)

= E

[
ATE (v) + E [U1·1[Zγ>v ]|V=v ]

Pr(Zγ>V )

−E [U0·1[Zγ6v ]|V=v ]
Pr(Zγ6V )

]

= E

[
MTE (v) ·

(
ωATE (v) + E [U1·1[Zγ>v ]|V=v ]

MTE(v)·Pr(Zγ>V )
−

E [U0·1[Zγ6v ]|V=v ]
MTE(v)·Pr(Zγ6V )

)]

= E

[
MTE (v) ·

(
1 + E [U1·1[Zγ>v ]|V=v ]

MTE(v)·Pr(Zγ>V )
−

E [U0·1[Zγ6v ]|V=v ]
MTE(v)·Pr(Zγ6V )

)]

= E [MTE (V ) · ωmatch (V )] =

∞∫
−∞

MTE (v) · ωmatch (v) fv (v) dv
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OLS (Matching)

ωmatch (v) = 1 + E [U1·1[Zγ>v ]|V=v ]
MTE(v)·Pr(Zγ>V )

−E [U0·1[Zγ6v ]|V=v ]
MTE(v)·Pr(Zγ6V )

U1, U0|V ⊥⊥ Z

E [U1 · 1 [Zγ > v ] |V = v ] = E [U1|V = v ] · (1− FZγ (v))

E [U0 · 1 [Zγ 6 v ] |V = v ] = E [U0|V = v ] · FZγ (v)

ωmatch (v) = 1 +
E [U1|V = v ] · (1− FZγ (v))

MTE (v) · Pr (Zγ > V )

−E [U0|V = v ] · FZγ (v)

MTE (v) · Pr (Zγ 6 V )
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OLS (Matching)

The same analysis can be done with the propensity score:

∆matching = E [Y1|D = 1]− E [Y0|D = 0]

= ATE + E [U1|P (Z ) > UD ]− E [U0|P (Z ) 6 UD ]

= E

[
ATE (uD) + E [U1·1[P(Z)>uD ]|UD=uD ]

Pr(P(Z)>UD)

−E [U0·1[P(Z)6uD ]|UD=uD ]
Pr(P(Z)6UD)

]

= E

[
MTE (uD) ·

(
1 + E [U1·1[P(Z)>uD ]|UD=uD ]

MTE(uD)·Pr(P(Z)>UD)
−

−E [U0·1[P(Z)6uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)6UD)

)]
= E [MTE (uD) · ωOLS (uD)]

=

∞∫
−∞

MTE (uD) · ωOLS (uD) duD
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OLS (Matching)

ω
match

(uD) = 1 + E [U1·1[P(Z)>uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)>UD)

−E [U0·1[P(Z)6uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)6UD)

Using Normality Assumption

ω
match

(uD) = 1 + E [U1·1[Zγ>v ]|V=v ]
MTE(v)·Pr(Zγ>V )

−E [U0·1[Zγ6v ]|V=v ]
MTE(v)·Pr(Zγ6V )

= 1 + E [U1|V=v ]·E [1[Zγ>v ]]
MTE(v)·Pr(Zγ>V )

−E [U0·|V=v ]·E [1[Zγ6v ]]
MTE(v)·Pr(Zγ6V )
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OLS (Matching)

= 1 +

„
σ1V
σ2

V

·v
«
·Φ

„
γ·µZ−v√

γ′Σγ

«
MTE(v)·Φ

„
γ·µZ√

γ′Σγ+σV

«

−

„
σ0V
σ2

V

·v
«
·Φ

„
v−γ·µZ√

γ′ΣZ γ

«
MTE(v)·Φ

„
− γ·µZ√

γ′Σγ+σV

«

Matching in Z using normality assumptions

∆matching = E (Y1|D = 1)− E (Y0|D = 0)
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OLS (Matching)

Matching in Z :

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)

= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)
= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(

γZ

σV

)

= ATE −

 σ1V

σV
· Φ
(
−Z ·γ′

σV

)
+ σ0V

σV
· Φ
(

Z ·γ′
σV

)
Φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)
φ

(
Z · γ′

σV

)
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OLS (Matching)

Matching in P (Z ) using normality assumptions

∆matching = E (Y1|D = 1)− E (Y0|D = 0)

Matching in P(Z ):

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(

γZ

σV

)
= ATE −

(
σ1V

σV
· 1

P(Z )
+

σ0V

σV
· 1

1− P(Z )

)
φ
(
Φ−1 (P(Z ))

)
= ATE −

(
σ1V

σV
· (1− P(Z )) + σ0V

σV
· P(Z )

P(Z ) (1− P(Z ))

)
φ

(
Z · γ′

σV

)
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The PRTE

E (Y1 − Y0|P(Z )− UD = t)

= E (Y1 − Y0|FV (Z )− UD = t)

= E (E (Y1 − Y0|FV (Z ) = p, p − UD = t) |FV (Z )− UD = t)

= E (E (Y1 − Y0|UD = p − t) |FV (Z )− UD = t)

= E [MTE (p − t)|P(Z )− UD = t]

=

1∫
0

MTE (p − t)fP(p)dp =

1∫
0

MTE (p)fP(p + t)dp

υ /∈ [0, 1] ⇒ fP(υ) = MTE (υ) = 0
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The PRTE

E (Y1 − Y0| − t < P(Z )− UD < t)

= E (E (Y1 − Y0|P(Z )− UD = ξ) | − t < P(Z )− UD < t)

Θ ≡ P(Z )− UD

fΘ (θ) =

∫
fP(Z) (θ) · fUD

(θ)

= E (E (Y1 − Y0|Θ = ξ) | − t < Θ < t)

=
E (E (Y1 − Y0|Θ = ξ) · 1 [−t < Θ < t])

Pr (−t < Θ < t)

=

E

 t∫
−t

E (Y1 − Y0|Θ = ξ) FP(Z) (ξ + 1) dξ


Pr (−t < Θ < t)
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The PRTE

=

E

 1∫
0

MTE (p)fP(p + ξ)dp

 · 1 [−t < P(Z )− UD < t]


Pr (−t < Θ < t)

=

t∫
−t

 1∫
0

MTE (p)fP(p + ξ)dp

 fP(Z) (ξ + uD) dξ

Pr (−t < Θ < t)
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The PRTE

=

E

 1∫
0

MTE (p)fP(p + ξ)dp

 · 1 [−t < P(Z )− UD < t]


Pr (−t < Θ < t)

=

t∫
−t

1∫
0

MTE (uD)fP(uD + t∗)duDdt∗

Pr (−t < P(Z )− UD < t)
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The PRTE

Pr (−t < Θ < t) = Pr (−t < P(Z )− UD < t)

= E (1 [−t < P(Z )− UD < t])

= E (E (1 [uD − t < P(Z ) < t + uD ] |UD = uD))

= E
(
FP(Z) (t + UD)− FP(Z) (−t + UD)

)
=

1∫
0

[
FP(Z) (t + uD)− FP(Z) (−t + uD)

]
duD

FP(Z) (p) = Φ

(
Φ−1 (p) · σV − µZ

σZ

)
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The PRTE

E (Y1 − Y0|Z − V = t)

=

1∫
0

MTE (uD)
fZ (F−1

V (uD) + t)

E (fV (Z − t))
duD

109 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

The PRTE

therefore

E (Y1 − Y0| − t < Z − V < t)

= E (E (Y1 − Y0|Z − V = t) | − t < Z − V < t)

=
E (E (Y1 − Y0|Z − V = t) · 1 [−t < Z − V < t])

Pr (−t < Z − V < t)

=

t∫
−t

1∫
0

MTE (uD)
fZ (F−1

V (uD) + t∗)

E (fV (Z − t∗))
duDdt∗

Pr (−t < Z − V < t)
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The PRTE

Pr (−t < Z − V < t)

=

∞∫
−∞

[FZ (t + v)− FZ (−t + v)] fV (v) dv

FZ (z) = Φ

(
z − µZ

σZ

)
fV (v) = φ

(
v

σV

)
1

σV

E (Y1 − Y0|P(Z )/UD = 1− t)

=

1∫
0

MTE (uD)
fP(uD/ (1− t)) (1− t)2 uD

E (D)
duD
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The PRTE

therefore

E (Y1 − Y0|1− t < P(Z)/UD < 1 + t)

= E (E (Y1 − Y0|P(Z)/UD − 1 = −t∗) |1− t < P(Z)/UD < 1 + t)

=
E (E ((Y1 − Y0|P(Z)/UD − 1 = −t∗) · 1 [−t < P(Z)/UD − 1 < t]))

Pr (1− t < P(Z)/UD < 1 + t)

=

E

0@0@ 1Z
0

MTE(uD)
fP(uD/ (1− t∗)) (1− t∗)2 uD

E (D)
duD

1A · 1 [−t < P(Z)/UD − 1 < t]

1A
Pr (1− t < P(Z)/UD < 1 + t)

=

1+tZ
1−t

1Z
0

MTE(uD)
fP(uD/ (1− t∗)) (1− t∗)2 uD

E (D)
duDdt∗

Pr (1− t < P(Z)/UD < 1 + t)

112 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

The PRTE

Pr (1− t < P(Z )/UD < 1 + t)

= E (1 [1− t < P(Z )/UD < 1 + t])

= E (E (1 [(1− t) uD < P(Z ) < (1 + t) uD ] |UD = uD))

= E
([

FP(Z) ((1 + t) · UD)− FP(Z) ((1− t) · UD)
])

=

1∫
0

[
FP(Z) ((1 + t) · uD)− FP(Z) ((1− t) · uD)

]
duD

FP(Z) (p) = Φ

(
Φ−1 (p) · σV − µZ

σZ

)
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The PRTE

Treatment Effects in (uD) Treatment Effects in (v)

Figure A
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]

Y = DY1 + (1−D)Y0

Z ⊥⊥ U1, U0, V

(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 σV 1 σV 0

· σ20 σ10

· · σ2V

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.26 0.51 −0.40

· 2.01 −0.90

· · 3

⎞⎟⎟⎟⎟⎟⎟⎠ , μ1 = 1; μ0 = 0;

20
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The PRTE

Y1 = α1 + U1; Y0 = α0 + U0

I = Z − V ; D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D) Y0

Z ⊥⊥ U1, U0, V

(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V

 =

 1.26 0.51 −0.40
· 2.01 −0.90
· · 3


µ1 = 1; µ0 = 0;
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The PRTE

Treatment Effects Bias in (uD) Treatment Effects Bias in (v)

Figure A
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Y = DY1 + (1−D)Y0

Z ⊥⊥ U1, U0, V

Z ∼ N
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μZ , σ
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Z

¢
= N (1, 1)

(U1, U0, V ) ∼ N (0,ΣU,V ) ;
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⎛⎜⎜⎜⎜⎜⎜⎝
σ21 σV 1 σV 0

· σ20 σ10

· · σ2V

⎞⎟⎟⎟⎟⎟⎟⎠ =
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The PRTE

Y1 = α1 + U1; Y0 = α0 + U0

I = Z − V ; D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D) Y0

Z ⊥⊥ U1, U0, V
Z ∼ N (µZ , σ2

Z ) = N (1, 1)
(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0
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0 σ10

· · σ2
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 =
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The PRTE

Treatment Weights (uD) Treatment Effects Bias in (v)

Figure A
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The PRTE

Y1 = α1 + U1; Y0 = α0 + U0

I = Z − V ; D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D) Y0

Z ⊥⊥ U1, U0, V
Z ∼ N (µZ , σ2

Z ) = N (1, 1)
(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
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 =
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µ1 = 1; µ0 = 0;
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The Model:

Y1 = µ1 + U1;

Y0 = µ0 + U0;

I = Z · γ′ − V ;

D = 1 [I > 0]

ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


[

U1 − U0

V

]
∼ N

(
0,

σ2
1−0 σV 1 − σV 0

· σ2
V

)
σ1−0 =

√
σ2

U1 + σ2
U0 − 2σ10
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The Model:

Propensity score:

P(Z ) ≡ Pr (D = 1|Z ) = P

(
Z · γ′

σV
>

V

σV

)
= Φ

(
Z · γ′

σV

)

The transformation of variables:

P(Z ) = Φ

(
Z · γ′

σV

)
⇒ Z · γ′

σV
= Φ−1 (P(Z ))

1− P(Z ) = Φ

(
−Z · γ′

σV

)
⇒ −Z · γ′

σV
= Φ−1 (1− P(Z ))

Φ (·) ≡ Standard Normal Probability Function.
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The Model:

Definitions:

λ (x) =
φ (x)

1− Φ (x)
=

φ (x)

Φ (−x)
; φ (x) =

∂Φ (x)

∂x

λ (x) = E (X |X > x) ; X ∼ N (0, 1)
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The Model:

Observe that:

λ

(
−Z · γ′

σV

)
=

φ
(

Z ·γ′
σV

)
Φ
(

Z ·γ′
σV

)
φ
(
Φ−1 (1− P(Z ))

)
= φ

(
−Z · γ′

σV

)
= φ

(
Z · γ′

σV

)
= φ

(
Φ−1 (P(Z ))

)
Φ
(
−Φ−1 (P(Z ))

)
= Φ

(
−Z · γ′

σV

)
= 1− Φ

(
Z · γ′

σV

)
= 1− Φ

(
Φ−1 (P(Z ))

)
= 1− P(Z )

Φ
(
−Φ−1 (1− P(Z ))

)
= Φ

(
Z · γ′

σV

)
= Φ

(
Φ−1 (P(Z ))

)
= P(Z )
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The Model:

The Ratio :

λ
(
Φ−1 (P(Z ))

)
=

φ (Φ−1 (P(Z )))

1− P(Z )

λ
(
Φ−1 (1− P(Z ))

)
=

φ (Φ−1 (P(Z )))

P(Z )
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The Model:

Treatment parameters :

ATE ≡ E (Y1 − Y0) = µ1 − µ0

MTE in V = v :

MTE (v) ≡ E (Y1 − Y0|V = v)

= ATE + E

(
U1 − U0|

V

σV
=

v

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

=
v

σV

)
= ATE +

σV 1 − σV 0

σV
· v

σV

If v = Z · γ′ ⇒ I = Z · γ′ − V = 0

There is economic intition.
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The Model:

MTE in FV (V ) = p:

MTE (p) ≡ E (Y1 − Y0|FV (V ) = p)

= ATE + E

(
U1 − U0|

V

σV
= Φ−1 (p)

)
= ATE +

σV 1 − σV 0

σV
· Φ−1 (p)

If p = FV (Z · γ′) ⇒ I = F−1
V (p)− V = 0

There is economic intition.
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The Model:

Treatment parameters:

TT in Z :

TT (Z ) ≡ E (Y1 − Y0|D = 1, Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
|γZ

σV
>

V

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> −γZ

σV

)
= ATE −

(
σV 1 − σV 0

σV

)
λ

(
−γZ

σV

)

= ATE −
(

σV 1 − σV 0

σV

) φ
(

Z ·γ′
σV

)
Φ
(

Z ·γ′
σV

)
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The Model:

TT in P(Z ) :

TT (P(Z )) ≡ E (Y1 − Y0|D = 1, Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> −γZ

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> Φ−1 (1− P(Z ))

)
= ATE −

(
σV 1 − σV 0

σV

)
λ
(
Φ−1 (1− P(Z ))

)
= ATE −

(
σV 1 − σV 0

σV

)
φ (Φ−1 (P(Z )))

P(Z )
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The Model:

Treatment parameters:

TUT in Z :

TUT (Z ) ≡ E (Y1 − Y0|D = 0, Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
|γZ

σV
<

V

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)
= ATE +

(
σV 1 − σV 0

σV

)
λ

(
γZ

σV

)

= ATE +

(
σV 1 − σV 0

σV

) φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)
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The Model:

TUT in P(Z ) :

TUT (P(Z )) ≡ E (Y1 − Y0|D = 0, Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

<
γZ

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)
= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

> Φ−1 (P(Z ))

)
= ATE +

(
σV 1 − σV 0

σV

)
λ
(
Φ−1 (P(Z ))

)
= ATE +

(
σV 1 − σV 0

σV

)
φ (Φ−1 (P(Z )))

1− P(Z )
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Matching

∆matching = E (Y1|D = 1)− E (Y0|D = 0)

Matching in Z:

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)
= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)
= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(

γZ

σV

)
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Matching

= ATE − σ1V

σV
·
φ
(

Z ·γ′
σV

)
Φ
(

Z ·γ′
σV

) − σ0V

σV
·

φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)
= ATE −

σ1V

σV
· 1

Φ
(

Z ·γ′
σV

) +
σ0V

σV
· 1

Φ
(
−Z ·γ′

σV

)
φ

(
Z · γ′

σV

)

= ATE −

 σ1V

σV
· Φ
(
−Z ·γ′

σV

)
+ σ0V

σV
· Φ
(

Z ·γ′
σV

)
Φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)
φ

(
Z · γ′

σV

)
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Matching

∆matching = E (Y1|D = 1)− E (Y0|D = 0)

Matching in P(Z ):

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)
= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)
= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0

σV
· λ
(

γZ

σV

)
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Matching

= ATE − σ1V

σV
· λ
(
Φ−1 (1− P(Z ))

)
− σ0

σV
· λ
(
Φ−1 (P(Z ))

)
= ATE − σ1V

σV
· φ (Φ−1 (P(Z )))

P(Z )
− σ0

σV
· φ (Φ−1 (P(Z )))

1− P(Z )

= ATE −
(

σ1V

σV
· 1

P(Z )
+

σ0

σV
· 1

1− P(Z )

)
φ
(
Φ−1 (P(Z ))

)
= ATE −

(
σ1V

σV
· (1− P(Z )) + σ0

σV
· P(Z )

P(Z ) (1− P(Z ))

)
φ

(
Z · γ′

σV

)
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Matching Bias

Bias ATE (Z ) = ∆matching (Z )− ATE (Z )

Bias MTE (Z ) = ∆matching (Z )−MTE (Z )

Bias TT (Z ) = ∆matching (Z )− TT (Z )

Bias TUT (Z ) = ∆matching (Z )− TUT (Z )

Bias ATE (P(Z )) = ∆matching (P (Z ))− ATE (P (Z ))

Bias MTE (P(Z )) = ∆matching (P (Z ))−MTE (P (Z ))

Bias TT (P(Z )) = ∆matching (P (Z ))− TT (P (Z ))

Bias TUT (P(Z )) = ∆matching (P (Z ))− TUT (P (Z ))
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Empirical Example

Y1 = µ1 + U1; U1 = α11 · f1 + α12 · f2 + ε1

Y0 = µ0 + U0; U0 = α01 · f1 + α02 · f2 + ε0

I = Z · γ′ − V ; V = αV 1 · f1 + αV 2 · f2 + εV

D = 1 [I > 0]

(
f1 f2 ε1 ε0 εV

)
∼ N (0, Σ) ; Σ ≡ Diag

(
σ2

f1
σ2

f2
σ2

V σ2
1 σ2

0

) U1

U0

V

 ∼ N (0, ΣU1,U0,V ) ≡ N

0,
σ2

1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


σ2

1 = α2
11σ

2
f1

+ α2
12σ

2
f2

+ σ2
1; σV 0 = αV 1α01σ

2
f1

+ αV 2α02σ
2
f2

σ2
0 = α2

01σ
2
f1

+ α2
02σ

2
f2

+ σ2
0; σ10 = α11α01σ

2
f1

+ α12α02σ
2
f2

σ2
V = α2

V 1σ
2
f1

+ α2
V 2σ

2
f2

+ σ2
V ; σV = αV 1α11σ

2
f1

+ αV 2α12σ
2
f2
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Empirical Example

A =

 α11 α12 1 0 0
α01 α02 0 1 0
αV 1 αV 2 0 0 1


ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V

 = AΣA′

[
U1 − U0

V

]
∼ N

(
0,

σ2
1−0 σV 1 − σV 0

· σ2
V

)
σ1−0 =

√
σ2

U1 + σ2
U0 − 2σ10
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Empirical Example

µ0 = 0; µ0 = 1;
α11 varies α12 = 0.1;
α01 = 1; α02 = 0.1;
αV 1 = 1; αV 2 = 1;

σ2
f1

= σ2
f2

= σ2
V = σ2

1 = σ2
0 = 1

A =

 α11 0.1 1 0 0
1 0.1 0 1 0
−1 −1 0 0 1

 ; Σ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


ΣU1,U0,V ≡

 σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V

 = AΣA′
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Empirical Example

Figure 2: weights for the marginal treatment effect for different
parameters

h(UD ) MTE
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Empirical Example

E (β | UD = uD) does not vary with uD .

“Standard case.”

ATE = TT = LATE = policy counterfactuals = plim IV.
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Empirical Example

When will E (β | UD = uD) not vary with uD?

1 If U1 = U0 ⇒ β a Constant.

2 More Generally, if U1 − U0 is mean independent of UD , so
treatment effect heterogeneity is allowed but individuals do not
act upon their own idiosyncratic effect.
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Empirical Example

Consider standard analysis.

ln Y = α + (β̄ + U1 − U0)D + U0

plim of OLS:

E (ln Y | D = 1)− E (ln Y | D = 0)

= β̄ + E (U1 − U0 | D = 1) +

{
E (U0 | D = 1)
−E (U0 | D = 0)

}
= ATE + Sorting Gain︸ ︷︷ ︸ + Ability Bias

= TT + Ability Bias
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Empirical Example

If ATE is a parameter of interest, OLS suffers from both sorting
bias and ability bias.

If TT is parameter of interest, OLS suffers from ability bias.

Using IV removes ability bias, but changes the parameter being
estimated (neither ATE nor TT in general).

Different IV Weight MTE differently.

We derive IV weights below.
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Empirical Example

∴ IV Instrument Dependent (which Z used and which values of
Z used).

Hence studies using different Z are not comparable.

How to make studies comparable?

We can test to see if these complications are required in any
particular empirical analysis.
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Identifying MTE

Testing for essential heterogeneity

E (Y | Z = z) = E (Y | P(Z ) = p) (index sufficiency)

= E (DY1 + (1− D)Y0 | P (Z ) = p)

= E (Y0) + E (D (Y1 − Y0) |P (Z ) = p)

= E (Y0) +

[
E (Y1 − Y0|D = 1, P (Z ) = p)

·Pr (D = 1 | Z = z)

]
= E (Y0) +

∫ p

0

E (Y1 − Y0|UD = uD) duD .
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Identifying MTE

Testing for essential heterogeneity

As a consequence, we get LIV (Local Instrumental Variables), which
identifies MTE

∂

∂P(z)
E (Y | Z = z)

∣∣∣∣
P(Z)=uD︸ ︷︷ ︸

LIV

= E (Y1 − Y0|UD = uD)︸ ︷︷ ︸
MTE

. (5.1)

When β ⊥⊥ D, Y is linear in P (Z ):

E (Y | Z ) = a + bP (Z ) (5.2)

where b = ∆MTE = ∆ATE = ∆TT.

These results are valid whether or not Y1 and Y0 are separable
in U1 and U0.

Therefore we can identify the treatment parameters using
estimated weights and estimated MTE.
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Identifying MTE

Example: college attendance on wages for high school graduates

E(Y | X , P) as a function of P for average X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3.5

−3.4

−3.3

−3.2

−3.1
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−2.9

−2.8

−2.7

P

E
(Y
|P
)

Source: Carneiro, Heckman and Vytlacil (2006)
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Identifying MTE

Example: college attendance on wages for high school graduates

E(Y1 − Y0 | X , US ) estimated using locally quadratic regression (averaged over X )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2
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0.4
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0.8
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| X
,U

S
)
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Source: Carneiro, Heckman and Vytlacil (2006)
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )
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Source: Basu, Heckman and Urzua
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )

Estimated propensity score
for BCSRT and MST

MTE(ηq , uD)
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Source: Basu, Heckman and Urzua
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )

ωATE(ηq , uD) MTE(uD)
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )

ωTT(ηq , uD) ωIV(ηq , uD)
 

 

Source: Basu, Heckman and Urzua
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )

 
 

Source: Basu, Heckman and Urzua
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Identifying MTE

Example: costs of breast cancer treatments using different
instruments in P(Z )

 
 

Source: Basu, Heckman and Urzua
155 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Identifying MTE

Example: unionism on wages

Source: Heckman, Schmierer and Urzua (2006)
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Identifying MTE

Example: unionism on wages, continued

Source: Heckman, Schmierer and Urzua (2006)
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Identifying MTE

Example: Chile voucher schools on test scores

Source: Heckman, Schmierer and Urzua (2006)
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Identifying MTE

Example: Chile voucher schools on test scores, continued

Source: Heckman, Schmierer and Urzua (2006)
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Identifying MTE

Example: High school on wages

Source: Heckman, Schmierer and Urzua (2006)
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Identifying MTE

Example: High school on wages, continued

Source: Heckman, Schmierer and Urzua (2006)
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Understanding what linear IV estimates

Consider J(Z ) as an instrument, a scalar function of Z .

∆IV
J =

Cov(Y , J(Z ))

Cov(D, J(Z ))

Express it as a weighted average of MTE.

Z can be a vector of instruments.
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Understanding what linear IV estimates

Digression: Yitzhaki’s theorem and extensions

Theorem

Assume (Y , X ) i.i.d. E (|Y |) < ∞ E (|X |) < ∞

µY = E (Y ) µX = E (X )

E (Y | X ) = g(X )
Assume g ′(X ) exists and E (|g ′(X )|) < ∞.
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Understanding what linear IV estimates

Yitzhaki’s theorem

Theorem (cont.)

Then,
Cov(Y ,X )

Var(X )
=

∫ ∞

−∞
g ′(t) ω(t) dt,

where

ω(t) =
1

Var(X )

∫ ∞

t
(x − µX ) fX (x) dx

=
1

Var(X )
E (X − µX | X > t) Pr (X > t) .

Y = πX + η,

π =
Cov(Y ,X )

Var(X )
.
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Understanding what linear IV estimates

Proof of Yitzhaki’s theorem

Proof.

Cov(Y , X ) = Cov (E (Y | X ), X ) = Cov (g(X ), X )

=

∫ ∞

−∞
g(t)(t − µX ) fX (t) dt

where t is an argument of integration.
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Understanding what linear IV estimates

Proof of Yitzhaki’s theorem

cont.

Integration by parts:

Cov(Y , X ) = g(t)

∫ t

−∞
(x − µX ) fX (x) dx

∣∣∣∣∞
−∞

−
∫ ∞

−∞
g ′(t)

∫ t

−∞
(x − µX ) fX (x) dx dt

=

∫ ∞

−∞
g ′(t)

∫ ∞

t

(x − µX ) fX (x) dx dt,

since E (X − µX ) = 0.
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Understanding what linear IV estimates

Proof of Yitzhaki’s theorem

cont.

Therefore,

Cov(Y , X ) =

∫ ∞

−∞
g ′(t) E (X − µX | X > t) Pr (X > t) dt.

∴ Result follows with

ω(t) =
1

Var(X )
E (X − µX | X > t) Pr (X > t)
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Understanding what linear IV estimates

Weights positive.

Integrate to one (use integration by parts formula).

= 0 when t →∞ and t → −∞.

Weight reaches its peak at t = µX , if fX has density at x = µX :

d

dt

∫ ∞

t

(x − µX ) fX (x) dx dt = −(t − µX )fX (t)

= 0 at t = µX .
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Understanding what linear IV estimates

Yitzhaki’s weights for X ∼ BetaPDF(x , α, β)���������� ������� �
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Understanding what linear IV estimates

Yitzhaki’s weights for X ∼ BetaPDF(x , α, β)
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Understanding what linear IV estimates

Can apply Yitzhaki’s analysis to the treatment effect model

Y = α + βD + ε

P(Z ), the propensity score is the instrument:

E (Y | Z = z) = E (Y | P(Z ) = p)
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Understanding what linear IV estimates

E (Y | P(Z ) = p) = α + E (βD | P(Z ) = p)

= α + E (β | D = 1, P(Z ) = p) p

= α + E (β | P(Z ) > UD , P(Z ) = p) p

= α + E (β | p > UD) p

= α +

∫
β

∫ p

0

f (β, uD) duD︸ ︷︷ ︸
g(p)

Derivative with respect to p is MTE.

g ′(p) =MTE and weights as before.
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Understanding what linear IV estimates

Under uniformity,

∂E (Y | P (Z ) = p)

∂p
= E (Y1 − Y0 | UD = uD)

= ∆MTE (uD) .

More generally, it is LIV = ∂E(Y |P(Z)=p)
∂p

.

Yitzhaki’s result does not rely on uniformity; true of any
regression of Y on P .

Estimates a weighted net effect.

The expression can be generalized.

It produces Heckman-Vytlacil weights.
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Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

Proof.

Cov (J (Z ) , Y ) = E
(
Y · J̃

)
= E

(
E (Y | Z ) · J̃ (Z )

)
= E

(
E (Y | P (Z )) · J̃ (Z )

)
= E

(
g (P (Z )) · J̃ (Z )

)
.

J̃ = J (Z )− E (J (Z ) | P (Z ) ≥ uD) ,
E (Y | P (Z )) = g (P (Z )).
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Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

Cov (J (Z ) , Y ) =

∫ 1

0

∫ J

J

g (uD) j̃ fP,J (uD , j) djduD

=

∫ 1

0

g (uD)

∫ J

J

j̃ fP,J (uD , j) djduD .
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Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

Use integration by parts:

Cov (J (Z ) , Y )

= g (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdp

∣∣∣∣∣
1

0

−
∫ 1

0

g ′ (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)

∫ 1

uD

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD) E
(
J̃ (Z ) | P (Z ) ≥ uD

)
Pr (P (Z ) ≥ uD) duD .
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Understanding what linear IV estimates

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

Thus:

g ′ (uD) =
∂E (Y | P (Z ) = p)

∂P (Z )

∣∣∣∣
p=uD

= ∆MTE (uD) .
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Understanding what linear IV estimates

Under our assumptions the Yitzhaki weights and ours are
equivalent.

Cov (J (Z ) ,Y ) (5.3)

=

∫ 1

0

∆MTE(uD)E (J(Z )− E (J(Z )) | P(Z ) ≥ uD) Pr(P(Z ) ≥ uD)duD .

Using (5.3),

Cov (J (Z ) ,Y ) = E
(
Y · J̃

)
= E

(
E (Y | Z ) · J̃ (Z )

)
= E

(
E (Y | P (Z )) · J̃ (Z )

)
= E

(
g (P (Z )) · J̃ (Z )

)
.
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Understanding what linear IV estimates

The third equality follows from index sufficiency and
J̃ = J (Z )− E (J (Z ) | P (Z ) ≥ uD), where
E (Y | P (Z )) = g (P (Z )).

Writing out the expectation and assuming that J (Z ) and
P (Z ) are continuous random variables with joint density fP,J

and that J (Z ) has support
[
J , J
]
,

Cov (J (Z ) , Y ) =

∫ 1

0

∫ J

J

g (uD) j̃ fP,J (uD , j) djduD

=

∫ 1

0

g (uD)

∫ J

J

j̃ fP,J (uD , j) djduD .
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Understanding what linear IV estimates

Using an integration by parts argument as in Yitzhaki (1989)
and as summarized in Heckman, Urzua, Vytlacil (2006), we
obtain

Cov (J (Z ) ,Y )

= g (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdp

∣∣∣∣∣
1

0

−
∫ 1

0

g ′ (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)

∫ 1

uD

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD) E
(
J̃ (Z ) | P (Z ) ≥ uD

)
Pr (P (Z ) ≥ uD) duD ,

which is then exactly the expression given in (5.3), where

g ′ (uD) =
∂E (Y | P (Z ) = p)

∂P (Z )

∣∣∣∣
p=uD

= ∆MTE (uD) .
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Understanding what linear IV estimates

Under (A-1)–(A-5) and separable choice model

∆IV
J =

∫ 1

0

∆MTE (uD) ωJ
IV (uD) duD (5.4)

ωJ
IV (uD) =

E
(
J (Z )− J̄(Z ) | P (Z ) > uD

)
Pr (P (Z ) > uD)

Cov (J (Z ) , D)
. (5.5)

J(Z ) and P(Z ) do not have to be continuous random variables.

Functional forms of P(Z ) and J(Z ) are general.

181 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Understanding what linear IV estimates

Dependence between J(Z ) and P(Z ) gives shape and sign to
the weights.

If J(Z ) = P(Z ), then weights obviously non-negative.

If E (J(Z )− J̄(Z ) | P(Z ) ≥ uD) not monotonic in uD , weights
can be negative.
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Understanding what linear IV estimates

J̃ = J − E (J)

E
(J̃
|P

)

monotonic in p
(positive weight)

nonmonotonic in p 
(possible negative weight)

p

Therefore, with positive (or negative) regression, can get negative
IV weight.
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Understanding what linear IV estimates

When J(Z ) = P(Z ), weight (5.5) follows from Yitzhaki (1989).

He considers a regression function E (Y | P (Z ) = p).

Linear regression of Y on P identifies

βY ,P =

1∫
0

[
∂E (Y | P (Z ) = p)

∂p

]
ω (p) dp,

ω (p) =

1∫
p

(t − E (P)) dFP (t)

Var (P)
.

This is the weight (5.5) when P is the instrument.

This expression does not require uniformity or monotonicity
for the model; consistent with 2-way flows.
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Understanding the structure of the IV weights

Recapitulate:

∆J
IV =

∫
∆MTE(uD) ωJ

IV(uD) duD

ωJ
IV (uD) =

∫
(j − E (J (Z )))

∫ 1

uD

fJ,P (j , t) dt dj

Cov (J (Z ) , D)
(5.6)

The weights are always positive if J (Z ) is monotonic in the
scalar Z .

In this case J (Z ) and P (Z ) have the same distribution and
fJ,P (j , t) collapses to a single distribution.
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Understanding the structure of the IV weights

The possibility of negative weights arises when J(Z ) is not a
monotonic function of P(Z ).

It can also arise when there are two or more instruments, and
the analyst computes estimates with only one instrument or a
combination of the Z instruments that is not a monotonic
fuction of P(Z ) so that J(Z ) and P(Z ) are not perfectly
dependent.
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Understanding the structure of the IV weights

The weights can be constructed from data on (J , P , D).

Data on (J (Z ) , P (Z )) pairs and (J (Z ) , D) pairs (for each X
value) are all that is required.
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Understanding the structure of the IV weights

Discrete instruments J (Z )

Discrete Case

Support of the distribution of P(Z ) contains a finite number of
values p1 < p2 < · · · < pK .

Support of the instrument J (Z ) is also discrete, taking I
distinct values.

E (J(Z )|P(Z ) ≥ uD) is constant in uD for uD within any
(p`, p`+1) interval, and Pr(P(Z ) ≥ uD) is constant in uD for uD

within any (p`, p`+1) interval.

Let λ` denote the weight on the LATE for the interval
(p`, p`+1).
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Understanding the structure of the IV weights

Discrete instruments J (Z )

Under monotonicity, or uniformity

∆IV
J =

∫
E (Y1 − Y0|UD = uD)ωJ

IV (uD) duD (5.7)

=
K−1∑
`=1

λ`

∫ p`+1

p`

E (Y1 − Y0|UD = uD)
1

(p`+1 − p`)
duD

=
K−1∑
`=1

∆LATE(p`, p`+1)λ`.
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Understanding the structure of the IV weights

Discrete instruments J (Z )

Let ji be the i th smallest value of the support of J(Z ).

λ` =

I∑
i=1

(ji − E (J(Z )))
K∑

t>`

(f (ji , pt))

Cov (J (Z ) , D)
(p`+1 − p`) (5.8)
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Understanding the structure of the IV weights

Discrete instruments J (Z )

In general, this formula is true, under index sufficiency even if
monotonicity is violated.

It’s certainly true under (A-1)–(A-5).

True where ∆LATE (p`, p`+1) is replaced by the Wald estimator,
based on P(z`), ` = 1, . . . , L, instruments.

Observe, LATE here defined in terms of P(Z ), the “natural”
instrument.
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Understanding the structure of the IV weights

Discrete instruments J (Z )

Generalizes the expression presented by Imbens and Angrist
(1994) and Yitzhaki (1989, 1996)

Their analysis of the case of vector Z only considers the case
where J(Z ) and P(Z ) are perfectly dependent because J(Z ) is
a monotonic function of P (Z ).

More generally, the weights can be positive or negative for any
` but they must sum to 1 over the `.
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The central role of the propensity score

For the IV weight to be correctly constructed and interpreted,
we need to know the correct model for P (Z ).

IV depends on:
1 the choice of the instrument J (Z ),
2 its dependence with P (Z ),
3 the specification of the propensity score (i.e., what variables go

into Z ).

“Structural” LATE or MTE identified by P(Z ).

Can derive all other instrumental variable estimators in terms of
weighted averages of MTE or LATE.
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Monotonicity, uniformity and conditional instruments

Monotonicity or uniformity condition (IV-3) rules out general
heterogeneous responses to treatment choices in response to
changes in Z .

The recent literature on instrumental variables with
heterogeneous responses is asymmetric.

The uniformity condition can be violated even when all
components of γ are of the same sign if Z is a vector and γ is
a nondegenerate random variable.

D = 1 [γZ > γ]
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Monotonicity, uniformity and conditional instruments

Uniformity is a condition on a vector.

Changing one coordinate of Z , holding the other coordinates at
different values across people, will not necessarily produce
uniformity.

Let µD (z) = γ0 + γ1z1 + γ2z2 + γ3z1z2, where γ0, γ1, γ2 and
γ3 are constants.

Consider changing z1 from a common base state while holding
z2 fixed at different values across people.

If γ3 < 0 then µD (z) does not necessarily satisfy the uniformity
condition.
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Monotonicity, uniformity and conditional instruments

Positive weights and uniformity are distinct issues.

Under uniformity, and assumptions (A-1)–(A-5), the weights on
MTE or LIV for any particular instrument may be positive or
negative.
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Monotonicity, uniformity and conditional instruments

If we condition on Z2 = z2, . . . , ZK = zK using Z1 as an
instrument, then uniformity is satisfied.

Effectively convert the problem back to that of a scalar
instrument where the weights must be positive.

The concept of conditioning on other instruments to produce
positive weights for the selected instrument is a new idea.
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Monotonicity and weights

Monotonicity is a property needed to get treatment effects with
just two values of Z , Z = z1 and Z = z2, to guarantee that IV
estimates a treatment effect.

With multiple values of Z we need to weight to produce linear
IV.

If our IV shifts P(Z ) in same way for everyone, it shifts D in
the same way for everyone,

D = 1 [P(Z ) ≥ UD ] .
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Monotonicity and weights

If P(Z ) is instrument, monotonicity is obviously satisfied.

If J(Z ) is an instrument and not a monotonic function of
P(Z ), may not shift P(Z ) in same way for all people.

We can get two-way flows if, e.g., we use only one Z or else
have a random coefficient model,

D = 1 [γZ ≥ V ] .

Negative weights are a tip off of two-way flows.
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Monotonicity and weights

If we do not want a treatment effect, who cares?

We do not always want a treatment effect.

Go back to ask “What economic question am I trying to
answer?”
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Treatment effects vs. policy effects

Even if uniformity condition (IV-3) fails, IV may answer
relevant policy questions.

IV or TSLS estimates a weighted average of marginal responses
which may be pointwise positive or negative.

Policies may induce some people to switch into and others to
switch out of choices.

Net effects are sometimes of interest in many policy analyses.
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Treatment effects vs. policy effects

Thus, subsidized housing in a region supported by higher taxes
may attract some to migrate to the region and cause others to
leave. The net effect on earnings from the policy is all that is
required to perform cost benefit calculations of the policy on
outcomes.

If the housing subsidy is the instrument, the issue of
monotonicity is a red herring.

If the subsidy is exogenously imposed, IV estimates the net
effect of the policy on mean outcomes.

Only if the effect of migration induced by the subsidy on
outcomes is the question of interest, and not the effect of the
subsidy, does uniformity emerge as an interesting question.
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Comparing selection and IV models

Angrist and Krueger (1999) compare IV with selection models
and view the former with favor.

Useful to understand this comparison in a model with essential
heterogeneity.

IV is estimating the derivative (or finite changes) of the
parameters of a selection model.

IV only conditions on Z (and X ).
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Comparing selection and IV models

The control function approach conditions on Z and D (and X ).

From index sufficiency, equivalent to conditioning on P (Z ) and
D:

E (Y | X , D, Z ) (6.1)

= µ0 (X ) + [µ1 (X )− µ0 (X )] D

+ K1 (P (Z ) , X ) D + K0 (P (Z ) , X ) (1− D)

K1 (P(Z ), X ) = E (U1 | D = 1, X , P (Z ))

and

K0 (P(Z ), X ) = E (U0 | D = 0, X , P (Z )) .
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Comparing selection and IV models

IV approach does not condition on D.

It works with the integral (over D) of (6.1).

E (Y | X , P(Z )) (6.2)

= µ0 (X ) + [µ1 (X )− µ0 (X )] P(Z )

+ K1 (P (Z ) , X ) P(Z ) + K0 (P (Z ) , X ) (1− P(Z ))

Under monotonicity and (A-1)–(A-5)

∂E (Y | X , P(Z ))

∂P(Z )

∣∣∣∣
P(Z)=p

= LIV (X , p) = MTE (X , p) .

Control function builds up MTE from components.

IV gets it in one fell swoop.
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Comparing selection and IV models

With rank and limit conditions (Heckman and Robb, 1985;
Heckman, 1990), using control functions, one can identify
µ1 (X ), µ0 (X ), K1 (P (Z ) , X ), and K0 (P (Z ) , X ).

The selection (control function) estimator identifies the
conditional means

E (Y1 | X , P(Z ), D = 1) = µ1 (X ) + K1 (X , P(Z )) (6.3a)

and

E (Y0 | X , P(Z ), D = 0) = µ0 (X ) + K0 (X , P(Z )) . (6.3b)
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Comparing selection and IV models

To decompose these means and separate µ1 (X ) from
K1 (X , P(Z )) without invoking functional form assumptions, it
is necessary to have an exclusion (a Z not in X ).

This allows µ1 (X ) and K1 (X , P (Z )) to be independently
varied with respect to each other.

We can also invoke curvature conditions without exclusion of
variables.

In addition there must exist a limit set for Z given X such that
K1 (X , P(Z )) = 0 for Z in that limit set.
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Comparing selection and IV models

Limit set not required for selection model if we are interested
only in MTE or LATE.

Not required in IV either if we only seek MTE or LATE.
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Comparing selection and IV models

Without functional form assumptions, it is not possible to
disentangle µ1 (X ) from K1 (X , P(Z )) which may contain
constants and functions of X that do not interact with P(Z )
(see Heckman (1990)).

These limit set arguments are needed for ATE or TT, not
LATE or LIV.
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IV method

IV method works with derivatives of (6.2) and not levels.

Cannot directly recover the constant terms in (6.3a) and (6.3b).
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IV method

In summary, the control function method directly identifies
levels while the LIV approach works with slopes.

Constants that do not depend on P(Z ) disappear from the LIV
estimates of the model.
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IV method

The distributions of U1, U0 and V do not need to be specified
to estimate control function models (see Powell, 1994).

In particular, there is no reliance on normality.
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Support problems for IV

Support conditions with control function models have their
counterparts in IV models.

One common criticism of selection models is that without
invoking functional form assumptions, identification of
µ1(X ) and µ0(X ) requires that P(Z ) → 1 and P(Z ) → 0 in
limit sets.

Identification in limit sets is sometimes called “identification at
infinity.”

In order to identify ATE = E (Y1 − Y0|X ), IV methods also
require that P(Z ) → 1 and P(Z ) → 0 in limit sets, so an
identification at infinity argument is implicit when IV is used to
identify this parameter.
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Support problems for IV

The LATE parameter avoids this problem by moving the goal
posts and redefining the parameter of interest from a level
parameter like ATE or TT to a slope parameter like LATE
which differences out the unidentified constants.

We can identify this parameter by selection models or IV
models without invoking identification at infinity.
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Support problems for IV

The IV estimator is model dependent, just like the selection
estimator, but in application, the model does not have to be
fully specified to obtain ∆IV using Z (or J(Z )).

However the distribution of P (Z ) and the relationship between
P (Z ) and J (Z ) generates the weights on MTE (or LIV).

The interpretation placed on ∆IV in terms of weights on ∆MTE

depends crucially on the specification of P (Z ). In both control
function and IV approaches for the general model of
heterogeneous responses, P (Z ) plays a central role.
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Support problems for IV

Two economists using the same instrument will obtain the
same point estimate using the same data.

Their interpretation of that estimate will differ depending on
how they specify the arguments in P(Z ), even if neither uses
P(Z ) as an instrument.

By conditioning on P (Z ), the control function approach makes
the dependence of estimates on the specification of P (Z )
explicit.

The IV approach is less explicit and masks the assumptions
required to economically interpret the empirical output of an IV
estimation.
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Examples based on choice theory

Suppose cost of adopting the policy C is the same across all
countries.

Countries choose to adopt the policy if D∗ > 0 where D∗ is the
net benefit: D∗ = (Y1 − Y0 − C ) and

ATE = E (β) = E (Y1 − Y0) = µ1 − µ0

Treatment on the treated is

E (β | D = 1) = E (Y1 − Y0 | D = 1)

= µ1 − µ0 + E (U1 − U0 | D = 1) .
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Figure 1: distribution of gains

The Roy Economy
U1 − U0 ⊥�⊥ D
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     Return to Marginal Agent

β = Y1 − Y0
TT= 2.666, TUT= −0.632

Return to Marginal Agent = C = 1.5, ATE = µ1 − µ0 = β̄ = 0.2
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The model

Outcomes Choice Model

Y1 = µ1 + U1 = α + β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = µ0 + U0 = α + U0

General Case

(U1 − U0) ⊥�⊥ D
ATE 6=TT 6=TUT
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The model

The Researcher Observes (Y , D, C )

Y = α + βD + U0 where β = Y1 − Y0

Parameterization

α = 0.67 (U1, U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − C

β̄ = 0.2 Σ =

[
1 −0.9

−0.9 1

]
C = 1.5

Let C = γZ , γ ≥ 0.
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Discrete instruments and the weights for LATE

Figure 4A: monotonicity, the extended Roy economy
Standard case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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{
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Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =
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1 −0.9
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, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz
)
≥ D

(
˜̃γz′
)

and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4B: monotonicity, the extended Roy economy
Changing Z1 without controlling for Z2

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz
)
≥ D

(
˜̃γz′
)

and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz
)
≥ D

(
˜̃γz′
)

and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4: monotonicity, the extended Roy economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z0 z −→ z0 or z −→ z00 z −→ z0

z = (0, 1) and z0 = (1, 1) z = (0, 1), z0 = (1, 1) and z00 = (1,−1) z = (0, 1) and z0 = (1, 1)

γ is a random vectoreγ = (0.5, 0.5) and eeγ = (−0.5, 0.5)
where eγ and eeγ are two realizations of γ

D(γz) ≥ D(γz0) D(γz) ≥ D(γz0) or D(γz) < D(γz00) D
³eeγz´ ≥ D

³eeγz0´ and D (eγz) < D (eγz0)
For all individuals Depending on the value of z0 or z00 Depending on value of γ
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Figure 4: monotonicity, the extended Roy economy model

Outcomes Choice Model

Y1 = α + β̄ + U1 D =


1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0, Σ) , Σ =

»
1 −0.9

−0.9 1

–
,

α = 0.67, β̄ = 0.2,
γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}
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Figure 5: IV weights and its components under discrete instruments
when P(Z ) is the instrument

∆LATE (p`, p`+1)

=
E (Y |P(Z ) = p`+1)− E (Y |P(Z ) = p`)

p`+1 − p`

=
β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1− p`+1)

)
− φ

(
Φ−1 (1− p`)

))
p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z )))
K∑

t>`

f (pi , pt)

Cov (Z1,D)

= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z ))) f (pt)

Cov (Z1,D)
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Joint probability distribution of (Z1,Z2) and the propensity score

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468

(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2));
propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))
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Figure 5: IV weights and its components under discrete instruments
when P(Z ) is the instrument

ATE = 0.2, TT = 0.5942, TUT = −0.4823

and

∆IV
P(Z) =

K−1∑
`=1

∆LATE (p`, p`+1) λ` = −0.09
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Figure 5A: IV weights and its components under discrete instruments when

P(Z ) is the instrument (IV Weights)
Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument

The Extended Roy Economy
A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`

=
β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Figure 5B: IV weights and its components under discrete instruments when

P(Z ) is the instrument (E (P(Z ) | P(Z ) > p`) and E (P(Z )))
Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument

The Extended Roy Economy
A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`

=
β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Figure 5C: IV weights and its components under discrete instruments when

P(Z ) is the instrument (Local average treatment effects)

Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`

=
β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Consider using Z1 as instrument

If Z1 and Z2 are negatively dependent and E (Z1 | P(Z ) > uD)
is not monotonic in uD , weights negative.

This nonmonotonicity is evident in Figure 6B.

This produces the pattern of negative weights shown in
Figure 6A.

Associated with two way flows.

Two way flows are induced by uncontrolled variation in Z2.
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Figure 4B: monotonicity, the extended Roy economy
Changing Z1 without controlling for Z2

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz
)
≥ D

(
˜̃γz′
)

and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 6: IV weights and its components under discrete instruments
when Z1 is the instrument

Figure 4. IV Weight and Its Components under Discrete Instruments when Z1 is the Instrument
The Extended Roy Economy

A. IV Weights B. E(Z1|P (Z) > p ) and E(Z1)
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The model is the same as the one presented below Figure 2. The values of the treatment parameters are the same as the
ones presented below Figure 3.

The model is the same as the one presented after figure 4.
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Figure 5C: IV weights and its components under discrete instruments when

P(Z ) is the instrument (local average treatment effects)

Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`

=
β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409

0 0.3 0.01 0.03
0.6402 0.5409 0.4388

1 0.2 0.05 0.01
0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Discrete instruments and the weights for LATE

∆IV
Z1

=
K−1∑
`=1

∆LATE (p`, p`+1) λ` = 0.1833

λ` = (p`+1 − p`)

I∑
i=1

(z1,i − E (Z1))
K∑

t>`

f (z1,i , pt)

Cov (Z1, D)
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Discrete instruments and the weights for LATE

Joint probability distribution of (Z1,Z2) and the propensity score

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468

(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2));
propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))
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Discrete instruments and the weights for LATE

Conditional variable estimator and conditional local average
treatment effect when Z1 is the instrument (given Z2 = z2)

Z2 = −1 Z2 = 0 Z2 = 1

P (−1, Z2) = p3 0.7309 0.6402 0.5409
P (0, Z2) = p2 0.6402 0.5409 0.4388
P (1, Z2) = p1 0.5409 0.4388 0.3408

λ1 0.8418 0.5384 0.2860
λ2 0.1582 0.4616 0.7140

∆LATE (p1, p2) −0.2475 0.2497 0.7470
∆LATE (p2, p3) −0.7448 −0.2475 0.2497

∆IV
Z1|Z2=z2

−0.3262 0.0202 0.3920
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Discrete instruments and the weights for LATE

Conditional instrumental variable estimator

∆IV
Z1|Z2=z2

=

I−1X
`=1

∆LATE (p`, p`+1|Z2 = z2) λ`|Z2=z2
=

I−1X
`=1

∆LATE (p`, p`+1|Z2 = z2) λ`|Z2=z2

∆LATE (p`, p`+1|Z2 = z2) =
E (Y |P(Z) = p`+1, Z2 = z2)− E (Y |P(Z) = p`, Z2 = z2)

p`+1 − p`

λ`|Z2=z2
= (p`+1 − p`)

IX
i=1

`
z1,i − E (Z1|Z2 = z2)

´ IX
t>`

f
`
z1,i , pt |Z2 = z2

´
Cov (Z1, D)

= (p`+1 − p`)

IX
t>`

(z1,t − E (Z1|Z2 = z2)) f (z1,t , pt |Z2 = z2)

Cov (Z1, D)
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Discrete instruments and the weights for LATE

Conditional instrumental variable estimator

Probability Distribution of Z1 Conditional on Z2 (Pr(Z1 = z1|Z2 = z2))

z1 Pr(Z1 = z1|Z2 = −1) Pr(Z1 = z1|Z2 = 0) Pr(Z1 = z1|Z2 = 1)
−1 0.0385 0.25 0.9
0 0.5769 0.125 0.075
1 0.3846 0.625 0.025
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Continuous instruments

Figure 7 plots E (Y | P(Z )) and MTE for the models displayed
at the base of the figure. In cases I and II, β ⊥⊥ D.

In case I, this is trivial since β is a constant. In case II, β is
random but selection into D does not depend on β.

Case III is the model with essential heterogeneity (β ⊥�⊥ D).

Figure 7A depicts E (Y | P(Z )) in the three cases.
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Continuous instruments

Figure 7: conditional expectation of Y on P(Z ) and the marginal
treatment effect (MTE)

Figure 5. Conditional Expectation of Y on P (Z) and the Marginal Treatment Effect (MTE)
The Extended Roy Economy

A. E(Y |P (Z) = p) B. ∆MTE(uD)
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Continuous instruments

Outcomes Choice Model

Y1 = α + β̄ + U1 D =


1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0

Case I Case II Case III

U1 = U0 U1 − U0 ⊥⊥ D U1 − U0 ⊥�⊥ D
β̄ =ATE=TT=TUT=IV β̄ =ATE=TT=TUT=IV β̄ =ATE 6=TT6=TUT 6=IV

Parameterization

Cases I, II and III Cases II and III Case III

α = 0.67 (U1, U0) ∼ N (0, Σ) D∗ = Y1 − Y0 − γZ

β̄ = 0.2 with Σ =

»
1 −0.9

−0.9 1

–
Z ∼ N (µZ , ΣZ )

µZ = (2,−2) and ΣZ=

»
9 −2
−2 9

–
γ = (0.5, 0.5)
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Continuous instruments

Cases I and II make E (Y | P(Z )) linear in P(Z ) (see equation
5.2). Case III is nonlinear in P(Z ) which arises when β ⊥�⊥ D.
The derivative of E (Y | P(Z )) is presented in the right panel
(Figure 7B).

It is a constant in cases I and II (flat MTE) but declining in
UD = P(Z ) for the case with selection on the gain.
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Continuous instruments

MTE gives the mean marginal return for persons who have
utility P(Z ) = uD (P(Z ) = uD is the margin of indifference).

Figure 7 highlights that MTE (and LATE) identify average
returns for persons at the margin of indifference at different
levels of the mean utility function P(Z ).

Figure 8 plots MTE and LATE for different intervals of uD

using the model plotted in Figure 7.

LATE is the chord of E (Y | P(Z )) evaluated at different
points.

The relationship between LATE and MTE is presented in the
right panel of Figure 8.
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Continuous instruments

Figure 8: the local average treatment effect

Figure 6. The Local Average Treatment Effect
The Extended Roy Economy

A. E(Y |P (Z) = p) and ∆LATE(p , p +1) B. ∆MTE(uD) and ∆LATE(p , p +1)
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LATE(0.1,0.35)= 1.797
LATE(0.6,0.9)= -1.17
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Continuous instruments

Figure 8: the local average treatment effect

∆LATE(p`, p`+1) =
E (Y |P(Z ) = p`+1)− E (Y |P(Z ) = p`)

p`+1 − p`

=

p`+1∫
p`

∆MTE(uD)duD

p`+1 − p`

∆LATE(0.1, 0.35) = 1.719

∆LATE(0.6, 0.9) = −1.17
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Continuous instruments

Figure 8: the local average treatment effect

Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 with D∗ = Y1 − Y0 − γZ

Parameterization

(U1,U0) ∼ N (0,Σ) and Z ∼ N (µZ ,ΣZ )

Σ =

[
1 −0.9

−0.9 1

]
, µZ = (2,−2) and ΣZ=

[
9 −2
−2 9

]
α = 0.67, β̄ = 0.2, γ = (0.5, 0.5)
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Continuous instruments

The treatment parameters as a function of p associated with
case III are plotted in Figure 9.

MTE is the same as that reported in Figure 7.

ATE is the same for all p.

∆TT (p) = E (Y1 − Y0 | D = 1, P(Z ) = p) declines in p
(equivalently, it declines in uD).

LATE (p, p′) =
∆TT (p′)p′ −∆TT (p)p

p′ − p
, p′ 6= p

MTE =
∂[∆TT (p)p]

∂p
.
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Continuous instruments

Parameter Definition Under Assumptions (*)

Marginal Treatment Effect E [Y1 − Y0|D∗ = 0, P (Z) = p] β̄ + σU1−U0Φ−1(1− p)

Average Treatment Effect E [Y1 − Y0|P (Z) = p] β

Treatment on the Treated E [Y1 − Y0|D∗ > 0, P (Z) = p] β̄ + σU1−U0
φ(Φ−1(1−p))

p

Treatment on the Untreated E [Y1 − Y0|D∗ ≤ 0, P (Z) = p] β̄ − σU1−U0
φ(Φ−1(1−p))

1−p

OLS/Matching on P (Z) E [Y1|D∗ > 0, P (Z) = p]−E [Y0|D∗ ≤ 0, P (Z) = p] β̄ +

µ
σ2U1−σU1,U0√

σU1−U0

¶³
1−2p
p(1−p)

´
φ
¡
Φ−1(1− p)

¢
Note: Φ (·) and φ (·) represent the cdf and pdf of a standard normal distribution, respectively. Φ−1 (·) represents the inverse of Φ (·) .

(*): The model in this case is the same as the one presented below Figure 6.

250 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Continuous instruments

Figure 9: treatment parameters and OLS matching as a function of
P(Z ) = pFigure 7. Treatment Parameters and OLS/Matching as a function of P (Z) = p
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Continuous instruments

Another nonmonotonicity example

A mixture of two normals:

Z ∼ P1N(µ1, Σ1) + P2N(µ2, Σ2)

P1 is the proportion in population 1, P2 is the proportion in
population 2 and P1 + P2 = 1.
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Continuous instruments

Another nonmonotonicity example

Conventional normal outcome selection model generated by the
parameters at the base of Figure 11.

The discrete choice equation is a conventional probit:

Pr (D = 1 | Z = z) = Φ
(

γz
σV

)
.

The ∆MTE(v),

E (Y1 − Y0 | V = v) = µ1 − µ0 +
Cov (U1 − U0, V )

Var (V )
v .

We show results for models with vector Z that satisfies (IV-1)
and (IV-2) and with γ > 0 componentwise.
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Continuous instruments

Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 D∗ = Y1 − Y0 − γZ
and V = − (U1 − U0)

Parameterization

(U1,U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2
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Continuous instruments

Z = (Z1, Z2) ∼ p1N(κ1, Σ1) + p2N(κ2, Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =

[
1.4 0.5
0.5 1.4

]
Cov(Z1, γZ ) = γΣ1

1 = 0.98 ; γ = (0.2, 1.4)
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Continuous instruments

Figure 11: marginal treatment effect and IV weights using Z1 as the
instrument when Z = (Z1,Z2) ∼ p1N(µ1,Σ1) + p2N(µ2,Σ2) for
different values of Σ2

Weights MTE

Figure 8. Marginal Treatment Effect and IV Weights using Z1 as the Instrument when
Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2) for different values of Σ2
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =
{

1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 D∗ = Y1 − Y0 − γZ and V = − (U1 − U0)

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2

Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =
[

1.4 0.5
0.5 1.4

]

Cov(Z1, γZ) = γΣ1
1 = 0.98 ; γ = (0.2, 1.4)

Table 3. IV estimator and Cov(Z2, γZ) associated with each value of Σ2

Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ1
2

ω1

[
0.6 −0.5
−0.5 0.6

] [
0 0

] [
0 0

]
0.434 0.2 1.401 −1.175 −0.58

ω2

[
0.6 0.1
0.1 0.6

] [
0 0

] [
0 0

]
0.078 0.2 1.378 −1.145 0.26

ω3

[
0.6 −0.3
−0.3 0.6

] [
0 −1

] [
0 1

] −2.261 0.2 1.310 −0.859 −0.30
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Continuous instruments

Table 3: IV estimator and Cov(Z2, γ
′Z ) associated with each value of

Σ2

Table 3. IV estimator and Cov(Z2, γZ) associated with each value of Σ2
Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ12

ω1

∙
0.6 −0.5
−0.5 0.6

¸ £
0 0

¤ £
0 0

¤
0.434 0.2 1.401 −1.175 −0.58

ω2

∙
0.6 0.1
0.1 0.6

¸ £
0 0

¤ £
0 0

¤
0.078 0.2 1.378 −1.145 0.26

ω3

∙
0.6 −0.3
−0.3 0.6

¸ £
0 −1 ¤ £

0 1
¤ −2.261 0.2 1.310 −0.859 −0.30
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Consider the study of the GED.
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Figure 12: frequency of the propensity score by final schooling
decision

Dropouts and GEDs – males of the NLSY at age 30

Figure 1. Frequency of the Propensity Score by 
Final Schooling Decision

Dropouts and GEDs - Males of the NLSY at age 30
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Table 4: instrumental variables estimates

Sample of GEDs and dropouts – males at age 30

Instruments

Full Sample
(a)

Common Support
(b)

Parametric
(c)

Polynomial
(d)

Nonparametric
(e)

Father Highest Grade Completed 0.194 0.005 -0.254 -0.360 -0.333

(0.384) (0.391) (0.151) (0.160) (0.153)

Mother Highest Grade Completed 1.106 0.588 -0.276 -0.380 -0.334

(3.030) (2.981) (0.153) (0.172) (0.166)

Number of Siblings -0.311 -0.471 -0.239 -0.327 -0.311

(0.618) (0.725) (0.149) (0.155) (0.153)

Ged Cost 1.938 1.994 -0.269 -0.222 -0.266

(2.414) (2.544) (0.204) (0.380) (0.389)

Family income in 1979 0.656 0.636 -0.252 -0.363 -0.335

(0.534) (0.571) (0.149) (0.161) (0.157)

Dropout's local wage at age 17 -1.812 -1.612 0.150 -0.503 -0.776

(1.228) (1.037) (0.499) (0.674) (0.593)

High School Graduate's local wage at age 17 -2.197 -1.872 -0.618 -0.232 0.039

(1.441) (1.143) (0.406) (0.993) (1.709)

Dropout's local unemployment rate at age 17 0.164 0.203 -0.216 -0.269 -0.318

(1.071) (0.853) (0.305) (0.559) (0.288)

High School Graduate's local unemployment rate at age 17 0.142 0.202 0.041 -0.205 -0.396

(1.537) (1.261) (6.440) (3.108) (2.987)

Propensity Score 
(d)

-0.276 -0.305 -0.257 -0.349 -0.328

(0.134) (0.140) (0.150) (0.157) (0.155)

(f) The propensity score (Prob(D=1|Z=z)) is computed using as controls the instruments presented in the table as well as two dummy variables controlling for the place 

of residente at age 14 (south and urban), and a set of dummy variables controlling for the year of birth (1958-1963).

Standard IV 
(f)

Notes: (*) We excluded the oversample of poor whites, the military sample, and those who attended college. The cost of the GED corresponds to the average testing fee

per GED battery by state among 1993 and 2000 (Source: GED Statistical Report). Average local wage for dropouts and high school graduates correspond to the average

blue-collar wages in the state of residence for each group respectively, and local unemployment rate corresponds to the unemployment rate in the county of residence.

Average local wages, local unemployment rates, mother's and father's education all refer the level at age 17.

Table1. Instrumental Variables Estimates 

Sample of GED and Dropouts - Males at age 30 
(*)

IV-MTE
(f)

(Common Support)

(a) The IV estimates and the standard deviations (in parenthesis) are computed applying the traditional formulae to the full sample. The number of observations in our

sample is 780. (b) The IV estimates and the standard deviations (in parenthesis) are computed applying the traditional formulae to the common support sample. This

sample contains only observations for which the estimated propensity score belongs to the common support of the propensity score between the control (dropouts) and

treatment group (GEDs). The number of observations in our sample is 756. (c) The treatment parameters are estimated by taking the weighted sum of the MTE

estimated using the parametric approach. (d) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using a polynomial of degree 4 to

approximate E(Y|P). (e) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using the nonparametric approach. In (c), (d) and (e)

the standard deviations (in parenthesis) are computed using bootstrapping (100 draws).
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Figure 13: MTE of the GED with confidence interval

NLSY – sample of the GEDs and dropouts – males at age 30
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MTE CI(0.025,0.975)

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 2. MTE of the GED with Confidence Interval

261 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

Figure 14: IV weights
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Father’s Highest Grade Completed Propensity Score

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

Propensity Score vs Father’s Highest Grade Completed as the Instrument
NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 3. IV Weights 
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Figure 15: IV weights
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HS graduates’s local wage at age 17 Propensity Score

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

Propensity Score vs HS graduates’s local wage at age 17 as the Instrument
NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 5. IV Weights 
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Table 5: treatment parameter estimates

Treatment Parameter Parametric 
(b)

Polynomial
(c)

Nonparametric
(d)

Treatment on the Treated -0.152 -0.183 -0.241

(0.166) (0.201) (0.180)

Treatment on the Untreated -0.369 -0.119 -0.304

(0.170) (0.231) (0.223)

Average Treatment Effect -0.279 -0.145 -0.278

(0.151) (0.184) (0.174)

LATE(0.38,0.62) -0.335 -0.404 -0.261

(0.160) (0.275) (0.221)

LATE(0.55,0.79) -0.453 0.106 -0.327

(0.205) (0.377) (0.416)

LATE(0.21,0.45) -0.216 -0.462 -0.396

(0.153) (0.210) (0.164)

Table 2. Treatment Parameter Estimates 

Sample of GED and Dropouts - Males at age 30 
(a)

Notes: (a) We excluded the oversample of poor whites, the military sample, and those who attended college. (b) The

treatment parameters are estimated by taking the weighted sum of the MTE estimated using the parametric approach.

(c) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using A polynomial of

degree 4 to approximate E(Y|P). (d) The treatment parameters are estimated by taking the weighted sum of the MTE

estimated using the nonparametric approach. The standard deviations (in parenthesis) are computed using

bootstrapping (100 draws).
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

The analysis of this lecture and the entire recent literature on
instrumental variables estimators for models with essential
heterogeneity relies on the assumption that the treatment
choice equation is in additively separable form (3.2).

Imparts an asymmetry to the entire instrumental variable
enterprise for estimating treatment effects.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

This asymmetry is also present in conventional selection models
even in their semiparametric version.

Parameters can be defined as weighted averages of an MTE
but MTE and the derived parameters cannot be identified using
any instrumental variables strategy.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Natural benchmark nonseparable model:

random coefficient model of choice D = 1 (γZ ≥ 0)
γ is a random coefficient vector and γ ⊥⊥ (Z ,U0,U1) .
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Consider a more general case.

Relax the separability assumption of equation (3.2).

D∗ = µD (Z , V ) , D = 1 (D∗ ≥ 0) , (9.1)

µD (Z , V ) is not necessarily additively separable in Z and V , and V
is not necessarily a scalar.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

We maintain assumptions (A-1)–(A-2) and (A-5).

As we have shown, relationships among treatment parameters
as weighted averages of generator functions (not MTEs) hold
in this case even if we fail monotonicity.
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz
)
≥ D

(
˜̃γz′
)

and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

z −→ z ′

z = (0, 1) and z ′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D
(˜̃γz

)
≥ D

(˜̃γz ′
)

and D (γ̃z) < D (γ̃z ′)

Depending on value of γ
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

In the additively separable case, MTE has three equivalent
interpretations:

1 UD(= FV (V )) is the only unobservable in the first stage
decision rule, and MTE is the average effect of treatment given
the unobserved characteristics in the decision rule (UD = uD);

2 MTE is the average effect of treatment given that the
individual would be indifferent between treatment or not if
P (Z ) = uD , where P(Z ) is a mean utility function;

3 the MTE is an average effect conditional on the additive error
term from the first stage choice model.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Under all interpretations of the MTE, and under the
assumptions (A-1)–(A-5), MTE can be identified by LIV.

Three definitions are not the same in the general nonseparable
case (9.1). Heckman and Vytlacil (2001, 2005) extend MTE to
the nonseparable case.
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Failure of index sufficiency in general nonseparable models

For any version of the nonseparable model, index sufficiency
fails.

Define Ω (z) = {v : µD (z , v) ≥ 0}.

In the additively separable case, P (z) ≡ Pr (D = 1 | Z = z)
= Pr (VD ∈ Ω (z)) , P (z) = P (z ′) ⇔ Ω (z) = Ω (z ′) .
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Failure of index sufficiency in general nonseparable models

This produces index sufficiency so the propensity score orders
the unobservables generating choices.

In the more general case (9.1), it is possible to have (z , z ′)
values such that P (z) = P (z ′) and Ω (z) 6= Ω (z ′) so index
sufficiency does not hold.

The Z ’s enter the model more generally, and the propensity
score no longer plays the central role it plays in separable
models.

275 / 286



Adoption model IV General model Index Derivation Comparing models Examples GED Separability Conclusion

The support of the propensity score

The nonseparable model can also restrict the support of P (Z ).

For example, consider a normal random coefficient choice
model with a scalar regressor (Z = (1, Z1)).

Assume γ0 ∼ N (0, σ2
0), γ1 ∼ N (γ̄1, σ

2
1), and γ0 ⊥⊥ γ1.

P (z1) = Φ

(
γ̄1z1√

σ2
0 + σ2

1z
2
1

)
.

Φ is the cumulative distribution of a standard normal.

σ2
1 > 0.
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The support of the propensity score

The support is strictly within the unit interval.

The case when σ2
0 = 0, the support is one point,(

P (z) = Φ

(
γ̄1

σ1

))
.

Cannot, in general, identify ATE, TT or any treatment effect
requiring the endpoints 0 or 1 using IV or control function
strategies.
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Violations of uniformity

One source of violations of monotonicity is nonseparability
between Z and V in (9.1).

The random coefficient model is one intuitive model where
separability fails.

Even if (9.1) is separable in Z and V , uniformity may fail in the
case of vector Z , where we use only one function of Z as the
instrument, and do not condition on the remaining sources of
variation in Z .

If we condition appropriately, we retain monotonicity but get a
new form of instrumental variable estimator that is sensitive to
the specification of the Z not used as an instrument.
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Summary and conclusion

We have studied the estimation of treatment effects in a model

Y = α + βD + ε

We have contrasted this with a structural Roy model.

Considered cases where β is constant and where β is
heterogeneous.

In the heterogeneous case D ⊥�⊥ ε; β ⊥�⊥ D; β ⊥�⊥ ε.
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Summary and conclusion

Consider what IV estimates and its relationship with Economic
Choice and Selection Models.

In general heterogeneous response models, the two approaches
have strong similarities.

Selection models identify levels (conditional means).

IV models identify slopes.
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Summary and conclusion

We lose constants in estimating IV models.

We get back level parameters by integration.

This accounts for the weighting schemes that appear in the
literature.

We must recover the constants to get levels parameters.
(Classical treatment effects like ATE and TT).

We restore the constants to estimate classical treatment
parameters using the same limit arguments used to identify
selection models.
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Summary and conclusion

If we are only concerned with slope treatment parameters, we
can avoid limit arguments in IV or selection models.

Explore the role of “monotonicity” or “uniformity” assumptions
in IV.

Concept used by Imbens and Angrist (1994) to define LATE.

Monotonicity is not needed to define treatment parameters or
establish the relationship among them (Heckman and Vytlacil).

Under monotonicity or uniformity, LIV = MTE.
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Summary and conclusion

Can express all classical treatment parameters as weighted
averages of MTE.

Monotonicity is needed to use IV to identify MTE and LATE.

Treatment parameters can be defined; relationships among
them established and IV weights defined without monotonicity
or uniformity.
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Summary and conclusion

Much of the literature is for two outcome models.

Angrist and Imbens (1995) consider the case of an ordered
choice model with a scalar instrument that affects choices at all
margins.

We develop the case of a general ordered choice model with
transition-specific instruments.

We also develop a general unordered model.

The most general case requires a marriage of semiparametric
selection models (e.g. Heckman, 1990) and IV intuition to
identify general parameters.
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Summary and conclusion

Need to identify semiparametric discrete choice models to get
classical pairwise properties.

We have an analysis for bounds which we defer to another
occasion.
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