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Abstract

Numerous studies regress log earnings on schooling and report estimated coefficients
as “Mincer rates of return”. A more recent literature uses instrumental variables. This
chapter considers the economic interpretation of these analyses and how the availabil-
ity of repeated cross section and panel data improves the ability of analysts to estimate
the rate of return. We consider under what conditions the Mincer model estimates an
ex post rate of return. We test and reject the model on six cross sections of U.S. Cen-
sus data. We present a general nonparametric approach for estimating marginal internal
rates of return that takes into account tuition, income taxes and forms of uncertainty.
We also contrast estimates based on a single cross-section of data, using the synthetic
cohort approach, with estimates based on repeated cross-sections following actual co-
horts. Cohort-based models fitted on repeated cross section data provide more reliable
estimates of ex post returns.

Accounting for uncertainty affects estimates of rates of return. Accounting for se-
quential revelation of information calls into question the validity of the internal rate
of return as a tool for policy analysis. An alternative approach to computing economic
rates of return that accounts for sequential revelation of information is proposed and the
evidence is summarized. We distinguish ex ante from ex post returns. New panel data
methods for estimating the uncertainty and psychic costs facing agents are reviewed. We
report recent evidence that demonstrates that there are large psychic costs of schooling.
This helps to explain why persons do not attend school even though the financial re-
wards for doing so are high. We present methods for computing distributions of returns
ex ante and ex post.

We review the literature on instrumental variable estimation. The link of the estimates
to the economics is not strong. The traditional instruments are weak, and this literature
has not produced decisive empirical estimates. We exposit new methods that interpret
the economic content of different instruments within a unified framework.

Keywords

rate of return to schooling, internal rate of return, uncertainty, psychic costs, panel
data, distribution

JEL classification: C31
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1. Introduction

Earnings functions are the most widely used empirical equations in labor economics and
the economics of education. Almost daily, new estimates of “rates of return” to school-
ing are reported, based on numerous instrumental variable and ordinary least squares
estimates. For many reasons, few of these estimates are true rates of return.

The internal rate of return to schooling was introduced as a central concept of human
capital theory by Becker (1964). It is widely sought after and rarely obtained. Under
certain conditions which we discuss in this chapter, high internal rates of return to ed-
ucation relative to those of other investment alternatives signal the relative profitability
of investment in education. Given the centrality of this parameter to economic policy
making and the recent interest in wage inequality and the structure of wages, there have
been surprisingly few estimates of the internal rate of return to education reported in
the literature and surprisingly few justifications of the numbers that are reported as rates
of return. The reported rates of return largely focus on the college—high school wage
differential and ignore the full ingredients required to obtain a rate of return. The re-
cent instrumental variable literature estimates various treatment effects which are only
loosely related to rates of return.

In common usage, the coefficient on schooling in a regression of log earnings on
years of schooling is often called a rate of return. In fact, it is a price of schooling from
a hedonic market wage equation. It is a growth rate of market earnings with years of
schooling and not an internal rate of return measure, except under stringent conditions
which we specify, test and reject in this chapter. The justification for interpreting the
coefficient on schooling as a rate of return derives from a model by Becker and Chiswick
(1966). It was popularized and estimated by Mincer (1974) and is now called the Mincer
model.!

This model is widely used as a vehicle for estimating “returns” to schooling quality,”
for measuring the impact of work experience on male—female wage gaps,> and as a
basis for economic studies of returns to education in developing countries.* It has been
estimated using data from a variety of countries and time periods. Recent studies in
growth economics use the Mincer model to analyze the relationship between growth
and average schooling levels across countries.

Using the same type of data and the same empirical conventions employed by Mincer
and many other scholars, we test the assumptions that justify interpreting the coefficient
on years of schooling as a rate of return. We exposit the Mincer model, showing con-
ditions under which the coefficient in a pricing equation (the “Mincer” coefficient) is

1 See, e.g., Psacharopoulos (1981), Psacharopoulos and Patrinos (2004) and Willis (1986) for extensive
surveys of Mincer returns.

2 See Behrman and Birdsall (1983) and Card and Krueger (1992).

3 See Mincer and Polachek (1974).

4 See Glewwe (2002).

5 See Bils and Klenow (2000).
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also a rate of return. These conditions are not supported in the data from the recent U.S.
labor market. We then go on to summarize other methods that use repeated cross section
and panel data to recover ex ante and ex post returns to schooling.

This chapter makes the following points:

(1) We test important predictions underlying the Mincer model using six waves of
U.S. Census data, 1940-1990.% We find, as does other recent literature, that Mincer’s
original model fails to capture central features of empirical earnings functions in recent
decades. The empirical analysis in this chapter is more comprehensive than previous
analyses and tests more features of the model, including its predictions about the lin-
earity of log earnings equations in schooling, parallelism in log earnings—experience
profiles, and U-shaped patterns for the variance of log earnings over the life cycle.

(2) In response to the evidence against the Mincer specification of the earnings func-
tion, we estimate more general earnings models, where the coefficient on schooling in
a log earnings equation is not interpretable as a rate of return. From the estimated earn-
ings functions, we compute marginal internal rates of return to education for black and
white men across different schooling levels and for different decades. Our estimates ac-
count for nonlinearities and nonseparabilities in earnings functions, taxes and tuition.
A comparison of these estimated returns with estimated Mincer coefficients shows that
both levels and trends in rates of return generated from the Mincer model are mislead-
ing. Caution must be used in applying the Mincer equation to modern economies to
estimate rates of return.

The estimated marginal rates of return are often implausible, calling into question the
empirical conventions followed by Mincer and the recent U.S. Census-based/Current
Population Survey-based literature reviewed by Katz and Autor (1999) that ignore en-
dogeneity of schooling, censoring and missing wages, uncertainty, sequential revelation
of information and psychic costs of schooling.

(3) We explore the importance of Mincer’s implicit stationarity assumptions, which
allowed him to use cross-section experience—earnings profiles as guides to the life cycle
earnings of persons. In recent time periods, life cycle earnings—education—experience
profiles differ across cohorts. Thus cross-sections are no longer useful guides to the life
cycle earnings or schooling returns of any particular individual. Accounting for the non-
stationarity of earnings over time has empirically important effects on estimated rates
of return to schooling. Since many economies have nonstationary earnings functions,
these lessons apply generally.

(4) Mincer implicitly assumes a world of perfect certainty about future earnings
streams. We first consider a model of uncertainty in a static economic environment
without updating of information, which can be fit on cross sections or repeated cross
sections. Accounting for uncertainty substantially reduces high estimated internal rates
of return to more plausible levels. These adjustments introduce ex ante and ex post dis-
tinctions into the analysis of the earnings functions, something missing in the Mincer
model, but essential to modern dynamic economics.

6 Mincer’s analysis focused on 1960 U.S. census data (earnings for 1959).
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(5) We next consider a dynamic model of schooling decisions with the sequential
resolution of uncertainty. Following developments in the recent literature, we allow
for the possibility that, with each additional year of schooling, information about the
value of different schooling choices and opportunities becomes available. This generates
an option value of schooling.” Completing high school generates the option to attend
college and attending college generates the option to complete college. Our findings
suggest that part of the economic return to finishing high school or attending college
includes the potential for completing college and securing the high rewards associated
with a college degree. Both sequential resolution of uncertainty and non-linearity in
returns to schooling can contribute to sizeable option values.®

Accounting for option values challenges the validity of the internal rate of return
as a guide to the optimality of schooling choices. The internal rate of return has been
a widely sought-after parameter in the economics of education since the analysis of
Becker (1964). When schooling decisions are made at the beginning of life, there is no
uncertainty and age-earnings streams across schooling levels cross only once. In this
case, the internal rate of return (IRR) can be compared with the interest rate to produce
a valid rule for making education decisions [Hirshleifer (1970)]. If the IRR exceeds the
interest rate, further investment in education is warranted. However, when schooling
decisions are made sequentially as information is revealed, a number of problems arise
that invalidate this rule. We examine the consequences of option values in determining
rates of return to schooling. Our analysis points to a need for more empirical studies
that incorporate the sequential nature of individual schooling decisions and uncertainty
about education costs and future earnings to help determine their importance. We report
evidence on estimated option values from the recent empirical literature using rich panel
data sources that enable analysts to answer questions that could not be answered with
the cross section data available to Mincer in the 1960s.

(6) We then consider models that control for unobserved heterogeneity and endogene-
ity of schooling in computing “the rate of return to schooling” starting with the Card
(1995, 1999) model and moving into the more recent analyses of Carneiro, Heckman
and Vytlacil (2005). These models focus on identifying the growth of earnings with
respect to schooling (the causal effect of schooling) and not internal rates of return. In
many papers, an instrument, rather than some well-posed question, defines the parame-
ter of interest. The models ignore the sequential resolution of uncertainty but account
for heterogeneity in responses to schooling where “returns” are potentially correlated
with schooling levels. This correlation is ignored in the Census/CPS-based literature on
“returns” to schooling. We review some new analytical results from the instrumental

7 Weisbrod (1962) developed the concept of the option value of schooling. For one formalization of his
analysis, see Comay, Melnik and Pollatschek (1973).

8 Schooling choices are made sequentially. Thus if the function relating the value of completing schooling
at each year of schooling is nonconcave, the return to one stage may be low but the return to the next stage
may be high, hence creating an option value at the stage with low terminal payoff. The earlier stage must be
completed to obtain the higher return arising at the later stage.
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variables literature that aid in interpreting reported “Mincer coefficients” (growth rates
of earnings in terms of years of schooling) within a willingness to pay framework. We
link the rate of return literature to the recent literature on treatment effects.

(7) The literature on the returns to schooling focuses on certain mean parameters.
Yet the original Mincer (1974) model entertained the possibility that returns varied in
the population. Chiswick (1974) and Chiswick and Mincer (1972) estimate variation in
rates of return as a contributing factor to overall income inequality. We survey recent
developments in the literature that use rich panel data to estimate distributions of the
response of earnings to schooling using the modern theory of econometric counterfac-
tuals. They reveal substantial variability in ex post returns to schooling.

(8) Finally, we review research from a very recent literature that decomposes variabil-
ity in returns to schooling into components that are not forecastable by agents at the time
they make their schooling decisions (uncertainty) and components that are predictable
(heterogeneity). Both predictable and unpredictable components of ex post returns are
found to be sizeable in most recent studies. This analysis highlights the distinction be-
tween ex ante and ex post returns to schooling and the importance of accounting for
uncertainty in the analysis of schooling decisions. This literature also identifies psychic
costs of schooling, which are estimated to be substantial. Conventional rate of return
calculations assume that they are negligible. These components help to explain why
many people who might benefit financially from additional schooling do not take it up.

In this chapter, we use the Mincer model as a point of departure because it is so influ-
ential. Mincer’s model was developed to explain cross sections of earnings. While the
model is no longer a valid guide for accurately estimating rates of return to schooling,
the Mincer vision of using economics to explain earnings data remains valid.

This chapter proceeds in the following way. Section 2 reviews two distinct theo-
retical arguments for using the Mincer regression model to estimate rates of return.
They are algebraically similar but their economic content is very different. Section 3
presents empirical evidence on the validity of the widely used Mincer specification. Us-
ing nonparametric estimation techniques, we formally test and reject key predictions of
Mincer’s model, while others survive. The predictions that are rejected call into ques-
tion the practice of interpreting the Mincer coefficient as a rate of return. Section 4
extracts internal rates of return from nonparametric estimates of earnings functions fit
on cross sections. We show the effects on estimated rates of return of accounting for
income taxes, college tuition and psychic costs, and length of working life that depends
on the amount of schooling. We also consider how accounting for uncertainty affects
estimated marginal internal rates of return.

Section 5 introduces a dynamic framework for educational choices with sequential
resolution of uncertainty, which produces an option value for schooling. We discuss
why in such an economic environment the internal rate of return is no longer a valid
guide for evaluating schooling investments. A more general measure of the rate of return
used in modern capital theory is more appropriate. Section 6 considers the interpretation
of Mincer regression estimates based on cross-section data in a changing economy. We
contrast cross-sectional estimates with those based on repeated cross-sections drawn
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from the CPS that follow cohorts over time. Mincer’s assumption that cross sections of
earnings are accurate guides to the life cycles of different cohorts is not valid in recent
years when U.S. labor markets have been changing.

Section 7 discusses the recent literature on the consequences of endogeneity of
schooling for estimating growth rates of earnings with schooling. We describe Card’s
(1999) version of Becker’s Woytinsky Lecture (1967) and some simple instrumental
variables (IV) estimators of the mean growth rate of earnings with schooling. Section 8
discusses the modern theory of instrumental variable estimation and interprets what IV
estimates in the general case where growth rates of schooling are heterogeneous and
potentially correlated with schooling levels. We consider what economic questions IV
answers. The modern IV literature defines the parameter of interest by an instrument,
rather than an economic question, and produces estimates of “rates of return” that have
little to do with true rates of return.

Section 9 surveys a recent literature that estimates distributions of ex post returns.
Section 10 decomposes the distributions of returns and growth rates of earnings with
schooling into ex ante and ex post components and presents option values for schooling
as well as estimates of the psychic costs of schooling. Our analysis links the classical lit-
erature on rates of return to the modern literature on counterfactual analysis. Section 11
concludes.

2. The theoretical foundations of Mincer’s earnings regression

The most widely used specification of empirical earnings equations and the point of
departure for our analysis is the Mincer equation:

ln[Y(s, x)] = o+ p55 + Pox + ﬂ1x2 + ¢, (D

where Y (s, x) is the wage or earnings at schooling level s and work experience x, o5 is
the “rate of return to schooling” (assumed to be the same for all schooling levels) and &
is a mean zero residual with E (g|s, x) = 0.° This regression model is motivated by two
conceptually different frameworks used by Mincer (1958, 1974). While algebraically
similar, their economic content is very different. In Section 3, we formally test and reject
predictions of these models on the type of Census data originally used by Mincer. In
Section 4, we implement a more general nonparametric approach to estimating internal
rates of return that does not require an explicit model specification.

2.1. The compensating differences model

The original Mincer model (1958) uses the principle of compensating differences to
explain why persons with different levels of schooling receive different earnings over

9 Psacharopoulos (1981) and Psacharopoulos and Patrinos (2004) provide surveys of an enormous Mincer-
based earnings literature.
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their lifetimes. Individuals have identical abilities and opportunities, credit markets are
perfect, the environment is perfectly certain, but occupations differ in the amount of
schooling required. Individuals forego earnings while in school, but incur no direct
costs. Because individuals are ex ante identical, they require a compensating wage
differential to work in occupations that require a longer schooling period. The com-
pensating differential is determined by equating the present value of earnings streams
net of costs associated with different levels of investment. This framework implicitly
ignores uncertainty about future earnings as well as nonpecuniary costs and benefits of
school and work, which Section 10 shows are important determinants of the return to
schooling and its distribution.

Let Y (s) represent the annual earnings of an individual with s years of education,
assumed to be constant over his lifetime. Let » be an externally determined interest rate
and T the length of working life, assumed not to depend on s. The present value of
earnings associated with schooling level s is

T
Y -
V(s) = Y(s)/ e "dt = ﬁ(e_” - e_’T).
s r
Equilibrium across heterogeneous schooling levels requires that individuals be indif-
ferent between schooling choices, with allocations being driven by demand conditions.

Equating earnings streams across schooling levels and taking logs yields
InY(s) =Y +rs+In((1 —e7)/(1 —e"T7)).

The final term on the right-hand side is an adjustment for finite life, which vanishes as
T gets large.!”

This model implies that people with more education receive higher earnings. When
T is large, the percentage increase in lifetime earnings associated with an additional
year of school, ps, must equal the interest rate, r. Because the internal rate of return to
schooling represents the discount rate that equates lifetime earnings streams for different
education choices, it will also equal the interest rate in this model. Therefore, p; in
Equation (1) yields an estimate of the internal rate of return, and when p; = r, the
education market is in equilibrium. If p; > r, there is underinvestment in education.

2.2. The accounting-identity model

The model used by Mincer (1974), and now widely applied, is motivated differently
from the compensating differences model, but yields an algebraically similar empirical
specification of the earnings equation. It is much less clearly tied to an underlying opti-
mizing model, although some of the assumptions are motivated by the dynamic human
capital investment model of Ben-Porath (1967). Mincer’s accounting identity model

10° This term also disappears if the retirement age, 7, is allowed to increase one-for-one with s (i.e., aggs) =

1), so post-school working life is the same for persons of all schooling levels.
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emphasizes life cycle dynamics of earnings and the relationship between observed earn-
ings, potential earnings, and human capital investment, for both formal schooling and
on-the-job investment. Persons are ex ante heterogeneous, so the compensating dif-
ferences motivation of the first model is absent. p; varies in the population to reflect
heterogeneity in returns.'!

Let P; be potential earnings at age ¢, and express costs of investments in training C;
as a fraction k; of potential earnings, C; = k; P;. Let p; be the average return to training
investments made at age 7. Potential earnings at  are

t—1

Pi=Pi(l+kip) = [ [+ pjkj) Po.
j=0

Formal schooling is defined as years spent in full-time investment (k; = 1), which is
assumed to take place at the beginning of life and to yield a rate of return p; that is
constant across all years of schooling. Assuming that the rate of return to post-school
investment is constant over ages and equals pg, we can write

t—1
In P, =InPy+sin(l+p) + »_In(l + pok;)
Jj=s
t—1

~ In Py + sps +p02kj,

j=s

where the last approximation is obtained for “small” ps and pp.

Mincer approximates the Ben-Porath (1967) model by assuming a linearly declining
rate of post-school investment: kg, = k(1 — %) where x =t — 5 > 0 is the amount of
work experience as of age ¢. The length of working life, 7', is assumed to be indepen-
dent of years of schooling. Under these assumptions, the relationship between potential
earnings, schooling and experience is given by

_ K2
2T

Observed earnings are potential earnings less investment costs, producing the relation-
ship for observed earnings known as the Mincer equation,

POK
In Pyys = In Py + sps + <,00/< + ﬁ>x

Y (s, x) ~ In Pyyy — K<1 - %)

POK | K POK 5
—[InPy — , AT IR it
[In Py K]+p“s+(pOK+ZT+T>x 7"

1" Chiswick and Mincer (1972) explicitly analyze income inequality with this model. We discuss earnings
distributions and distributions of rates of return in Section 10.
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This expression is Equation (1) without an error term. Log earnings are linear in years
of schooling, and linear and quadratic in years of labor market experience. Parameter
ps 18 an average rate of return across all schooling investments and not, in general, an
internal rate of return or a marginal return that is appropriate for evaluating the opti-
mality of educational investments. In many studies [see, e.g., Psacharopoulos (1981),
Psacharopoulos and Patrinos (2004)], estimates of p, are simply referred to as “rates
of return” without any justification for doing so. In this formulation, py is the ex post
average growth rate of earnings with schooling. It communicates how much average
earnings increase with schooling, but it is not informative on the optimality of educa-
tional investments which requires knowledge of the ex ante marginal rate of return.

In most applications of the Mincer model, it is assumed that the intercept and slope
coefficients in Equation (1) are identical across persons. This implicitly assumes that Py,
k, po and ps are the same across persons and do not depend on the schooling level.
However, Mincer formulates a more general model that allows for the possibility that «
and p; differ across persons, which produces a random coefficient model,

InY(si, x;) = &; + psisi + Boixi + Brix?.

Letting @ = E(;), ps = E(psi), Bo = EBoi), B = E(B1i), we may write this
expression, dropping individual subscript “i” as

InY (s, x) =&+ pgs + Pox + ,3_1x2
+ [(@ =@ + (o5 = fs)s + (Bo — Bo)x + (B1 — B)x?],

where the terms in brackets are part of the error.'> Mincer originally assumed that
(¢ — ), (ps — ps), (Bo — 50), B1 — 51) are independent of (s, x); although he relaxes
this assumption in later work [Mincer (1997)]. Allowing for correlation between p; and
s motivates an entire instrumental variables literature which we survey in Sections 7
and 8.

Implications for log earnings—age and log earnings—experience profiles and for the
interpersonal distribution of life-cycle earnings

Both Mincer models predict that log earnings are linear in years of schooling although
the two models have very different economic content. We test and reject this prediction
on widely used Census and CPS data. Assuming that post-school investment patterns
are identical across persons and do not depend on the schooling level, the accounting
identity model also predicts that
(i) log-earnings experience profiles are parallel across schooling levels (
=0),

dInY(s,x)
ds0x

and

12 In the random coefficients model, the error term of the derived regression equation is heteroskedastic.
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(ii) log-earnings age profiles diverge with age across schooling levels (% =

2> 0).

In Section 3, we extend Mincer’s original empirical analysis of white males from the
1960 Census to white and black males from the 1940-1990 Censuses. The data from
the 1940-1950 Censuses provide some empirical support for predictions (i) and (ii).
The 1960 and 1970 data are roughly consistent with the model; prediction (i) does not
pass conventional statistical tests for whites, although they pass an “eyeball” test.!3
Data from the more recent Census years (1980-1990) are much less supportive of these
predictions of the model, due in large part to the nonstationarity of recent labor markets.

Another implication of Mincer’s model is that for each schooling class, there is an age
in the life cycle at which the interpersonal variance in earnings is minimized. Consider
the accounting identity for observed earnings in levels at experience x and schooling s,
which we can write as

s+x—1
Y(s,x) = Py + ps Z Cj — Cyqy.

j=s

This says that earnings at schooling level s equals initial endowment from schooling
plus the return on past investments less the cost of current investment at age s + x or
experience class x.

In logs,
x—1
InY(s, x) ~ In Ps + ps st—i-j — kstx-
j=0

Interpersonal differences in observed log earnings of individuals with the same Py and
ps arise because of differences in In Py and in post-school investment patterns as de-
termined by k;. When In Py and « or the kyy; are uncorrelated, the variance of log
earnings reaches a minimum when experience is approximately equal to 1/0p. (See the
derivation in Appendix A.) At this experience level, variance in earnings is solely a con-
sequence of differences in schooling levels or ability and is unrelated to differences in
post-school investment behavior. Prior to and after this time period (often referred to
as the ‘overtaking age’), there is an additional source of variance due to differences in
post-school investment. Thus, the model predicts
(iii) the variance of earnings over the life cycle has a U-shaped pattern.

We show that this prediction of the model is supported in Census data from both early
and recent decades.'*

13 Mincer (1974) provided informal empirical support for the implications using 1960 Census data.
14 In addition to Mincer (1974), studies by Schultz (1975), Smith and Welch (1979), Hause (1980), and
Dooley and Gottschalk (1984) also provide evidence of this pattern for wages and earnings.
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3. Empirical evidence on the Mincer model

We now examine the empirical support for three key implications of Mincer’s account-
ing identity model given above by (i), (ii), and (iii) using data on white and black males
from the 1940-1990 decennial Censuses. Mincer conducted his original studies on Cen-
sus and CPS data. Earnings correspond to annual earnings, which includes both wage
and salary income and business income. '’

Figures 1a and 1b present nonparametric estimates of the experience — log earnings
profiles for each of the Census years for white and black males. Nonparametric esti-
mates of the age — log earnings profiles are shown for 1940, 1960 and 1980 in Figure 2.
These estimates are based on a synthetic cohort assumption: that the cross-section is a
guide to the life cycle of individuals. We question the validity of this assumption as a
characterization of the recent U.S. labor market in Section 6.

Nonparametric local linear regression is used to generate the estimates.'® The es-
timated profiles for white males from the 1940-1970 Censuses generally support the
hypothesis of the fanning-out by age and the parallelism by experience patterns (impli-
cations (i) and (ii) above) predicted by the accounting identity model. For black males,
the patterns are less clear, partly due to the much smaller sample sizes which result in
less precise estimates. For 1960 and 1970, when the sample sizes of black males are
much larger relative to earlier years, experience — log earnings profiles for black males
show convergence across education levels over the life cycle.

Log earnings—experience profiles for the 1980-1990 Censuses show convergence for
both white and black males. Thus, while data from the 1940-1950 Censuses provide
support for implications (i) and (ii) of Mincer’s model, the evidence for implication (i)
is weaker for 1960 and 1970. The data from 1980 and 1990 do not support the model.!”
Formal statistical tests, reported in Table 1, reject the hypothesis of parallel experience —
log earnings profiles for whites during all years except 1940 and 1950. Thus, even in the
1960 data used by Mincer, we reject parallelism, although it appears roughly consistent
with the data. For black males, parallelism is only rejected in 1980 and 1990, although
the samples are much smaller.'8

We also formally test the hypothesis that log earnings are linear in education and
quadratic in experience against an alternative that allows the coefficient on education
to differ across schooling levels. The hypothesis of linearity is rejected for all Census
years and for both blacks and whites (p-values < .001).1°

15 Business income is not available in the 1940 Census. Appendix B provides detailed information on the
construction of our data subsamples and variables.

16 Details about the nonparametric estimation procedure are given in Appendix C. The bandwidth parameter
is equal to 5 years. Estimates are not very sensitive to changes in the bandwidth parameter in the range of
3-10 years.

17 Murphy and Welch (1992) also document differences in earnings—experience profiles across education
levels using data from the 1964—1990 Current Population Surveys.

18 The formulae for the test statistics are given in Appendix C.

19 1t is also rejected for nonparametric specifications of the experience term. These results are available on
request from the authors.
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Table 1
Tests of parallelism in log earnings experience profiles for men

Sample Experience Estimated difference between college and high school log earnings at

level different experience levels
1940 1950 1960 1970 1980 1990

Whites 10 0.54 0.30 0.46 0.41 0.37 0.59
20 0.40 0.40 0.43 0.49 0.45 0.54
30 0.54 0.27 0.46 0.48 0.43 0.52
40 0.58 0.21 0.50 0.45 0.27 0.30
p-value 0.32 0.70 <0.001 <0.001 <0.001 <0.001

Blacks 10 0.20 0.58 0.48 0.38 0.70 0.77
20 0.38 0.05 0.25 0.22 0.48 0.69
30 —0.11 0.24 0.08 0.33 0.36 0.53
40 —0.20 0.00 0.73 0.26 0.22 —0.04
p-value 0.46 0.55 0.58 0.91 <0.001 <0.001

Notes: Data taken from 1940-90 Decennial Censuses without adjustment for inflation. Because there are very
few blacks in the 1940 and 1950 samples with college degrees, especially at higher experience levels, the test
results for blacks in those years refer to a test of the difference between earnings for high school graduates
and persons with 8 years of education. See Appendix B for data description. See Appendix C for the formulae
used for the test statistics.

Figure 3 examines the support for implication (iii) — a U-shaped variance in earnings —
for three different schooling completion levels: eighth grade, twelfth grade, and college
(16 years of school). For the 1940 Census year, the variance of log-earnings over the
life cycle is relatively flat for whites. It is similarly flat in 1950, with the exception of
increasing variance at the tails. However, data for black and white men from the 1960-
1990 Censuses clearly exhibit the U-shaped pattern predicted by Mincer’s accounting-
identity model. The evidence in support of predictions (ii) and (iii) gives analysts greater
confidence in using the Mincer model to study earnings functions and rates of return to
schooling, while failure of prediction (i) in recent decades raises a note of caution.?”
A major limitation of cross sectional analyses of variances is that they are silent about
which components are predictable by the agent and which components represent true
uncertainty, which is important in assessing the determinants of schooling decisions.
We discuss this issue in Section 10.

Table 2 reports standard cross-section regression estimates of the Mincer return to
schooling for all Census years derived from earnings specification (1). The estimates
indicate an ex post average rate of return to schooling of around 10-13% for white men
and 9-15% for black men over the 1940-1990 period. While estimated coefficients on
schooling tend to be lower for blacks than whites in the early decades, they are higher

20 The U-shaped profile of the variance of earnings argues against the Rutherford (1955) model of earnings
as revived by Atkeson and Lucas (1992).
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Table 2
Estimated coefficients from Mincer log earnings regression for men

Whites Blacks
Coefficient Std. Error Coefficient Std. Error
1940 Intercept 44771 0.0096 4.6711 0.0298
Education 0.1250 0.0007 0.0871 0.0022
Experience 0.0904 0.0005 0.0646 0.0018
Experience-squared —0.0013 0.0000 —0.0009 0.0000
1950 Intercept 5.3120 0.0132 5.0716 0.0409
Education 0.1058 0.0009 0.0998 0.0030
Experience 0.1074 0.0006 0.0933 0.0023
Experience-squared —0.0017 0.0000 —0.0014 0.0000
1960 Intercept 5.6478 0.0066 5.4107 0.0220
Education 0.1152 0.0005 0.1034 0.0016
Experience 0.1156 0.0003 0.1035 0.0011
Experience-squared —0.0018 0.0000 —0.0016 0.0000
1970 Intercept 5.9113 0.0045 5.8938 0.0155
Education 0.1179 0.0003 0.1100 0.0012
Experience 0.1323 0.0002 0.1074 0.0007
Experience-squared —0.0022 0.0000 —0.0016 0.0000
1980 Intercept 6.8913 0.0030 6.4448 0.0120
Education 0.1023 0.0002 0.1176 0.0009
Experience 0.1255 0.0001 0.1075 0.0005
Experience-squared —0.0022 0.0000 —0.0016 0.0000
1990 Intercept 6.8912 0.0034 6.3474 0.0144
Education 0.1292 0.0002 0.1524 0.0011
Experience 0.1301 0.0001 0.1109 0.0006
Experience-squared —0.0023 0.0000 —0.0017 0.0000

Notes: Data taken from 1940-90 Decennial Censuses. See Appendix B for data description.

in 1980 and 1990. The estimates suggest that the rate of return to schooling for blacks
increased substantially over the 50 year period, while it first declined and then rose
for whites. The coefficient on experience rose for both whites and blacks over the five
decades.

The economic content of these numbers is far from clear. What does a high “rate of
return” — really a high growth rate of earnings with schooling — mean? The clearest
interpretation is as a marginal price of schooling in the labor market and not as an
internal rate of return. We next show how to use empirical earnings functions to estimate
marginal internal rates of return.
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4. Estimating internal rates of return

Given the evidence against the validity of the Mincer earnings specification presented in
Section 3 and in recent studies of the changing wage structure [e.g., Murphy and Welch
(1990), Katz and Murphy (1992), Katz and Autor (1999)], it is fruitful to develop an
alternative approach to estimating marginal internal rates of return without imposing
the Mincer specification on the data. Using a simple income maximizing framework
under perfect certainty of the sort developed in Rosen (1977) and Willis (1986), this
section first presents estimates of the internal rate of return based on progressively more
general formulations of the earnings function. We then relax the assumption of perfect
certainty in Section 4.2 below, as well as in Section 5 and Section 10.

We initially assume that individuals choose education levels to maximize the present
value of their lifetime earnings. They take as given a post-school earnings profile, which
may be determined through on-the-job investment as in the previous accounting-identity
model. The model estimated in this section relaxes many of the conditions of the models
in Section 2, such as the restriction that log earnings increase linearly with schooling
and the restriction that log earnings—experience profiles are parallel across schooling
classes.

To estimate marginal internal rates of return, which we refer to as internal rates of
return in this section, analysts must account for direct costs, including both monetary
and psychic costs as well as indirect costs. They must also account for income taxes and
length of working life that may depend on the schooling level. With these additional
considerations, the coefficient on schooling in a log earnings equation need no longer
equal the real interest rate (the rate of return on capital), and it loses its interpretation as
the internal rate of return to schooling. However, the internal rate of return can still be
estimated using an alternative direct solution method, as we discuss below.2!

Let Y (s, x) be wage income at experience level x for schooling level s; T (s), the
last age of earnings, which may depend on the schooling level; v, private tuition and
nonpecuniary costs of schooling; 7, a proportional income tax rate; and r, the before-tax
interest rate.?? Individuals are assumed to choose s to maximize the present discounted
value of lifetime earnings,23

T(s)—s s
V(s) = f (1—7)e 17y (s, x) dx — / ve (7 dg, )
0 0

21 To estimate social rates of return, we need to account for the social opportunity costs of funds and full
social returns including crime reduction. On the last point, see Lochner and Moretti (2004).

22 The standard framework implicitly assumes that individuals know these functional relationships, credit
markets are perfect, education does not enter preferences, and there is no uncertainty.

23 This expression embodies an institutional feature of the U.S. economy where income from all sources is
taxed but one cannot write off tuition and nonpecuniary costs of education. However, we assume that agents
can write off interest on their loans. This assumption is consistent with the institutional feature that persons
can deduct mortgage interest, that 70% of American families own their own homes, and that mortgage loans
can be used to finance college education. The expressions based on (2) can easily be modified to account for
other tax treatments of tuition.
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The first-order condition for a maximum yields
[T(s) — 1]e” =Ty (5, T(s) — 5)

T(s)—s
—(1- r)r/ e~ U=y (s, x) dx
0

T(s)—s
+/ ef(lfr)rxw dx —v/(1 — 1) =0. A3)
0 N

Defining ¥ = (1 — t)r (the after-tax interest rate) and re-arranging terms yields

[T'(s) — 1]1e TTO=9)y (5, T(s) — s)

7=
fOT(S)_S e ™Y (s, x)dx
(Term 1)
fOT(s)—s effx[aloga}’s(s,x)]Y(s’ x) dx U/(l . ‘E)
+ T(s)—s __jx T T()-s —Fx ' @
fO e ™Y (s, x)dx fo e ™Y (s, x)dx
(Term 2) (Term 3)

Term 1 represents a life-earnings effect — the change in the present value of earnings
due to a change in working-life associated with additional schooling (expressed as a
fraction of the present value of earnings measured at age s). Term 2 is the weighted
average effect of schooling on log earnings by experience, and Term 3 is the cost of
tuition and psychic costs expressed as a fraction of lifetime income measured at age s.

The special case assumed by Mincer and many other economists writes v = 0 (i.e.,
no tuition or psychic costs). The traditional assumption is that tuition costs are a small
(and negligible) component of total earnings or that earnings in college offset tuition.
In light of the substantial estimates of psychic costs presented in Carneiro, Hansen and
Heckman (2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman
(20064, 2006b), the assumption that v = 0 is very strong even if tuition costs are a
small component of the present value of income. We discuss this evidence in Section 10.
Accounting for psychic costs lowers the internal rate of return.

Consider the additional commonly invoked assumption that 7’(s) = 1 (i.e., no loss
of work life from schooling). These assumptions simplify the first-order condition to

T(s)—s  _ T(s)=s _ gy
f/ e Y (s, x)dx = / e ™ ¥(s, x) dx.
0 0 as

As noted in Section 2, Mincer’s model implies multiplicative separability between the
schooling and experience components of earnings, so Y (s, x) = u(s)e(x) (i.e., log
earnings profiles are parallel in experience across schooling levels). In this special case,
F = u'(s)/u(s). If this holds for all s, then wage growth must be log linear in schooling
and p(s) = w(0)e”*, where pg = r. If all of these assumptions hold, then the coef-
ficient on schooling in a Mincer equation (py) estimates the internal rate of return to
schooling, which should equal the after-tax interest rate.
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From Equation (4) we observe, more generally, that the difference between after-tax
interest rates (and the marginal internal rate of return) and the Mincer coefficient can be
decomposed into three parts: a life-earnings part (Term 1), a second part which depends
on the structure of the schooling return over the life cycle, and a tuition and psychic
cost part (Term 3). Term 2 is averaged over all experience levels. Under multiplica-
tive separability, it is the Mincer rate of return estimated from Equation (1). In general
nonseparable models, it is not the Mincer coefficient.

The evidence for 1980 and 1990 presented in Section 3 and in the recent literature
argues strongly against the assumption of multiplicative separability of log earnings
in schooling and experience. In recent decades, cross section log earnings—experience
profiles are not parallel across schooling groups. In addition, college tuition costs are
nontrivial and are not offset by work in school for most college students. These factors
account for some of the observed disparities between the after-tax interest rate and the
steady-state Mincer coefficient.

One can view 7 as a marginal internal rate of return to schooling after incorporating
tuition costs, earnings increases, and changes in the retirement age. That is, 7 is the
discount rate that equates the net lifetime earnings for marginally different schooling
levels at an optimum. As in the model of Mincer (1958), this internal rate of return
should equal the interest rate in a world with perfect credit markets, once all costs and
benefits from schooling are considered.

After allowing for taxes, tuition, variable length of working life, and a flexible rela-
tionship between earnings, schooling and experience, the coefficient on years of school-
ing in a log earnings regression need no longer equal the internal rate of return. However,
it is still possible to calculate the internal rate of return using the observation that it is the
discount rate that equates lifetime earnings streams for two different schooling levels.2*
Typically, internal rates of return are based on nonmarginal differences in schooling. In-
corporating tuition (and psychic costs) and taxes, the internal rate of return for schooling
level s1 versus s, r7(s1, $2), solves (suppressing the argument of r;(s1, 52))

T (s1)—s1 S1
/ (1—-1)e Y (s1,x)dx — / ve "1%dz
0 0

T (s2)—s2 52
:/ (1—r)e_”Y(sz,x)dx—/ ve "%dz. (5)
0 0

As with 7 above, r; will equal the Mincer coefficient on schooling under the as-
sumptions of parallelism in experience across schooling categories (i.e., Y (s, x) =
w(s)@(x)), linearity of log earnings in schooling (u(s) = ©(0)e*), no tuition and
psychic costs (v = 0), no taxes (tr = 0), and equal work-lives irrespective of years of
schooling (T'(s) = 1).% In the next section, we compare rate of return estimates based
on specification (1) to those obtained by directly solving for r; in Equation (5).

24 Becker (1964) states this logic and Hanoch (1967) applies it.
25 When tuition and psychic costs are negligible, proportional taxes on earnings will have no effect on esti-
mated internal rates of return, because they reduce earnings at the same rate regardless of educational choices.
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4.1. How alternative specifications of the Mincer equation and accounting for taxes
and tuition affect estimates of the internal rate of return (IRR)

Using data for white and black men from 1940-1990 decennial Censuses, we examine
how estimates of the internal rate of return change when different assumptions about the
model are relaxed. Tables 3a and 3b report internal rates of return to schooling for each
Census year and for a variety of pairwise schooling level comparisons for white and
black men, respectively.?® These estimates assume that workers spend 47 years working
irrespective of their educational choice (i.e., a high school graduate works until age 65
and a college graduate until 69). To calculate each of the IRR estimates, we first estimate
a log wage equation under the assumptions indicated in the tables. Then, we predict
earnings under this specification for the first 47 years of experience, and the IRR is taken
to be the root of Equation (5).27 As a benchmark, the first row for each year reports the
IRR estimate obtained from the Mincer specification for log wages (Equation (1)). The
IRR could equivalently be obtained from a Mincer regression coefficient.?®

Relative to the Mincer specification, row 2 relaxes the assumption of linearity in
schooling by including indicator variables for each year of schooling. This modification
alone leads to substantial differences in the estimated rate of return to schooling, espe-
cially for schooling levels associated with degree completion years (12 and 16) which
have much larger returns than other schooling years. For example, the IRR to finish-
ing high school is 30% for white men in 1970, while the rate of return to finishing 10
rather than 8 years of school is only 3%. In general, imposing linearity in schooling
leads to upward biased estimates of the rate of return to grades that do not produce
a degree, while it leads to downward biased estimates of the degree completion years
(high school or college). Sheepskin effects are an important feature of the data.2 There
is a considerable body of evidence against linearity of log earnings in schooling. [See,
e.g., Heckman, Layne-Farrar and Todd (1996), Jaeger and Page (1996), Hungerford and
Solon (1987).] Row 3 relaxes both linearity in schooling and the quadratic specifica-
tion for experience, which produces similar estimates. The assumption that earnings
are quadratic in experience is empirically innocuous for estimating returns to schooling
once linearity in years of schooling is relaxed.

Finally, row 4 relaxes all three Mincer functional form assumptions. Earnings func-
tions are nonparametrically estimated as a function of experience, separately within

26 As lower schooling levels are reported only in broader intervals in the 1990 Census, we can only compare
6 years against 10 years and cannot compare 6 years against 8 years or 8 against 10 years as we do for the
earlier Census years. We assume the private cost to elementary and high school is zero in all the calculations.
27 Strictly speaking, we solve for the root of the discrete time analog of Equation (5).

28 They would be identical if our internal rate of return calculations were computed in continuous time.
Because we use discrete time to calculate internal rates of return, r; = e”s — 1, which is approximately equal
to ps when it is small.

29 We use the term “sheepskin effects” to refer to exceptionally large rates of return at degree granting years
of schooling. We cannot, however, distinguish in some years of the Census data which individuals receive a
diploma among individuals reporting 12 or 16 years of completed schooling.
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Table 3a
Internal rates of return for white men: earnings function assumptions (specifications assume work lives of
47 years)

Schooling comparisons
6-8 8-10 10-12 12-14 12-16 14-16

1940
Mincer specification 13 13 13 13 13 13
Relax linearity in S 16 14 15 10 15 21
Relax linearity in S & quad. in exp. 16 14 17 10 15 20
Relax lin. in S & parallelism 12 14 24 11 18 26
1950
Mincer specification 11 11 11 11 11 11
Relax linearity in S 13 13 18 0 8 16
Relax linearity in S & quad. in exp. 14 12 16 3 8 14
Relax linearity in S & parallelism 26 28 28 3 8 19
1960
Mincer specification 12 12 12 12 12 12
Relax linearity in S 9 7 22 6 13 21
Relax linearity in S & quad. in exp. 10 9 17 8 12 17
Relax linearity in S & parallelism 23 29 33 7 13 25
1970
Mincer specification 13 13 13 13 13 13
Relax linearity in S 2 3 30 6 13 20
Relax linearity in S & quad. in exp. 5 7 20 10 13 17
Relax linearity in S & parallelism 17 29 33 7 13 24
1980
Mincer specification 11 11 11 11 11 11
Relax linearity in S 3 —11 36 5 11 18
Relax linearity in S & quad. in exp. 4 —4 28 6 11 16
Relax linearity in S & parallelism 16 66 45 5 11 21
1990
Mincer specification 14 14 14 14 14 14
Relax linearity in S —7 -7 39 7 15 24
Relax linearity in S & quad. in exp. -3 -3 30 10 15 20
Relax linearity in S & parallelism 20 20 50 10 16 26

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8 vs. 10 cannot
be made given data restrictions. Therefore, those columns report calculations based on a comparison of 6 and
10 years of schooling. See Appendix B for data description.

each schooling class as shown in Figure 1. This procedure does not impose any assump-
tion other than continuity on the earnings—experience relationship. Comparing these
results with those of row three provides a measure of the bias induced by assuming sep-
arability of earnings in schooling and experience. In many cases, especially in recent
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Table 3b
Internal rates of return for black men: earnings function assumptions (specifications assume work lives of
47 years)

Schooling comparisons
6-8 8-10 10-12 12-14 12-16 14-16

1940
Mincer specification 9 9 9 9 9 9
Relax linearity in S 18 7 5 3 11 18
Relax linearity in S & quad. in exp. 18 8 6 2 10 19
Relax linearity in S & parallelism 11 0 10 5 12 20
1950
Mincer specification 10 10 10 10 10 10
Relax linearity in S 16 14 18 -2 4 9
Relax linearity in S & quad. in exp. 16 14 18 0 3 6
Relax linearity in S & parallelism 35 15 48 -3 6 34
1960
Mincer specification 11 11 11 11 11 11
Relax linearity in S 13 12 18 5 8 11
Relax linearity in S & quad. in exp. 13 11 18 5 7 10
Relax linearity in S & parallelism 22 15 38 5 11 25
1970
Mincer specification 12 12 12 12 12 12
Relax linearity in S 5 11 30 7 10 14
Relax linearity in S & quad. in exp. 6 11 24 10 11 12
Relax linearity in S & parallelism 15 27 44 9 14 23
1980
Mincer specification 12 12 12 12 12 12
Relax linearity in S —4 1 35 10 15 19
Relax linearity in S & quad. in exp. —4 6 29 11 14 17
Relax linearity in S & parallelism 10 44 48 8 16 31
1990
Mincer specification 16 16 16 16 16 16
Relax linearity in S =5 =5 41 15 20 25
Relax linearity in S & quad. in exp. -3 -3 35 17 19 22
Relax linearity in S & parallelism 16 16 58 18 25 35

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8 vs. 10 cannot
be made given data restrictions. Therefore, those columns report calculations based on a comparison of 6 and
10 years of schooling. See Appendix B for data description.

decades, there are large differences. This finding is consistent with the results reported
in Section 3, which show that earnings profiles in recent decades are no longer parallel
in experience across schooling categories.



Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 333

The general estimates in Tables 3a and b show a large increase in the return to com-
pleting high school for whites (Table 3a), which goes from 24% in 1940 to 50% in 1990,
and even more dramatic increases for blacks (Table 3b). The estimates for 1990 seem
implausible but are the rates of return that are implicit in recent Census- and CPS-based
estimates. It is possible that these increases in rates of return over time partially reflect a
selection effect, stemming from a decrease in the average quality of workers over time
who drop out of high school. Given the limitations of Census and CPS data, we do not
correct for censoring or selection bias in our analysis of these data.3? Sections 7 and 8
consider estimation when schooling choices are endogenous.

Since 1950, there has been a sizeable increase over time in the marginal internal
rate of return to attending and completing college, consistent with changes in demand
favoring highly skilled workers. For most grade comparisons and years, the Mincer co-
efficient implies a lower return to schooling than do the nonparametric estimates, with
an especially large disparity for the return to high school completion. For whites, the
return to a 4-year college degree is similar under the Mincer and nonparametric mod-
els, but for blacks the Mincer coefficient substantially understates the return in recent
decades. While the recent literature has focused on rising returns to college relative to
high school, the increase in returns to completing high school appears to have been
substantially greater.

A comparison of the IRR estimates based on the most flexible model for black males
and white males shows that for all years except 1940, the return to high school com-
pletion is higher for black males, reaching a peak of 58% in 1990 (compared with 50%
for whites in 1990). The internal rate of return to completing 16 years is also higher for
blacks in most years (by about 10% in 1990).

Estimated internal rates of return differ depending on the set of assumptions imposed
by the earnings model. Murphy and Welch (1990) note that allowing for quartic terms
in experience is empirically important for fitting the earnings equation (the hedonic
pricing equation), but do not report any effects of relaxing the quadratic-in-experience
assumption on estimated marginal rates of return to schooling. We find that imposing the
quadratic-in-experience assumption is fairly innocuous for computing rates of return.
The assumptions of linearity in schooling and separability in schooling and experience
are not. Comparing the unrestricted estimates in row 4 with the Mincer-based estimates
in row 1 reveals substantial differences for nearly all grade progressions and all years.
If imposing linearity and separability is innocuous, relaxing these conditions should not
have such a dramatic effect on estimates of rates of return.

30 Though, it is worth noting that the fraction of white men completing high school as measured by the Census
is relatively stable after 1970. Among black men, high school graduation rates continued to increase until the
early 1980s. Heckman, Lyons and Todd (2000), Chandra (2003) and Neal (2004) show the importance of
selection adjustments in estimating wage functions, but there have been few adjustments of rates of return for
selection. This important topic is neglected in the recent literature.
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Table 4
Internal rates of return for white & black men: accounting for taxes and tuition (general nonparametric speci-
fication assuming work lives of 47 years)

Schooling comparisons
Whites Blacks
12-14 12-16 14-16 12-14 12-16 14-16

1940 No taxes or tuition 11 18 26 5 12 20
Including tuition costs 9 15 21 4 10 16
Including tuition & flat taxes 8 15 21 4 9 16
Including tuition & prog. taxes 8 15 21 4 10 16

1950 No taxes or tuition 3 8 19 -3 6 34
Including tuition costs 3 8 16 -3 5 25
Including tuition & flat taxes 3 8 16 -3 5 24
Including tuition & prog. taxes 3 7 15 -3 5 21

1960 No taxes or tuition 7 13 25 5 11 25
Including tuition costs 6 11 21 5 9 18
Including tuition & flat taxes 6 11 20 4 8 17
Including tuition & prog. taxes 6 10 19 4 8 15

1970 No taxes or tuition 7 13 24 9 14 23
Including tuition costs 6 12 20 7 12 18
Including tuition & flat taxes 6 11 20 7 11 17
Including tuition & prog. taxes 5 10 18 7 10 16

1980 No taxes or tuition 5 11 21 8 16 31
Including tuition costs 4 10 18 7 13 24
Including tuition & flat taxes 4 9 17 6 12 21
Including tuition & prog. taxes 4 8 15 6 11 20

1990 No taxes or tuition 10 16 26 18 25 35
Including tuition costs 9 14 20 14 18 25
Including tuition & flat taxes 8 13 19 13 17 22
Including tuition & prog. taxes 8 12 18 13 17 22

Notes: Data taken from 1940-90 Decennial Censuses. See discussion in text and Appendix B for a description
of tuition and tax amounts.

Table 4 examines how the IRR estimates for post-secondary education change when
we account for income taxes (both flat and progressive) and college tuition.3! Below, in

31 Because we assume that schooling is free (direct schooling costs are zero) through high school and because
internal rates of return are independent of flat taxes when direct costs of schooling are zero, internal rates of
return to primary and secondary school are identical across the first three specifications in the table. Empiri-
cally, taking into account progressive tax rates has little impact on the estimates for these school completion
levels. (Tables are available upon request.) For these reasons, we only report in Table 4 the IRR estimates for
comparisons of school completion levels 12 and 14, 12 and 16, and 14 and 16.
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Figure 4a. Average college tuition paid (in 2000 dollars).
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Figure 4b. Marginal tax rates [from Barro and Sahasakul (1983), Mulligan and Marion (2000)].

Section 10, we discuss the relevance of psychic costs. For ease of comparison, the first
row for each year reports estimates of the IRR for the most flexible earnings specifica-
tion, not accounting for tuition and taxes. (These estimates are identical to the fourth
row in Tables 3a and 3b.) All other rows account for private tuition costs for college (v)
assumed equal to the average college tuition paid in the U.S. that year. The average
college tuition paid by students increased steadily since 1950 as shown in Figure 4a.
In 1990, it stood at roughly $3,500 (in 2000 dollars).32 Row three of Table 4 accounts

32 Average college tuition was computed by dividing the total tuition and fees revenue in the U.S. by total
college enrollment that year. Federal and state support are not included in these figures. See Appendix B for
further details on the time series we used for both tuition and taxes. We lack data on psychic costs, although
the estimates from structural models suggests that they may be sizeable. See Carneiro, Hansen and Heckman
(2003) and Cunha, Heckman and Navarro (2005).
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for flat wage taxes using estimates of average marginal tax rates (7) from Barro and
Sahasakul (1983) and Mulligan and Marion (2000), which are plotted for each of the
years in Figure 4b. Average marginal tax rates increased from a low of 5.6% in 1940
to a high of 30.4% in 1980 before falling to 23.3% in 1990. The final row of Table 4
accounts for the progressive nature of our tax system using federal income tax sched-
ules (Form 1040) for single adults with no dependents and no unearned income. (See
Appendix B for details.)

When costs of schooling alone are taken into account (comparing row 2 with row 1),
the return to college generally falls by a few percentage points. Because the earnings of
blacks are typically lower than for whites but tuition payments are assumed here to be
the same, accounting for tuition costs has a bigger effect on the estimates for the black
samples. For example, internal rates of return to the final two years of college decline
by about one-fourth for whites and one-third for blacks. Further accounting for taxes on
earnings (rows 3 and 4) has little additional impact on the estimates. Interestingly, the
progressive nature of the tax system typically reduces rates of return by less than a per-
centage point. Overall, failure to account for tuition and taxes leads to an overstatement
of the return to college, but the time trends in the return are fairly similar whether or not
one adjusts for taxes and tuition. As discussed in Section 10, however, accounting for
psychic costs has a substantial effect on estimated rates of return.

Figure 5 graphs the time trend in the IRR to high school completion for white and
black males, comparing estimates based on (i) the Mincer model and (ii) the flexible
nonparametric earnings model accounting for progressive taxes and tuition. Estimates
based on the Mincer specification tend to understate returns to high school completion
and also fail to capture the substantial rise in returns to schooling that has taken place
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Figure 5. IRR for high school completion (white and black men).
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Figure 6. IRR for college completion (white and black men).

since 1970. Furthermore, the sizeable disparity in returns by race is not captured by the
estimates based on the Mincer equation.

Figure 6 presents similar estimates for college completion (14 vs. 16 years of school).
Again, the Mincer model yields much lower estimates of the IRR in comparison with
the more flexible model that also takes into account taxes and tuition. Nonparamet-
ric estimates of the return to college completion are generally 5-10% higher than the
corresponding Mincer-based estimates even after accounting for taxes and tuition. Addi-
tionally, the more general specification reveals a substantial decline in the IRR to college
between 1950 and 1960 for blacks that is not reflected in the Mincer-based estimates.

Using our flexible earnings specification, we also examine how estimates depend
on assumptions about the length of working life, comparing two extreme cases. The
estimates just reported assume that individuals work for 47 years regardless of their
schooling (i.e., T'(s) = 1). An alternative assumption posits that workers retire at age 65
regardless of their education (i.e., T'(s) = 0). We find virtually identical results for all
years and schooling comparisons for both assumptions about the schooling — worklife
relationship.?? Because earnings at the end of the life cycle are heavily discounted, they
have little impact on the total value of lifetime earnings and, therefore, have little effect
on internal rate of return estimates.

33 Results available from authors upon request.
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4.2. Accounting for uncertainty in a static version of the model

To this point, we have computed internal rates of return using fitted values from es-
timated earnings equations. Mincer’s approach and more general nonparametric ap-
proaches pursued in the literature make implicit assumptions about how individuals
forecast their future earnings. The original formulations ignore uncertainty, making no
distinction between ex post and ex ante returns. It is essential to know ex ante returns in
order to understand schooling choices, because they are the returns on which individuals
act.

In this subsection, we explore alternative approaches for estimating the IRR used by
agents in making their schooling choices that are based on alternative assumptions about
expectation formation mechanisms. These analyses are based on cross section data. We
present a more general dynamic analysis in the next section.

As previously discussed, it is common in the literature to use log specifications for
earnings. Thus, using a general notation, it is common to assume InY = Zy + ¢, so
Y = e?” ¢f and that expected earnings given Z are

E(Y|Z) = e“VE(&°).

Assume for the sake of argument (but contrary to the evidence in Section 3) that
Equation (1) describes the true earnings process and that E(g|x, s) = 0. To this point,
when we have fit Mincer equations, we have estimated internal rates of return using
fitted values for Y in place of the true values. That is, we use the following estimate for
earnings: Y(s,x) = exp(Qo + Oss + Box + Bix?), where &g, ps, Po, and f; are the re-
gression estimates. This procedure implicitly assumes that individuals place themselves
at the mean of the log earnings distribution when forecasting their earnings and making
their schooling choices.?* Individuals take fitted log earnings profiles as predictions for
their own future earnings, ignoring any potential person-specific deviations from that
profile. Ignoring taxes, for this case, the IRR estimator 7 solves

T < . T > J

Y , Y(s, 1
)it i B e dCES RIS o S E—
= (1 + rl)s+j+x = (1 + rl)s+x ot (1 + r[)H'x

which is the discrete time analogue to the model of Equation (2) for two schooling levels
s and s + j. If tuition and psychic costs are negligible (v = 0),

plim 7/; = e” — 1 ~ py.

Given our assumptions on expectations, this is an ex ante rate of return. Ex ante returns
are the theoretically appropriate ones for studying schooling behavior, because they are
the returns on which schooling decisions are based.

34 Assuming a symmetric distribution for ¢, this is equivalent to placing themselves at the median of the
earnings distribution.
35 We assume here that T(s) —s = T for all s, or that T/(s) = 1.
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Suppose instead that agents base their expectations of future earnings at different
schooling levels on the mean earnings profiles for each schooling level, or on E(Y|s, x).
In this case, the estimator of the ex ante rate of return is given by the root of

i E(YG+ . 0)ls ) Z ECGolbn g v, g
(1 + rl)s+j+x (1 + rI)erx = (1 + rl)s+x

If v = 0 and Mincer’s assumptions hold, this formula specializes to

erd L efor b’ p(ef6ting x) XT: ot E(e (s, )
I+ & A+ Tty
If E[e?¢Y)|s,x] = E[ef0H/¥)|s, x] for all x, then the two sums are equal and

plim 7; = e — 1 as before. In this special case, using Y(s,x) = exp(ao + Pss +
Box + 3 1x2) or E(Y (s, x)|s, x) will yield estimates of the internal rate of return that are
asymptotically equivalent. However, if E(e?“+/*)|s, x) is a more general function of s
and x, then the estimators of the ex ante return will differ.

In the more general case, using estimates of E(Y (s, x)|s, x) under a Mincer specifi-
cation yields an estimated rate of return with a probability limit

i 1
plim 77 = e [M(s, )] — 1~ ps + (I MG, ).

where

STy et B 6|5 ) (14 )
Yl e A Ees0) s x) (14 )~

M(s, j) = (N

This estimator of the ex ante internal rate of return will be larger than p; if the vari-
ability in earnings is greater for more educated workers (i.e., M (s, j) > 1) and smaller
if the variability is greater for less educated workers (i.e., M (s, j) < 1). If individuals
use mean earnings at given schooling levels in forming expectations, then this estimator
is more appropriate. However, this approach equates all variability across people with
uncertainty, even though some aspects of variability across persons are predictable. We
discuss how to decompose variability into predictable and unpredictable components in
Section 10. Inspection of Figure 3 reveals that, at young ages, the variability in earn-
ings for low education groups is the highest among all groups. If discounting dominates
wage growth with experience, we would expect that M (s, j) < 1.3¢

These calculations assume that agents are forecasting the unknown e&(s, x) us-
ing (s, x). If they also use another set of variables ¢, then the rate of return should
be defined conditional on g (F; = 7;(g)) and we would have to average over g to obtain

36 More generally if v # 0, then #} converges to the root of Equation (6). Neglecting this term leads to an
upward bias, as previously discussed.
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the average ex ante rate of return. If agents know (s, x) at the time they make their
schooling decisions, then the ex ante return and the ex post return are the same, and 7y
now depends on the full vector of “shocks” confronting agents. Returns would then be
averaged over the distribution of all “shocks” to calculate an expected return. Due to
the nonlinearity of the equation used to calculate the internal rate of return, the rate of
return based on an average earnings profile is not the same as the mean rate of return.
Thus, mean ex ante and mean ex post internal rates of return are not the same.

When p; varies in the population, these results must be further modified. Assume
that o, varies across individuals, that E(ps) = ps, and that p; is independent of x and
e(s + j, x) for all x, j. Also, assume v = 0 for expositional purposes (no tuition or
psychic costs). Using fitted earnings, w(s, x), to calculate internal rates of return yields
an estimator, 77, that satisfies

plim 7; = e’ — 1~ p;.

This estimator calculates the ex anfe internal rate of return for someone with the mean
increase in annual log earnings p; = p; and with the mean deviation from the overall
average £(s, x) = &(s + j, x) = 0 for all x.

On the other hand, assuming agents cannot forecast ps, using estimates of mean earn-
ings E(Y (s, x)|s, x) will yield an estimator for r with

plim 7 = e” [kM(s, D] =1~ j, + %[mk +InMs, )],
E(eCt)ps=hs)|s x) . . .
TEEB T ) and M (s, j) is defined in Equation (7).

For pg > 0, it is straightforward to show that k > 1, which implies that everything
else the same, the estimator, 77, based on mean earnings will be larger when there is
variation in the return to schooling than when there is not. Furthermore, the internal
rate of return is larger for someone with the mean earnings profile than it is for an
individual with the mean value of ps. Again, if agents know ps, we should compute 7;
conditioning on p; and construct the mean rate of return from the average of those 7;.
Again, the mean ex post and ex ante rates of return are certain to differ unless agents
have perfect foresight.

Table 5 reports estimates of the ex ante IRR based on our general nonparametric
specification. We compute the IRR under two alternative assumptions: (i) that agents
forecast future earnings using the earnings function that sets ¢ = 0 (“unadjusted earn-
ings”) and (ii) that agents forecast using mean earnings within each education and
experience category rather than using predicted earnings placing themselves at ¢ = 0
(“adjusted earnings”). Procedure (ii) is described in Equation (6). Procedure (i) sets
E(e®¢¥)|s, x) = 1 for all s, x. Both the adjusted and unadjusted estimates account for
tuition and progressive taxes. The adjusted estimates generate much lower (and more
reasonable) IRR estimates than the unadjusted ones.?’

where k =

37 We lack the required panel data on individuals to compute ex post rates of return. See the discussion in
Section 10.
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Table 5
Internal rates of return for white & black men: residual adjustment (general nonparametric specification ac-
counting for tuition and progressive taxes)

Schooling comparisons
6-8 8-10 10-12 12-14 12-16 14-16

a. Whites
1940 Unadjusted 12 14 24 8 15 21
Adjusted 2 2 8 9 13 16
1950 Unadjusted 25 26 26 3 7 15
Adjusted 17 19 14 5 8 14
1960 Unadjusted 21 27 29 6 10 19
Adjusted 13 19 16 7 11 16
1970 Unadjusted 16 27 29 5 10 18
Adjusted 11 18 16 6 10 16
1980 Unadjusted 14 64 41 4 8 15
Adjusted 9 28 24 5 8 13
1990 Unadjusted 19 19 47 8 12 18
Adjusted 11 11 31 8 12 17
b. Blacks
1940 Unadjusted 11 0 10 4 10 16
Adjusted 3 0 -8 4 6 7
1950 Unadjusted 33 14 44 =3 5 21
Adjusted 53 8 21 1 9 15
1960 Unadjusted 20 14 34 4 8 15
Adjusted 14 12 16 6 6 8
1970 Unadjusted 14 25 39 7 10 16
Adjusted 12 16 22 7 10 12
1980 Unadjusted 9 43 46 6 11 20
Adjusted 7 21 29 6 9 15
1990 Unadjusted 16 16 57 13 17 22
Adjusted 8 8 42 11 15 20

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8 vs. 10 cannot
be made given data restrictions. Therefore, those columns report calculations based on a comparison of 6 and
10 years of schooling. See discussion in text and Appendix B for a description of tuition and tax amounts.
Unadjusted sets the residual from the earnings equation to be the same for everyone (= 0). Adjusted uses
mean earnings within each age-schooling cell.

Using mean earnings rather than earnings for someone with the mean residual gen-
erally leads to lower estimated ex anfe internal rates of return for most schooling
comparisons. Even if the Mincer specification for log earnings is correct, the internal
rate of return guiding individual decisions is lower than the Mincer estimated rate of re-
turn when individuals base their schooling decisions on average earnings levels within
schooling and experience categories. In other words, predicted earnings obtained using
the coefficients from a log earnings regression evaluated where ¢ = 0 is an inaccurate
measure of the average earnings within each schooling and experience category.
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The adjustment for uncertainty reported in this section based on mean earnings makes
the strong assumption that all variation is unforecastable at the time schooling decisions
are made. A better approach is to extract components of variation that are forecastable
at the time schooling decisions are being made (heterogeneity) from components that
are unforecastable (true uncertainty). Only the latter components should be used to
compute M (s, j). Methods for separating forecastable heterogeneity from uncertainty
are available [Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro
(2005), Heckman and Navarro (2006)] but require panel data and cannot be applied to
Census cross-sections. We review the evidence from the panel literature in Section 10.

Another major issue about the entire enterprise of calculating rates of return is
whether the marginal rate of return is an economically interesting concept when agents
are sequentially revising their information about returns to schooling. As shown in the
next section, in general it is not. This casts doubt on the policy relevance of the entire
rate of return literature, that was initially motivated by Becker (1964), and suggests that
the literature should be refocused to account for intrinsic uncertainty.

5. The internal rate of return and the sequential resolution of uncertainty

Human capital theory was developed in an era before the tools of dynamic decision
making under uncertainty were fully developed. Concepts central to human capital the-
ory like the internal rate of return are not generally appropriate to the evaluation of
investment programs under sequential resolution of uncertainty. The recent literature
has made progress towards empirical analysis of schooling decisions in dynamic set-
tings.’® Our analysis of this issue in this section is mainly theoretical and aimed at
clarifying a number of important features of dynamic schooling decisions under uncer-
tainty. We discuss other dynamic models with option values developed in the recent
dynamic literature in Section 10.%°

This section makes three main points. First, ignoring the sequential revelation of in-
formation, Mincer’s assumption of the linearity of log earnings in years of schooling
rules out option values that can arise even in an environment where the agent perfectly
anticipates future earnings. We show how nonlinearity is a source of option values, and
accounting for option values affects estimated returns to schooling. Second, sequen-
tial revelation of information is an additional source of option values. Accounting for
information updating is a force toward generating a downward bias in least squares es-
timates of returns to schooling. Intuitively, people drop out of school when they have
good draws, leaving only the unlucky to continue on in their schooling. This result runs
counter to the intuition often expressed in the conventional ability bias literature that

38 See Keane and Wolpin (1997), Belzil and Hansen (2002), Cunha, Heckman and Navarro (2005) and
Heckman and Navarro (2006) for such models.
39 See Heckman and Navarro (2006).
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the most able continue on to school. [For a survey of the conventional literature see,
e.g., Griliches (1977).] Third, we show that the internal rate of return is not a correct
investment criterion when earnings are uncertain and there are option values.

For two reasons, the dynamic nature of schooling suggests that the returns to educa-
tion may include an option value. First, the return to one year of school may include the
potential for larger returns associated with higher levels of education when the returns
to school are not constant across all schooling levels. For example, finishing high school
provides access to college, and attending college is a necessary first step for obtaining
a college degree. Given the large increase in earnings associated with college comple-
tion, the total return to high school or college attendance includes the potential for even
greater returns associated with finishing college. The return in excess of the direct return
(the lifetime income received at a given schooling level) is the option value. Mincer’s
assumption that earnings are log linear in schooling implicitly rules out this type of op-
tion value if the growth rate in earnings is the same as the interest rate. The traditional
approach to schooling computes the rate of return using the lifetime income arising from
stopping at schooling level s with the lifetime income from stopping at s + 1 using the
direct return, i.e., the return of stopping at s versus the return from stopping at s + 1,
and does not consider the continuation value.

Second, when there is uncertainty about college costs or future earnings and when
each additional year of schooling reveals new information about those costs or earn-
ings, the full returns to schooling will include the expected value of newly revealed
information that can be acted on. Finishing high school opens the possibility of at-
tending college, which will be realized if tuition costs and opportunity costs turn out
to be low. Therefore, the returns to high school completion include both the increase
in earnings associated with completing high school and the ex ante expected value of
continuing beyond high school, including the expected value of all future information,
including information about wage shocks, costs of additional schooling, ability in var-
ious tasks and the like. The value of this information depends on the probability that
the individual decides to continue on to college and the expected return if he does so.
Failing to finish high school precludes an individual from learning the information that
arises from high school completion as well as the value of exercising the option to go
to college. Dropping out eliminates the college option. Earnings each period may also
be uncertain. The decision to continue on in school will depend on both current and ex-
pected future labor market conditions. By ignoring uncertainty, the literature based on
the Mincer earnings equation neglects this source of option values. Sequential arrival of
information implies that education decisions are made sequentially and should not be
treated as a static discrete choice problem made once in a lifetime by individuals — the
traditional approach used in human capital theory [see, e.g., Mincer (1958), Willis and
Rosen (1979), Willis (1986), Card (2001)].

The empirical evidence presented in Section 3 [see also Bound, Jaeger and Baker
(1995), Heckman, Layne-Farrar and Todd (1996), Hungerford and Solon (1987)]
strongly rejects Mincer’s (1958) implicit assumption that marginal internal rates of re-
turn to each year of schooling are identical and equal to a common interest rate, i.e.,
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the assumption that log earnings are linear in years of schooling. This observation alone
undermines the interpretation of the coefficient on schooling in a log earnings regres-
sion as a rate of return. But this nonlinearity, combined with the sequential resolution
of uncertainty, creates additional problems for estimating rates of returns using Mincer
regressions. Because the returns to college completion are high, it may be worthwhile
to finish high school to keep open the option of attending college. The total return to
high school and earlier schooling choices includes a nontrivial option value.

To analyze this option value, we present two simple dynamic models with uncertainty
about the value of future schooling choices. Following most of the literature, we assume
that individuals maximize the expected value of lifetime earnings given their current
education level and the available information. We briefly discuss more general dynamic
models with option values in Section 10.

To gain some understanding about the separate roles of nonlinearity and uncertainty
in generating option values, we first consider the option value framework of Comay,
Melnik and Pollatschek (1973), which assumes that there is no uncertainty about earn-
ings conditional on final schooling attainment but that individuals face an exogenously
specified probability (7541 s) of being accepted into grade s 4 1 if they choose to apply
after finishing grade s.*C Thus they face a lottery where the chance of being admitted
to the next round of schooling does not depend on earnings. For someone attending ex-
actly s years of school, define the discounted present value of lifetime earnings as of the
schooling completion date as:

T

Y, = Z(l + )Y (s, x),

x=0

where the interest rate, r, is assumed to be exogenously specified and common across
persons. This expression is assumed to be known with certainty. If an individual who
chooses to apply for grade s + 1 is rejected, he or she begins working immediately,
earning Y. This is the direct value of schooling as conventionally measured. In this

environment, the total expected value of attaining s € {1,2,..., S } years of school,
given the information available at the end of stage s — 1, is
Es(Vst1)
Es_1(Vg) =(1— 7Ts+1,s)Ys + T[s-i-l,sEs—l maX{Ys» %}

fors < Sand E 5_1(V3) = Y5. This expression assumes that each grade of school takes
one period and that direct costs of schooling are negligible.

The ex ante option value of grade s as perceived at the end of s — 1 is defined as
the difference between the total expected value of that opportunity, E;_1(V;), and the
direct value or the present discounted value of earnings if the person does not continue

40 They also analyze models with positive probability of failing conditional on attending the next grade. The
results from such an analysis are quite similar to those discussed here.
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in school, Y;:

Os,sfl = E;_ [Vy — Y]

E (Vg
=E; max{O, JTH_LS(% — Ys)}

Es_1(V,
= max{O, JTHLS(% — YS) },

where the final equality follows from the assumption that there is no uncertainty about
earnings conditional on the final schooling outcome. Notice that if the growth rate of
earnings is the same as the interest rate, as is assumed by Mincer (1958), or if the growth
in earnings with schooling is at the same rate as the individual-specific interest rate in
the accounting identity model, then Y = ﬁf -+ for each individual and all 5. Under this
assumption, Mincer’s assumption of linearity of log earnings in schooling implicitly
rules out any option value of schooling.*! Intuitively, if the earnings profiles associated
with all schooling choices provide the same present value when discounted back to the
same date, then there is no value attached to the possibility of continuation of schooling.
Thus, linearity of log wages in years of schooling with a growth rate equal to the interest
rate implies no option value of education in the Comay, Melnik and Pollatschek (1973)
framework.

This model generates option values when future wage growth is greater than 1+ r for
an additional year of schooling. For example, if college graduation offers large returns,
finishing high school will carry an option value since there is some probability that an
individual will be accepted into college. In this case, the total value of a high school
degree includes the value of a lottery ticket that pays the rewards of a college degree
to ‘winners’. The option value of high school represents the value of this lottery ticket
scaled by the probability that the option will arise. Notice that even if the probability
of being accepted to college is one (my41,5 = 1), if s corresponds to the state of high

41 PROOF. V5 = Y5 at S, so

Y,
N
Eg o(Vs_p)=U-m55 V5 +755 max{Yi_w T+ }

since there is no uncertainty about earnings conditional on each schooling level. For proportional earnings
growth at rate r, both versions of the Mincer model imply that Yy = 1]? s+1 for all s. Thus, people may
differ in their earnings levels and face different individual specific interest rates as in the accounting identity
model. They may also face different ;1 ¢. For any sequence of 5 ¢ and r, we obtain

_y. __'S
Es (Vs D) =Y5_ = T+r
Ys

Backward induction produces Eg_(Vs_1) = Y1 = e

schooling level.

for all s, which implies no option value for any
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school graduation, there is an option value. Thus even in a certain environment, because
of the staged nature of the schooling process, option values may arise.*?

The Comay, Melnik and Pollatschek (1973) model assumes that the probability of
transiting to higher grades is exogenously determined by a lottery. Because there is
no uncertainty about future earnings paths conditional on schooling or about the fu-
ture costs, their model isolates the role played by a nonlinear log earnings—schooling
relationship in determining option values.

We now consider an economically more interesting model of the schooling choice
problem that incorporates uncertainty in future earnings (or school costs) and sheds light
on the impact of that uncertainty on the option value of education. This model motivates
recent work in the economics of education by Keane and Wolpin (1997), Belzil and
Hansen (2002) and Heckman and Navarro (2006). Suppose that there is uncertainty
about net earnings conditional on s, so that actual lifetime earnings for someone with s
years of school are

T
Yo=Y (1+7r) Y (s, x) e
x=0
This form of uncertainty is a one time, schooling-specific shock. The literature discussed
in Section 10 considers more general models with age or period-specific shocks, but we
start with this simple set up to motivate ideas. We assume that E;_j(g;) = 1 and define
expected earnings associated with schooling s conditional on current schooling s — 1,

Yy = E;—1(Yy).

The disturbance, &5, may represent a shock to additional schooling costs or to current
earnings that is revealed after the decision to attend grade s is made at the end of s — 1
but prior to any future schooling decisions. Individuals with s years of schooling must
decide whether to quit school and receive lifetime earnings of Y, or continue on in
school for an additional year and receive an expected lifetime earnings of Es(V,y1).

The decision problem for a person with s years of schooling given the sequential
revelation of information is to complete another year of schooling if

Es (Vs+1)
1+r
so the value of schooling level s, Vi, is

ES(VS—H)
147

Yy <
Vs = max{Ys,

42 An influential book by Dixit and Pindyck (1994) defines option values as arising only in an environment
of uncertainty. This definition is too restrictive. Options include any extra choices created by completing one
stage of schooling beyond stopping and earning at that stage.
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for s < S. At the I_naximum schooling level, S, after all information is revealed, we
obtain Vg = Yg = Y§8§.
The endogenously determined probability of going on from school level s to s 4 1 is

E (Vq
Ps+ls = Pr<8s < A(7A+i)>7
d+nrYy

where Es(Vsy1) may depend on g because it enters the agent’s information set. The
average earnings of a person who stops at schooling level s are

Es<vs+1>>
(1+nYs/)

Thus, the expected value of schooling level s as perceived at current schooling s — 1 is:

S Es(Vit1) Es—1(Vs+1)
Es_1(Vy) =(1— Ps+l,s)YsEsfl <8s|5s > ﬁ) + Ps+],s<% :

The first component is the direct return. The second component arises from the option
to go on to higher levels of schooling.

Assuming that schooling choices are irreversible, the option value of schooling s, as
perceived after completing s — 1 levels of schooling given that the agent has the infor-
mation about all of the shocks &, ;, j > 1, is the difference between the expected value
of the earnings associated with termination at schooling level s and the corresponding
value function:

?s E; <55|8s > ()

Os,s—l = Es—l[VS - Ys]-

These option values can be defined for all s. Option values are non-negative for all
schooling levels, since V; > Y, for all s. The option value for the highest schooling
level is zero, since there is no tomorrow and V5 = Y3 although in reality even final
schooling opens up other choices beyond schooling.

The ex ante rate of return to schooling s as perceived at the end of stage s — 1, before
the information is revealed, is

Rs,sfl _ Es—1(Vy) Yo ) 9)
Ys—1

This expression assumes no direct costs of schooling. If there are up-front direct costs
of schooling, Cs_1, to advance beyond level s — 1, the ex ante return is

ﬁs = Es—1(Vy) — (Ys—1 + Cs—1) )
’ Yo—1+ Cs—1
This expression assumes that tuition or direct costs are incurred up front and that returns
are revealed one period later.
Ry 51 is an appropriate ex ante rate of return concept because if
Es_1(Vs)

Ys_ Coo1 < —, 10
s—1 + Cs—1 1+r ()
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ie.,
< Es—l(vs) - (Ys—l + Cs—l) =5

rx = Rs,sfl ,
Yo—1+ Cs—1
then it would be optimal to advance one more year of schooling (from s — 1 to s) given
the assumed certain return on physical capital r. The ex post return as of period s is

Vs — (Ys—l + Cs—l)
Ys—l +Cs—1

The distinction between ex ante and ex post returns to schooling is an important one that
is not made in the conventional literature on “returns to schooling” surveyed in Willis
(1986) or Katz and Autor (1999). In Section 10, we survey a literature that demonstrates
that uncertainty is an empirically important feature of lifetime earnings. Hence, option
values play an important role in computing the theoretically motivated ex ante return.*3

This analysis highlights the sequential nature of the schooling choice problem under
uncertainty. The schooling allocations that arise out of this framework differ from those
implied by the standard Mincer approach, which uses a static decision rule based on
expected earnings profiles as of some initial period. The sequential approach recognizes
that individuals face uncertainty at the time they make their schooling decisions and
that some of that uncertainty is resolved after each schooling decision is made. After
completing a schooling level, individuals observe the shock associated with that level
and can base their decision to continue in school on its realization. This, along with any
nonlinearity in the reward function, can create an option value of attending school. If
the shock at stage s is bad, one can always continue to the next higher schooling level,
s+ 1. 7

It is interesting to note that even when Y = l;j: -L as assumed by Mincer’s models,
there is still an option value in this framework. This is so because after completing s,
new information about the actual returns associated with that choice offers the option
of continuing on to level s 4+ 1 with fresh draws of the ¢. This is in contrast to the
role of uncertainty in the simple Comay, Melnik and Pollatschek (1973) model. More
generally, when future earnings choices (Y41 vs. Yy in this example) offer very large
expected returns, the option value might be quite substantial — both sources of option
values are at work.

Conventional rate of return calculations for comparing the “returns” to schooling lev-
els s and s + 1 base the calculation only on the direct or terminal earnings streams
associated with s and s + 1. Taking into account the option value also requires con-
sideration of the earnings stream associated with higher schooling levels. That is, the
value of graduating from high school instead of dropping out is affected by the expected
earnings associated with graduating from college.

43 Our definition of the ex post return is a bit ambiguous because at different stages after s — 1, information
about Vy (which is defined over streams of future earnings at different stages of schooling) is revealed. We
use Vs as the full information, end of life version when all information is in.
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Keane and Wolpin (1997) develop sequential models of schooling. Although not the
focus of their analysis, option values can be derived from the estimated value functions
associated with different schooling levels.** Heckman and Navarro (2006) present a
more general approach to information revelation by allowing for serially correlated un-
observables. They also establish semiparametric identification of their model. We briefly
discuss their work in Section 10.

To illustrate the role of uncertainty and nonlinearity of log earnings in terms of
schooling, we simulate a five schooling-level version of our model with uncertainty.
Results are reported in Tables 6a and 6b. In both tables, we assume an interest rate
of r = 0.1 and further assume that &, is independent and identically distributed log-
normal: log(es) ~ N (0, o) for all 5.4 We assume that 0 = 0.1 in the results presented
in the tables. Table 6a reports various outcomes related to the returns to schooling when
we assume log earnings are linear in years of schooling (i.e., Ys_; = Y, /(1 + r)).
Schooling continuation probabilities (ps.s—1) and the proportional increase in ¥ asso-
ciated with an increase in schooling from s — 1 to s are shown. By assumption, the
latter is equal to r = 0.1 for all education levels. Column 4 displays the proportional
increases in observed earnings (where observed earnings are measured by Equation (8))
from period s — 1 to s, which are always less than . In the presence of uncertainty,
self-selection leads to a substantial downward bias in the observed returns to schooling,
especially for the schooling transitions associated with higher grades. The traditional
ability bias model discussed below in Section 8 predicts an upward bias in OLS esti-
mates of the return to schooling. In a sequential model with serially independent shocks,
people with a good draw at lower schooling levels drop out, thus producing a downward
bias.*

Option values as a fraction of the total expected value of a schooling level
(Os,5—1/Es—1(Vy)) are reported in column 5. They show a pattern of decline with
schooling levels attained. The final three columns report average measures of the return
to schooling for different sets of individuals. Column 6 reports the average return for

44 n the ordered choice models in Cameron and Heckman (1998) and Cunha, Heckman and Navarro (2007),
there is no option value arising from sequential resolution of uncertainty, because of the assumed one sided
nature of the information revelation process.

45 We also considered models with an AR(1) process for the shocks: log(es) = plog(es—1) + vs where
vs ~ N(0, o) but for the sake of brevity we do not report them. The case where p = 0 corresponds to
Tables 6a and 6b. For p = 1, E(gsy1les) = &5 and a good or bad shock affects expected future outcomes
in the same proportion as current outcomes. In this model, the outcome of &5 has no effect on schooling
decisions. In the linear case corresponding to Table 6a, expected rates of return as measured by Eg_1(Rg 1)
range between those reported in the table (when p is zero) and the linear increase in earnings, r = 0.10 (when
p is near one). Expected returns for the more general nonlinear case differ little from those shown in Table 6b,
since nearly everyone chooses to attend the highest level of schooling regardless of the value for p. This
implies that returns always reflect the expected increase in earnings between the current schooling level and
the highest possible schooling level, which is, on average, independent of p.

46 Note that our model is highly simplified. A more general model would analyze the lifecycle evolution of
wages age by age.



Table 6a
Simulated returns under uncertainty with option values (log wages linear in schooling: Y| = (1 +r)¥)

Education  Transition probability — Proportional Proportional increase ~ Option/total value Average return Treatmenton  Treatment on
level (s)  (Pss—1) increasein ¥ inobserved earnings  (Oys—1/Eg—1(Vs))  (Es_1[Rs,—1])  treated untreated

2 0.796 0.100 0.086 0.075 0.201 0.242 0.041

3 0.746 0.100 0.082 0.060 0.182 0.231 0.037

4 0.669 0.100 0.072 0.038 0.155 0.216 0.032

5 0.520 0.100 0.016 0.000 0.111 0.196 0.019

OLS (Mincer) estimate of the rate of return is 0.063.

Notes: The simulated model assumes lifetime earnings for someone with s years of school equal ¥geg where & are independent and identically distributed
Ey_1(Vs)
(+r)Ys_
where the subscript means that the agent conditions his/her information on that available at s — 1. Observed earnings for someone with s years of school are
YsEs_1(esles > % %
Average returns reflect the expected return over the full distribution of Y_j, or Eg_1[Ry ¢—1]. “Treatment on treated” reflects returns for those who continue

log(es) ~ N(0,0.1). An interest rate of » = 0.10 is assumed. The transition probability from s — 1 to s is given by pg 1 = Pry_j(e5_1 <

B

), and option values are E;_1 (Vs — Y;). The return to school year s for someone with earnings Ys_j is Ry g1 =

Eg V. .
to grade s, or Eg_1[Rs s_1le5—1 < ﬁ]. “Treatment on untreated” reflects returns for those who do not continue to grade s, or Eg_1[R; s_1leg—1 >
o
E;_1(Vs . . . . . L . . .
ﬁ]. The marginal treatment effect equals » = 0.10. OLS (Mincer) estimate is the coefficient on schooling in a log earnings regression (the Mincer return).
rs—1
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Table 6b
Simulated returns under uncertainty with option values (sheepskin effects: ?s+l =(1+ ps+1)175 with pp = 0.1, p3 = 0.3, pg = 0.1, p5 =0.2)

Education  Transition Proportional Proportional increase ~ Option/total value Average return Treatment on Treatment on
level (s) probability (ps s—1)  increase in Y in observed earnings (Os,s—1/Es—1(Vs)) (Es—1[Rs5—1])  treated untreated

2 0.997 0.100 0.101 0.239 0.459 0.460 0.068

3 0.997 0.300 0.116 0.100 0.459 0.460 0.068

4 0.846 0.100 0.092 0.093 0.224 0.257 0.045

5 0.822 0.200 0.041 0.000 0.212 0.249 0.043

OLS (Mincer) estimate of the rate of return is 0.060.

Notes: The simulated model assumes lifetime earnings for someone with s years of school equal ¥ ye5 where & are independent and identically distributed
Egs_1(Vs)

(I+rY,_ 7
where the subscript means that the agent conditions his/her information on that available at s — 1. Observed earnings for someone with s years of school are

log(es) ~ N(0,0.1). An interest rate of » = 0.10 is assumed. The transition probability from s — 1 to s is given by ps 1 = Pry_j(g5_1 <

= Es (Vs . . . . Eg_1(Vs)=Y,_
YsEg_1(e5les > ﬁ), and option values are E;_1(Vs — Yy). The return to school year s for someone with earnings Y_j is Ry g1 = %)1”
s s=
Average returns reflect the expected return over the full distribution of Y;_1, or Eg_1[Rs _1]. “Treatment on treated” reflects returns for those who continue
Eg_1(Vs)

to grade s, or Eg_1[Rg s_1les—1 < ]. “Treatment on untreated” reflects returns for those who do not continue to grade s, or Es_1[Rg g_1les—1 >

(+r)Ys_
(ﬁ;;iémj. The marginal treatment effect equals r = 0.10. OLS (Mincer) estimate is the coefficient on schooling in a log earnings regression (the Mincer
s—1
coefficient).
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the entire population (Es_1[Rs s—11), while column 7 reports estimates of the return for
those who choose to continue on to grade s (“treatment on the treated”) and column 8
reports the expected return that would be received by those who choose not to continue
in school (“treatment on the untreated”). Here the treatment is schooling at the stated
level. Comparing average returns with the proportional increase in ¥ with schooling or
in observed earnings with schooling, observe that total rates of return to schooling are
substantially higher for all but the final schooling transition due to the additional effect
of the option value of school and the self-selection that takes place. When log earnings
are linear in schooling, true returns are actually declining in accumulated schooling
since option values are decreasing in s.*’ Returns for those who choose to continue in
school are noticeably larger than average returns, while returns for those who choose
not to continue are all less than r. The least squares estimate of the rate of return to
school (i.e., the coefficient on schooling in a log earnings regression or the “Mincer co-
efficient”) is only 0.063, far below the estimates of the true average growth rate (ATE) or
treatment on the treated (77, the growth rate among the treated. It also under-estimates
the rate of increase in expected earnings, Y, and does not accurately reflect the pric-
ing relationship for wages and schooling. Even under linearity of mean log earnings in
schooling, Mincer-based estimates of the return are substantially downward biased in
the presence of sequential resolution of uncertainty. Not surprisingly, this bias (along
with option values) disappears as the variance of &, goes to zero. However, we find a
bias as large as —0.01, roughly 10% of the true return, when o is as low as 0.01.3
Table 6b adds nonlinearity in the wage equation in terms of schooling to the base
model to demonstrate its added effect on rates of return and option values. The simula-
tion reported in this table assumes that increases in population mean log earnings from
the first to the second and third to fourth levels of school are both 0.1, but the increase
associated with going from level two to three is 0.3 and from four to five is 0.2. This
roughly mimics the patterns observed in the later Census years with schooling levels
three and five representing high school and college graduation, respectively. These sim-
ulations show substantially larger returns to the lower school transitions as a result of
the sizeable sheepskin effects in later years. Option values are particularly large in early
schooling years. In general, the greater the nonlinearity, the greater the option value.
Estimates from a Mincer regression suggest a rate of return of only 0.060, substantially
less than the true average growth rate or the treatment on the treated growth rate es-
timates, which range from 0.21 to 0.46. While true returns increase relative to those
reported in Table 6a, the Mincer estimate actually declines slightly. Because most in-
dividuals are choosing to continue to higher schooling levels in this simulation, there

47 We have assumed that individuals cannot choose to recall the wage streams associated with earlier school-
ing choices (i.e., someone with s years of school cannot choose to work at a lower schooling level and obtain
Ys_1orYs_5,...)if they receive a low realization for Y. Allowing people to have access to all of the earn-
ings opportunities created at all earlier schooling levels provides a force offsetting the tendency for option
values to decline with schooling. These opportunities provide the agent with a form of insurance.

48 Results available from the authors upon request.
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is little difference between ‘“average returns” and estimated treatment on the treated
parameters.

The simulations presented in Tables 6a and 6b point to the potentially important role
of both sources of option values in determining total returns to schooling. Turning to
real data, we use the nonparametrically estimated earnings profiles for white males in
the 1990 Census to compute the option value of high school completion and college
attendance for a range of reasonable schooling transition probabilities, p, and interest
rates, 7. These estimates are unbiased measures of the option value within the frame-
work of Comay, Melnik and Pollatschek (1973) where ps1,s = 7415 are the empirical
transition probabilities for the schooling levels we examine because selection is random
with respect to individual earnings levels. For a model of sequential resolution of un-
f{i‘;‘)}‘s)) and &g is in the information set used to
define Ej, they under-estimate the option value and return to schooling, since observed
M) rather than Y (i.e., observed earnings are based

(I+r ))_/v
on a sample selecting not to continue). Table 7 reports the average discounted lifetime

certainty, where ps41 s 1S Pr(e; <
earnings are Y E;_1(g;]eg >

earnings for individuals making different schooling choices, denoted by Y;. It also re-
ports the total expected value of a schooling choice, E;_1(Vy), the implied option value,
5s,s_1, and return to schooling, Ry ;1. The table reports estimates based on interest
rates of 7% and 10% and transition probabilities ranging from 0.1 to 0.5 (empirically,
about half of all 1990 high school graduates attended college and about half of those
went on to graduate). As expected, both the present value of earnings for each school-
ing choice and the option value of continuing are declining in the interest rate. Option
values rise with increases in the transition probability. The option value for high school
completion ranges from a low of only $370 when the interest rate is 10% and p = 0.1
to a high of $22,000 when interest rates are 7% and p = 0.5. The major component
of this option value comes from the return to completing college rather than the return
to attending college, because the difference in earnings between high school graduates
and those with some college is quite small. Accordingly, option values are noticeably
higher for college attendance, reaching a high of $35,000 when the interest rate is 7%
and p = 0.5. Simply comparing the earnings streams for two schooling levels fails to
recognize a potentially important component of the returns to education. Rates of return,
shown in the final two columns, increase by about 50% for college attendance when the
transition probability is raised from 0.1 to 0.5. Returns to high school completion are
less sensitive to assumptions about p and the option values. Failing to consider option
values leads to biased estimates of the true return to schooling.

We conclude this section by considering whether the internal rate of return has any
relevance in a model with sequential updating of information or in a model with a lottery
structure, like the framework of Comay, Melnik and Pollatschek (1973). Investment
criterion (10) based on (9) is the appropriate criterion for ex ante calculations. Ex post



Table 7
Present value of earnings, option values, and return to schooling (white men, 1990 Census)

Interest Transition PV lifetime earnings Option value Total value Return to

rate probability (in $1000’s) (in $1000’s) (in $1000’s) schooling

g P Yio Yi4 Yi6 012,10 O14,12 E(Vi2) E(Vi4) Ri2.10 Ris 12
0.07 0.1 226.46 274.15 394.97 1.92 7.08 228.38 281.23 0.24 0.11
0.07 0.3 226.46 274.15 394.97 9.47 21.25 235.92 295.40 0.26 0.14
0.07 0.5 226.46 274.15 394.97 21.96 35.41 248.42 309.56 0.30 0.17
0.1 0.1 149.26 181.17 266.12 0.37 3.88 149.63 185.05 0.27 0.11
0.1 0.3 149.26 181.17 266.12 3.02 11.63 152.29 192.80 0.28 0.14
0.1 0.5 149.26 181.17 266.12 8.24 19.38 157.51 200.56 0.31 0.16

65
Notes: Transition probability, p, represents the probability of continuing in school conditional on current education. “PV of lifetime earnings” is ¥ = Y (1 +
x=0

r)y™* ?(s, x) where ?(s, x) is the nonparametrically estimated earnings for a white man with s years of school and x years of experience (based on the 1990
Census). “Total value”, E(Vy) = (1—p)Ys+ p(1 -i—r)_1 E(Vg41), is recursively solved backward from E(Vig) = Y16. “Option value”is Oy s_1 = E(Vs) —Ys.
E(Vy)-Y,_

7 is annualized. See Appendix B for data description.
s—1

“Return to school” ﬁs’ 51 =

1232
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returns, of the sort traditionally reported in the labor economics literature, are obtained
by using realized values of earnings.*’

The natural generalization of the IRR to an environment with sequential revelation of
information would be as that rate that equates value functions across different schooling
levels defined relative to some information set at the date schooling choices are being
made. However, even for a particular information set, single crossings of realized age—
earnings profiles, a near universal feature of schooling—earnings data, do not guarantee
unique internal rates of return applied to the valuation function when option values are
taken into account. Hirshleifer (1970) shows that there is always a unique positive in-
ternal rate of return when comparing two deterministic earnings streams which cross at
only one age. This is the typical case when comparing the earnings profiles for any two
schooling levels. Accounting for options to continue in school, it is possible for multi-
ple roots to arise in the computation of more sophisticated internal rates of return that
account for the option value of schooling even if earnings are monotonically increasing
in schooling for workers conditional on age, and there are single crossings of any two
earnings streams. Intuitively, the value function is a weighted average of future earnings
streams so a single crossing property for earnings streams is not enough to guarantee
unique internal rates of return for value functions.

To explore this intuition formally, consider a model of exogenous schooling transition
probabilities like that of Comay, Melnik and Pollatschek (1973) for the case where
earnings are zero until the end of school, age s, at which time they jump up to o5 + Bs
and linearly increase thereafter at rate > 0.0 Assume that there are no direct or
psychic costs of schooling. As long as ay > ay for all s > s’, any two earnings streams
will only cross once at the age where the higher schooling level ends. Letting Y (s, a)
denote the earnings for someone with s years of school at age a, we have

0 ifa <s,

Y(s.a) = {as—f—ﬁa ifa>s.

Consider three schooling choices, s € {0, s1, s2}. Suppose p is the exogenously spec-
ified probability that someone with s; < s; years of school continues on to s, years. The
expected earnings stream at age a of someone choosing to attend s years of school with
the option of continuing will be Y(a) = (1 — p)Y(s1,a) + pY(s2,a). An option value
arises because the agent has a chance of getting into schooling level s, after completing
schooling level s7.

For g < a5, < @y, Y (a) will cross Y (0, a) three times whenever

oo + Bs1 oo + Bs
—<l—-p< —-
Ay, +ﬁsl Uy +/3S

49 As information unfolds after s, one could define a sequence of ex post value functions depending on what
is revealed after stage s.

50 The example can easily be extended to account for tuition costs and more general lifecycle earnings pro-
files.
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for any s, where 5| < s < s2.°! This possibility is illustrated in Figure 7. Because Y (a)
crosses Y (0, a) three times, the internal rate of return equations for the value functions
produced from this model can generate multiple roots.’>>3 Even if pairwise earnings
streams cross only once, there may be multiple internal rates of return when we use the

aSZ

O a, =2

Earnings (Y), by Schooling Level (s), Age (a)

51 S

Age (2)

E Y(@) = pY(s;.a) + (1-)Y(s,.2)

Figure 7. Three crossings of prospective earnings profiles in a model with option values.

51 The left-hand side of this condition ensures that ¥ (a) jumps from zero to some point above Y (0, a) at age
s1. Over the interval [s1, 52), Y (a) increases with age at a slower rate ([1 — p]B) than does Y (0, a) (). The
right-hand condition guarantees that at some later age s, in the interval [s1, 53), ¥ (a) will be below ¥ (0, a).
Finally, we know at age s, ¥ (a) will jump above ¥ (0, a), since both a | and ay, are both greater than o).
52 See Hirshleifer (1970) for a discussion of multiple roots and the internal rate of return.

53 For the case with schooling options of 0 years, s; = 1 years, and so = 2 years, when individuals live
forever, the value associated with choosing exactly s = 01is Yy = [ e ™"% (a9 + Ba) da = O‘OI—;A Consider
the value of one year of school discounted to date 0, which contains the option value of continuing on to two
years. p is the probability of continuing on to the second year of schooling.

o]

o
Vi=d 7p)/l e "o +/3a)da+p/2 e "ay + Ba)da

1 11 I 2 1
=(l=-pe|la-+B(-+5)|+tre T |-+Bl-+35]|
O N E O]

IRR equates Yy = Vq, soassuming r # 0, ¢gr +8 = (1 — p)e™"[(a] + B)r + B] +pe_2’[(a2 +B)r+281,
which is a transcendental equation and may have multiple roots.
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appropriate value function, invalidating their use as a guide to selecting human capital
investment projects.

In the more general case of sequential resolution of uncertainty, the schooling transi-
tion probability is not exogenous. Multiple roots are even more likely in this case, since
the transition probability depends on the discount rate. Writing equations out explicitly
in terms of interest rate r, we obtain

E[Vst1(ND] \ o
Es_ N = Pry_ s =2 ———— | Yy E;_ sles =
(Vo) =Pr ‘(8 1 +r)Ys<r)> “ ‘(5 o=

Es[Vs1(r)] ) Es 1[Vs1(r)]
(1+r)Ys(r) (1+7)

In this setting, the natural generalization of the IRR is the value (or values) of r; that
solves

Es[Vs11(r)] )
(14 r)Ys(r)

+ Pry_ <8s <

Es1(Vs41(r1))
147, )

Take a three period example. In this case, the IRR for the second level of schooling
solves

Yi(rp) =

Y3(r1) Ya(r1) Y3(r1)
— Eil&eler > ———————
(L+rpYa(rp /) 1411 (I +rpYa(ry)

Y3(r) ) Y3(r)
(1 +nYarp) ) A +rpD?
The fact that the continuation probabilities also depend on r; makes multiple roots more

likely. To gain some intuition in this case, take a limiting case where the variance of &,

goes to zero. This implies that the probability of continuing to level three will be either

zero or one, depending on whether or not Y is greater or less than 25 we may,

(+rp)”
therefore, get two valid solutions to the above IRR equation:
Case 1 (individual always continues): r} satisfies

S o1y Yi(r}) Yo(r})
Yl(r1) = T T
(I+rp) I+
The latter inequality guarantees that the person always wants to continue to schooling

level three upon reaching level two.
Case 2 (individual never continues): r12 satisfies

= Yo} Y30
V()= > 5
I +r 1) (I+r 1)
The latter inequality guarantees that the person always stops his schooling at level two.
Both of these cases can arise for the same person depending on the realization of
&7 as long as Var(ep) > 0, if log earnings are not parallel in experience. Consider the

case where wage gaps are small initially and large later in the life cycle. In this case, r 11

Yi(r;) = Pry (82 >

+ Pry (82 <
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would be less than r12. In Case 1, the high wage differential later on is not discounted
very much, so the individual always wants to attend schooling level three. A low IRR
must, therefore, equate level one earnings with discounted level three earnings. On the
other hand, the high late wage differential may be discounted so much with a high
discount rate that the individual never chooses to go on to college at that rate. In this
case, a high IRR, rlz, must equate level one earnings with discounted level two earnings.
These examples are extreme, but multiple roots can arise more generally as long as
the variance of & is not too large. This type of multiplicity of roots could also come
more directly out of the Comay, Melnik and Pollatschek (1973) type of model, where
the probability of continuing to level three would be either zero (if individuals do not
want to continue) or p (if individuals wish to continue), depending on the discount rate.
Given the lack of parallelism in cross section log earnings profiles, multiplicity of roots
is likely to be empirically important.

These issues call into serious question the usefulness of internal rates of return as
a measure of the return to education in an environment where the schooling decision
is dynamic and sequential. A central tool of policy evaluation from classical human
capital theory loses its validity in the presence of option values. Criterion (9) does not
suffer from this criticism and is the appropriate measure of the ex ante rate of return
to use but it is rarely reported. For an exception, see Cunha, Heckman and Navarro
(2005) and Cunha and Heckman (2006b) who estimate this rate of return. In the absence
of sequential resolution of uncertainty and option values, R, —; is the same as the
classical internal rate of return applied to pairwise earnings streams, so it is the natural
generalization of that concept.

Empirical work on the option value of schooling is in its infancy. If option values
are empirically relatively unimportant in models with the sequential resolution of un-
certainty, conventional investment evaluation methods based on the IRR may well be
informative on the optimality of schooling investments. Even if option values are negli-
gible, the analysis presented throughout this paper suggests that the Mincer model will
not estimate theoretically appropriate rates of return to schooling. In the absence of op-
tion values, other key assumptions required to equate Mincer coefficients with internal
rates of return are violated. Even in an environment without the sequential resolution
of uncertainty, more general methods of the type presented in Section 4 are required to
obtain internal rates of return.

We next turn to an analysis of cross section bias. In doing so, we ignore option values,
following conventions in the labor economics literature, and focus on “rates of return” as
conventionally measured to concentrate on the issue of whether cross section estimates
of “rates of return” are valid for life cycle “rates of return.”

6. How do cross-sectional IRR estimates compare with cohort-based estimates?

Thus far we have considered estimation of rates of return to schooling using cross-
section data which applies the standard synthetic cohort approach followed by most of
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the literature. For an ex ante analysis it assumes that younger workers base their earn-
ings expectations on the current experiences of older workers. For an ex post analysis, it
assumes that the experiences of older workers at a point in time will be those of younger
workers when they reach those ages. If skill prices are changing over time and workers
at least partially anticipate these changes, the estimates of the ex ante return to different
schooling levels based on cross-sectional data may not represent the ex ante rates of
return governing human capital investment decisions. Similarly, if the environment is
nonstationary, the ex post returns of the younger cohort are not accurately estimated.
While estimates based on cross-section data reflect current price differentials and op-
portunity costs, they do not capture future skill price differentials that forward-looking
individuals would take into account. The U.S. labor market in recent years is highly
nonstationary as are the labor markets of many economies around the world.

If cohorts anticipate future changes in the skill premium, they will base their school-
ing decisions on their true cohort-specific rate of return and not the rate of return esti-
mated from a cross-section of current workers. However, if individuals do not anticipate
the future price changes, cross-section estimates may better represent their expectations
about the returns to school. Expectations play a crucial role in determining whether
cross-section or cohort-based estimates of the rate of return influence schooling deci-
sions.

Another possible source of discrepancy between cross-section and cohort-based rate
of return estimates is change in cohort quality, as might arise from changes in the quality
of schools over time. If relative skills for some schooling classes increase permanently,
then cohort rates of return jump up with the first ‘new’ cohort and remain higher for
all succeeding cohorts. Cross-section estimates only reflect the changes slowly as more
high quality cohorts enter the sample each year. As a result, they under-estimate true
rates of return for cohorts entering the labor market after the change in school quality,
with the bias disappearing as time progresses. While future price changes are difficult
to predict, changes in cohort or school quality are more identifiable.

Mincer (1974) addressed cross section bias in his pioneering work. He found that
patterns for wage growth in a 1956 cross-section of male workers were quite similar
to the 1956 to 1966 growth in wages for individual cohorts. The empirical discrep-
ancy between cross-section and cohort-based estimates was relatively small. Recent
analyses reveal that wage patterns have changed dramatically across cohorts and that
cross-sections no longer approximate cohort or life cycle change [MaCurdy and Mroz
(1995), Card and Lemieux (2001)]. While these studies do not agree on whether or not
these changes are due to changes in relative skill prices or cohort quality, there is lit-
tle question in the U.S. data that life cycle earnings profiles based on a cross-section
of workers no longer accurately reflect the true earnings patterns for any given cohort.
As a result, the rates of return to schooling estimated from cross-sections of workers
reported in the previous section are likely to differ from the rates of return faced by
cohorts making their schooling decisions.

Next, we present a cohort analysis focusing on the actual returns earned by each
cohort without taking a position on whether changes in those returns over time are
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due to changes in cohort quality or skill prices. Arias and McMahon (2001) present a
similar analysis in estimating ex post dynamic rates of return. We study how the actual
ex post returns earned by individual cohorts compare with returns estimated from a
cross-section of individuals at the time those cohorts made their schooling decisions. We
use repeated cross-section data from the 1964-2000 Current Population Survey (CPS)
March Supplements, comparing cross-section estimates of the return to schooling with
estimates that combine all years of the CPS to follow cohorts over their life cycles.
Given the sensitivity noted in the previous sections of this chapter to specifications of the
functional forms of earnings equations, we adopt a flexible earnings specification and
compute internal rates of return to high school completion (12 vs. 10 years of schooling)
and college completion (16 vs. 12 years of schooling) that relax the assumptions that
log earnings are parallel in experience and linear in schooling. Our estimates also take
into account average marginal tax rates and tuition costs using the time series generated
from CPS data.>* Because earnings are not observed at every experience level for any
cohort in the sample (an obvious practical problem in estimating cohort rates of return),
a fully nonparametric approach is infeasible. To extrapolate the earnings function to
work experience levels not observed in the data, we assume that log earnings profiles
are quadratic in experience in a specification that allows the intercept and coefficients
on experience and experience-squared to vary by schooling class and year or cohort of
data. We estimate log earnings for each year or for each cohort using regressions of the
form

log(Y (s, X)) = oy + Posx + Prsx? + &y,

where the regression coefficients are allowed to vary by schooling group.” Two sets of
estimates are generated: (i) regressions are estimated separately for each year of CPS
data (to produce a set of cross-section estimates), and (ii) all CPS cross-sections are
combined and separate regressions are estimated for each cohort by following them over
their life cycles (to produce a set of cohort-based estimates). Both sets of estimates are
used to generate predicted life cycle earnings profiles for each cohort or cross-section of
individuals, which are then used to compute internal rates of return to high school and
college by the method described in Section 4 setting the residual of the wage equation
to its mean.”®

54 An average marginal tax rate of 25% is assumed for all years after 1994, the final year of tax rates reported
in Mulligan and Marion (2000). This corresponds to the average of all rates since 1950, after which rates
changed very little from year to year.

5 In estimating earnings profiles for those with 10 years of education, we combine individuals with 9—
11 years, with separate intercept terms for each of the education levels. This is done to increase precision in
estimation. See Appendix B for additional details on the coding of the education variables.

56 In addition to the quadratic specification, we also tried using a cubic and quartic in experience to ex-
trapolate for the missing experience levels. For cohorts with 25 or fewer years of data, extrapolations based
on higher-order polynomial specifications were unreliable, so we adopted the more parsimonious quadratic
specification.
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Figure 8a. IRR for 10 vs. 12 years of education for white men (1964-2000 CPS).
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Figure 8b. IRR for 12 vs. 16 years of education for white men (1964-2000 CPS).

8a and 8b show cohort and cross-section high school and college completion

IRR estimates for white men, which are based on the CPS estimates reported in Table 8a.
Cross-section estimates are shown for each year of the sample from 1964-1995, and

cohort-bas

ed estimates are shown for cohorts turning age 18 in 1950 through 1983.%7

57 We do not estimate returns for cohorts beyond 1983, since there are too few years of earnings observations
for those cohorts to produce stable and reliable estimates.
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Table 8a
Internal rates of return for white men: best Census and CPS estimates

Schooling Year Mincer Census data CPS data
comparison General spec. General spec. Cross section Cohort
(no residual (residual
adjustment) adjustment)
10 vs. 12 1940 13 24 8 - -
1950 11 26 14 - 3
1960 12 29 16 - 7
1970 13 29 16 29 34
1980 11 41 24 38 38
1990 14 47 31 50 -
12 vs. 16 1940 13 15 13 - -
1950 11 7 8 - 14
1960 12 10 11 - 8
1970 13 10 10 12 10
1980 11 8 8 8 14
1990 14 12 12 14 -

Notes: Mincer estimates make no adjustment for taxes or tuition. Census General Specification estimates
account for tuition and progressive taxes with a fully nonparametric wage specification. CPS cross section
estimates use cross sectional data and a general wage specification accounting for tuition and flat taxes. CPS
Cohort estimates follow a cohort turning age 18 in the reported year, using a general wage specification
accounting for tuition and flat taxes. See Appendix B for data description.

The cohort-based estimates reported in Figure 8a reveal relative stability in the re-
turn to high school for cohorts making their high school completion decisions prior
to 1960, followed by a large increase in the IRR for cohorts making their decisions
over the first half of the 1960s, followed by another period of relative stability. Returns
increased from around 10% among 1950-60 cohorts to around 40% for post-1965 co-
horts. Cross-section based estimates increase slowly but consistently over most of the
1964-1995 period. In general, cross-section estimated rates of return under-estimate the
true rates of return earned by cohorts of white men making their schooling decisions in
the late 1960s and 1970s. However, basic time patterns are consistent across the two
sets of estimates. More dramatic differences are observed for the college-going deci-
sion of white men as shown in Figure 8b. While cross-section estimates show declining
“returns” to college over the 1970s (from 12% down to 8%), cohort-based estimates
show continually increasing returns from the early 1960s to the early 1980s. The rate
of return estimated from cross-sections does not begin to increase until 1980. Cross-
section estimates overestimate the rate of return faced by cohorts making their college
attendance decisions around 1965 by as much as 4 percentage points, while estimates in
the early 1980s under-estimate the return by nearly the same amount. Table 8b reports
comparable numbers for black men.
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Table 8b
Internal rates of return for black men: best Census and CPS estimates

Schooling Year Mincer Census data CPS data
comparison General spec. General spec. Cross section Cohort
(no residual (residual
adjustment) adjustment)
10vs. 12 1940 9 10 -8 - -
1950 10 44 21 - 4
1960 11 34 16 - 18
1970 12 39 22 32 49
1980 12 46 29 55 70
1990 16 57 42 64 -
12 vs. 16 1940 9 10 6 - -
1950 10 5 9 - 15
1960 11 8 6 - 6
1970 12 10 10 12 14
1980 12 11 9 14 17
1990 16 17 15 16 -

Notes: Mincer estimates make no adjustment for taxes or tuition. Census General Specification estimates
account for tuition and progressive taxes with a fully nonparametric wage specification. CPS cross section
estimates use cross sectional data and a general wage specification accounting for tuition and flat taxes. CPS
Cohort estimates follow a cohort turning age 18 in the reported year, using a general wage specification
accounting for tuition and flat taxes. Each CPS estimate is based on three adjoining years/cohorts worth of
data. See Appendix B for data description.

If the observed discrepancies between cross-section and cohort-based estimated
“rates of return” are due to price changes over time that could be at least partly an-
ticipated or are due to changing cohort quality, then cross-section estimates would not
reflect the ex ante “rates of return” that governed schooling decisions. On the other hand,
if changes in skill prices were entirely unanticipated, then cross-section estimates may
provide a better indication of the ex ante returns governing schooling decisions than
would the actual ex post returns experienced by each cohort. A better understanding of
the underlying causes for such dramatic changes in wages and of individual expecta-
tions is needed. Buchinsky and Leslie (2000), Carneiro, Hansen and Heckman (2003)
and Cunha, Heckman and Navarro (2005) present empirical explorations of alternative
expectation—formation models. We review methods for estimating agent information
sets in Section 10.

In summary, cross-section estimates of the “rate of return” to schooling should be
cautiously interpreted, particularly when skill prices are changing over time or when
cohort quality is changing. If one is interested in empirically estimating historical rates
of return, a cohort analysis is clearly preferable. Data from the 1964-2000 March CPS
suggest that “returns” estimated from a cross-section of workers are not only biased in
levels, but they also suggest patterns that sometimes differ from those obtained using
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a cohort-based estimation strategy. If one is interested in estimating the conventional
rates of return governing school investment decisions, then whether to use cross-section
or cohort-based estimates depends on the extent to which individuals are able to fore-
cast future changes in wages and skill prices. We next turn to a review of the recent
instrument-based “rate of return” literature.

7. Accounting for the endogeneity of schooling

Much of the CPS-Census literature on the returns to schooling ignores the choice of
schooling and its consequences for estimating “the rate of return”. It ignores uncertainty.
It is static and ignores the dynamics of schooling choices and the sequential revelation of
uncertainty. It also ignores ability bias.’® Economists since C. Reinhold Noyes (1945)
in his comment on Friedman and Kuznets (1945) have raised the specter of ability bias,
noting that the estimated return to schooling may largely be a return to ability that
would arise independently of schooling. Griliches (1977) and Willis (1986) summarize
estimates from the conventional literature on ability bias. For the past 30 years, labor
economists have been in pursuit of good instruments to estimate “the rate of return”
to schooling, usually interpreted as a Mincer coefficient. However, the previous sec-
tions show that, for many reasons, the Mincer coefficient is not informative on the true
rate of return to schooling, and therefore is not the appropriate theoretical construct to
gauge educational policy. Card (1999) is a useful reference for empirical estimates from
instrumental variable models.

Even abstracting from the issues raised by the sequential updating of information,
and the distinction between ex ante and ex post returns to schooling, which we discuss
further below, there is the additional issue that returns, however defined, vary among
persons. A random coefficients model of the economic return to schooling has been an
integral part of the human capital literature since the papers by Becker and Chiswick
(1966), Chiswick (1974), Chiswick and Mincer (1972) and Mincer (1974).5° In its most
stripped-down form and ignoring work experience terms, the Mincer model writes log
earnings for person i with schooling level S; as

Iny; = o; + p;iS;, (11)

where the “rate of return” p; varies among persons as does the intercept, «;. For the
purposes of this discussion think of y; as an annualized flow of lifetime earnings. Un-
less the only costs of schooling are earnings foregone, and markets are perfect, p; is a
percentage growth rate in earnings with schooling and not a rate of return to schooling.
Leto; = o + &y; and p; = p + &, where a and p are the means of o; and p;. Thus the

58 See Katz and Autor (1999) for a survey. An exception is Angrist and Krueger (1991). For an analysis of
the quality of their instruments see Staiger and Stock (1997).
39 Recall our discussion of the random coefficients model in Section 2.2.
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means of &y, and ¢, are zero. Earnings equation (11) can be written as

Iny; =a+ pS; + {e; + €5, Si}- (12)

Equations (11) and (12) are the basis for a human capital analysis of wage inequality in
which the variance of log earnings is decomposed into components due to the variance
in S; and components due to the variation in the growth rate of earnings with schooling
(the variance in p), the mean growth rate across regions or time (p), and mean schooling
levels (S). [See, e.g., Mincer (1974), Willis (1986).]

Given that the growth rate p; is a random variable, it has a distribution that can be
studied using the methods surveyed in Sections 9 and 10. Following the representative
agent tradition in economics, it has become conventional to summarize the distribution
of growth rates by the mean, although many other summary measures of the distribution
are possible. For the prototypical distribution of p;, the conventional measure is the
“average growth rate” E(p;) or E(p;|X), where the latter conditions on X, the observed
characteristics of individuals. Other means are possible such as the mean growth rates
for persons who attain a given level of schooling.

The original Mincer model assumed that the growth rate of earnings with schooling,
i, is uncorrelated with or is independent of S;. This assumption is convenient but is not
implied by economic theory. It is plausible that the growth rate of earnings with school-
ing declines with the level of schooling. It is also plausible that there are unmeasured
ability or motivational factors that affect the growth rate of earnings with schooling and
are also correlated with the level of schooling. Rosen (1977) discusses this problem in
some detail within the context of hedonic models of schooling and earnings. A similar
problem arises in analyses of the impact of unionism on relative wages and is discussed
in Lewis (1963).

Allowing for correlated random coefficients (so S; is correlated with €, ) raises sub-
stantial problems that are just beginning to be addressed in a systematic fashion in the
recent literature. Here, we discuss recent developments starting with Card’s (1999) ran-
dom coefficient model of the growth rate of earnings with schooling, a model that is
derived from economic theory and is based on the analysis of Becker’s model by Rosen
(1977).60 We consider conditions under which it is possible to estimate the mean effect
of schooling and the distribution of returns in his model. The next section considers the
more general and recent analysis of Carneiro, Heckman and Vytlacil (2005).

In Card’s (1999, 2001) model, the preferences of a person over income (y) and
schooling (S) are

Uy,S) =InyS) —e(S), ¢'(S) >0, and ¢"(S)>0.

The schooling—earnings relationship is y = g(S). This is a hedonic model of schooling,
where g(S) reveals how schooling is priced out in the labor market. This specification

60 Random coefficient models with coefficients correlated with the regressors are systematically analyzed in
Heckman and Robb (1985, 1986). They originate in labor economics with the work of Lewis (1963). Heckman
and Robb analyze training programs but their analysis clearly applies to estimating the returns to schooling.
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is written in terms of annualized earnings and abstracts from work experience.®! It as-
sumes perfect certainty and abstracts from the sequential resolution of uncertainty that
is central to the modern literature. In this formulation, discounting of future earnings is
kept implicit. The first order condition for optimal determination of schooling is

(S
% — J(9). (13)

The term £ /((Ss)) is the percentage change of earnings with schooling or the “growth rate”
at level s. Card’s model reproduces Rosen’s (1977) model if r is the common inter-
est rate at which agents can freely lend or borrow and if the only costs are S years
of foregone earnings. In Rosen’s setup, an agent with an infinite lifetime maximizes

LerSg(8) s0 (8) = rS +1Inr, and £ = r.
Linearizing the model, we obtain
g'(S)
g(Si)
@'(S) =8i(S) =ri +kaSi, ko =0.

=Bi(S) =pi —ki1S;, ki =0,

Substituting these expressions into the first-order condition (13), we obtain that the
optimal level of schooling is S; = (p"k;r"), where k = k| + kp. Observe that if both
the growth rate and the returns are independent of S; (k; = 0, k2 = 0), then k = 0 and
if p; = r;, there is no determinate level of schooling at the individual level. This is the
original Mincer (1958) model.®2

One source of heterogeneity among persons in the model is p;, the way §; is trans-
formed into earnings. [School quality may operate through the p; for example, as in
Behrman and Birdsall (1983), and p; may also differ due to inherent ability differ-
ences.] A second source of heterogeneity is r;, the “opportunity cost” (cost of schooling)
or “cost of funds.” Higher ability leads to higher levels of schooling. Higher costs of
schooling results in lower levels of schooling.

We integrate the first-order condition (13) to obtain the following hedonic model of
earnings,

1
mﬁ=m+m&—§h§. (14)

To achieve the familiar looking Mincer equation, assume k; = 0.9 This assumption
rules out diminishing “returns” to schooling in terms of years of schooling. Even under

61 Adding work experience in a multiplicatively separable way produces one Mincer model.

62 In that model, aggregate allocations of persons to schooling are determined by an arbitrage condition that
returns must be equalized across choices.

63 The Card model (1999) produces a Mincer-like model where p; is the Mincer return for individual i. The
mean return in the population is E(p;). It is an ex post return derived under the assumption that log earnings
are linear in schooling, contrary to the literature, previously discussed, that shows pronounced nonlinearities
and sheepskin effects. (See the discussion in Sections 3 and 4.)
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this assumption, p; is the percentage growth rate in earnings with schooling, but is not
in general an internal rate of return to schooling. It would be a rate of return if there
were no direct costs of schooling and everyone faces a constant borrowing rate. This is
a version of the Mincer (1958) model, where k; = 0, and r; is constant for everyone
but not necessarily the same constant. If p; > r;, person i takes the maximum amount
of schooling. If p; < r;, person i takes no schooling and if p; = r;, schooling is
indeterminate. In the Card model, p; is the person-specific growth rate of earnings and
overstates the true rate of return if there are direct and psychic costs of schooling.®*

This simple model is useful in showing the sources of endogeneity in the schooling
earnings model. Since schooling depends on p; and r;, any covariance between p; — 7;
(in the schooling equation) and p; (in the earnings function) produces a random coef-
ficient model. Least squares will not estimate the mean growth rate of earnings with
schooling unless, COV (p;, p;i — ri) = 0.

Dropping the i subscripts, the conditional expectation of log earnings given s is

E(ny|S =s)=E(@|S=s)+ E(p|S =s)s.

The first term produces the conventional ability bias if there is any dependence be-
tween s and raw ability «. Raw ability is the contribution to earnings independent of
the schooling level attained. The second term arises from sorting on returns to school-
ing that occurs when people make schooling decisions on the basis of growth rates of
earnings with schooling. It is an effect that depends on the level of schooling attained.
In his Woytinsky Lecture, Becker (1967), points out the possibility that many able
people may not attend school if ability (p;) is positively correlated with the cost of
funds (r;). A meritocratic society would eliminate this positive correlation and might
aim to make it negative. Schooling is positively correlated with the growth rate (p;) if
COV(pi, pi — ri) > 0. If the costs of schooling are sufficiently positively correlated
with the growth rate, then schooling is negatively correlated with the growth rate.
Observe that S; does not directly depend on the random intercept ;. Of course, «;
may be statistically dependent on (p;, r;). In the context of Card’s model, we consider
conditions under which one can identify p, the mean growth rate of earnings in the pop-
ulation as well as the full distribution of p. First we consider the case where the marginal
cost of funds, r;, is observed and consider other cases in the following subsections.®®

7.1. Estimating the mean growth rate of earnings when r; is observed

A huge industry surveyed in Card (1999) seeks to estimate the mean growth rate in
earnings, E (p;), calling it the “causal effect” of schooling. For reasons discussed earlier

64 Recall the discussion of Section 4. From Equation (4) if term 1 is zero, and we assume multiplicative
separability (or no experience) then p; (= term 2) = 7 + term 3 which arises from tuition and psychic costs
where 7 is the opportunity cost of funds.

65 Qur discussion is based in part on Heckman and Vytlacil (1998).
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in this chapter, in general, it is not an internal rate of return. However, it is one of the
ingredients used in calculating the rate of return as we develop further in Section 8.2.
The “causal effect” may also be of interest in its own right if the goal is to estimate
pricing equations for labor market characteristics. We discuss some simple approaches
for identifying causal effects before turning to a more systematic analysis in Section 8.

Suppose that the cost of schooling, 7;, is measured by the economist. Use the notation
“11” to denote statistical independence. Assume

ri 1L (pi, @i).

This assumption rules out any relationship between the cost of funds (r;) and raw abil-
ity (o;) with the growth rate of earnings with schooling. For example, it rules out
fellowships based on ability. We make this assumption to illustrate some ideas and
not because of its realism. Observing r; implies that we observe p; up to an additive
constant. Recall that S; = (p"k;r"), sothat p; = r; + kS; and p = E(p;) =7 + kE(S;).

r; is a valid instrument for S; under the assumption that k; = 0. It is independent of

a;, p; (and hence &y, €p;) and is correlated with S; because S; depends on r;. Form

COV(nyi,ri)  E{(ri =)@ =& + (pi = p)(Si = S) + pSi + piS — pS)]}

CoV(S;,ri) E{[28)1r — 71
_ FE[AN(Ap)(Ap — Ar)] — £o
= = ,
3

where AX = X — E(X). As a consequence of the assumed independence between r;
and (a1, o), EL(Ar)(Ap)*] = 0 and E[(Ar)*Ap] = 0, 50

COV(lny;,ri) |
cov(S;,r)) |

Observe that p is not identified by this argument if p; r; (so the mean growth rate
of earnings depends on the cost of schooling).66 In that case, E[(Ar)(Ap)?] # 0 and
E[(Ar)2(Ap)] # 0.If r; isknown and r; = L;y + M;, where the L; are observed vari-
ables that explain r; and E(M;|L;) = 0, then y is identified, provided a rank condition
for instrumental variables is satisfied.®” We require that L; be at least mean independent
of (M;, pi, ;). From the schooling equation we can write S; = (p; — L;y — M;)/k and
k is identified since we know y.

Observe that we can estimate the distribution of p; since p; = r; +kS;, k is identified
and (r;, S;) are known. This is true even if there are no instruments L (y = 0), provided
that r; 1L (p;, ;). With the instruments that satisfy at least the mean independence con-
dition, we can allow r; & p; and all parameters and distributions are still identified. The

66 The symbol X means “not independent of.”
67 See, e.g., Greene (2003).
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).68

model is fully identified provided r; is observed and L; L (M;, p;, o; Thus, we can

identify the mean return to schooling.
7.2. Estimating the mean growth rate when r; is not observed

If r; is not observed and so cannot be used as an instrument, but we know that r; depends
on observed factors L; and M;, r; = Lijy + M; and L; 1 (M;, o, p;), then the
analysis of Section 7.1 carries over and the mean growth rate p is identified. Recall that
Iny; = a;j 4+ pS; + (p; — p)S;. Substitute for S; to get an expression of y; in terms of L;,
Iny; = o; + pi(0i — Liy — M;)/k. We obtain the vector moment equations:

COV(lny;, L;) = p COV(S;, L;),

so p is identified from the population moments because the covariances on both sides
are available.®® Partition y = (y0, ¥1), Where yy is the intercept and y; is the vector of
slope coefficients. From the schooling equation, we obtain

pi —Livi —=Mi v

k k

yi  pi—Mi  y

=—L; X + X -
We can identify y;/k from the schooling equation, as well as the mean growth rate p.
However, we cannot identify the distribution of p; or r; unless further assumptions are
invoked. We also cannot separately identify yg, y1 or k. Heckman and Vytlacil (1998)
show how to define and identify a version of “treatment on the treated” for growth rates
in the Becker—Card—Rosen model.

S =

7.3. Adding selection bias

Selection bias can arise in two distinct ways in the Becker—Card—Rosen model: through
dependence between «; and p; and through dependence between «; and r;. Allowing
for selection bias,

E(Iny;|S;) = E(;|S;) + E(0iSi1Si) = E(;|S;) + E(pi]Si)S;.

If there is an L; that affects r; but not p; and is independent of (¢;, M;), i.e.,
L; U («;, pi, M;), and E(r;|L;) is a nontrivial function of L;, in the special case of
a linear schooling model as in Section 7.2,

E(Iny;|L;) = E(o|Li) + E(0; Si|Li) = n + pE(S;|L;).™°

68 As we have stressed, the independence conditions are overly strong, but can be weakened to a mean
independence assumption provided that we only seek to recover conditional means.

% One can use the GMM formula presented in Hansen (1982) to construct an efficient estimator if there is
more than one nonconstant element in ;.

_ o2 E(p; M;
0, — &+ (£) - %, where a/% = VAR(p;).
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Since we can identify E(S;|L;) we can identify p. Thus, under the stated conditions,
the instrumental variable (IV) method identifies o0 when there is selection bias. In a
more general nonparametric case for the schooling equation, which we develop in the
next section of this chapter, this argument breaks down and p is not identified when p;
determines S; in a general way. The sensitivity of the /V method to assumptions about
special features of Card’s model is a simple demonstration of the fragility of the method.
We return to this model in Section 10 and use it to motivate recent developments in the
literature on identifying information available to agents when they make their schooling
decisions.

7.4. Summary

Card’s version of the Becker (1967)-Rosen (1977) model is a useful introduction to the
modern literature on heterogeneous “returns to schooling.” p; is, in general, a person-
specific growth rate of log earnings with schooling and not a rate of return. There is a
distribution of p; and no scalar measure is an adequate summary of this distribution.
Recent developments in this literature, to which we now turn, demonstrate that standard
instrumental variable methods are blunt tools for recovering economically interpretable
parameters.

8. Accounting systematically for heterogeneity in returns to schooling: What does
IV estimate?

To understand what IV estimates in a more general setting, this section analyzes a sim-
ple version of (11) in which there are only two levels of schooling. Our discussion
can be generalized [see Heckman and Vytlacil (2005), Heckman, Urzua and Vytlacil
(2006)], but for purposes of exposition it is fruitful to focus on a two outcome model.
It links 7V to the analysis of Willis and Rosen (1979) and Willis (1986), who focus on
a two outcome model of schooling in which the p; of Equation (14) varies in the pop-
ulation. Recent research on instrumental variables in the correlated coefficient model
establishes a close link between IV and the selection model [Heckman (1976)] that
Willis and Rosen apply to obtain their estimates. As shown in Heckman, Urzua and
Vytlacil (2006), the contrast between /V and selection methods emphasized by Angrist
and Krueger (1999) and echoed throughout the literature is not valid once the IV method
for the correlated random coefficient model is correctly understood.

Because schooling is usually received in integer amounts, and most well posed mod-
els of schooling choice are based on nonlinear discrete choice frameworks, the simple
Card model abstracts from key features of the schooling choice — earnings outcome
model which can be captured in a simple way by a discrete outcome model.”' Heckman

71 Card’s model becomes nonlinear if one constrains it to rule out negative schooling and schooling above
observed magnitudes.
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(1997) and Heckman and Vytlacil (1998) show how models of schooling that capture
key features of economic theory are intrinsically nonlinear.

In the model of Section 7, the mean growth rate of earnings with schooling, p, was as-
sumed to be the parameter of interest without any good justification. While statisticians
sometimes call such averages the “average causal effect” (ACE), there is no reason to
focus on this parameter to the exclusion of other parameters that can be derived from
the distribution of p;.

Moreover, as we shall show in this section, the instrumental variable estimators set
forth in the recent literature do not in general estimate ACE or any of the other standard
treatment effects of schooling on earnings when schooling choices are discrete. They do
not estimate rates of return to schooling, nor are they designed to. Instead, they estimate
certain weighted averages of individual growth rates where the weights can sometimes
be negative.

Following Heckman and Vytlacil (2000, 2005, 2007b), Heckman, Urzua and Vytlacil
(2006), and Carneiro, Heckman and Vytlacil (2005), consider the following generalized
Roy model of schooling and its “return.” A version of it is applied by Willis and Rosen to
the problem of choice of college using tools developed in the econometrics of selection
bias. Our analysis of this model links the modern IV literature to the classical selection
literature.”?

Let Y7 denote the present value of earnings from college. Yy is the present value of
earnings from high school. There is a distribution of G = Y| — Yy and another distrib-
ution of G — C in the population where C denotes the cost of schooling and G denotes
earnings gains from college. No single number summarizes either distribution, although
much of the literature focuses on one conditional mean or some other single number as
the object of economic and econometric interest. Attention has focused in recent years
on IV estimates of the coefficient of schooling in a regression of log earnings on school-
ing. In the special cases analyzed in Section 7, IV can sometimes identify the mean
growth rate in earnings (E (p;)) which is usually not the same as the rate of return. But
more generally, IV does not even identify this parameter. This section considers what
1V estimates in general cases.

If G varies in the population but everyone faces the same C, individuals decide to
enroll in school (S = 1) if G — C > 0. Figure 9 plots the hypothetical density of G
in this example, f(G), and also presents the cost that everyone faces, C. Individuals
who have values of G to the right of C choose to enroll in school, while those to the
left choose not to enroll. The gross gain for the individuals who choose to go to school,
E(G|G > C), is computed with respect to the normalized density of f(G) that is to
the right of C. The marginal return (the return for individuals at the margin) is exactly
equal to C. Figure 9 presents both the average and the marginal return for this example.

Suppose that we want to estimate the effect on earnings of compulsory college at-
tendance. Those individuals who are induced to enroll in school by this policy have G

72 Heckman, Urzua and Vytlacil (2006) systematically compare these literatures. See also Heckman and
Vytlacil (2005, 2007b).
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Figure 9. Density of absolute returns.

below C (they were not enrolled in school before the policy), and the average “return”
for these individuals is E(G|G < C). Alternatively, one might be interested in analyz-
ing the effect of a tuition subsidy that changes the cost of attending school from C to C’
for everyone in the economy. Those individuals who are induced to enroll in school by
this policy have G below C (they were not enrolled in school before the policy) and
G above C’ (they decide to enroll after the policy), and the average “return” for these
individuals is E(G|C" < G < C). One needs different parameters to evaluate each of
these two different policies (E(G|G < C) vs. E(G|C’ < G < (). Neither is esti-
mated by the average growth rate, and hence by the /V method discussed in Section 7.
In this example, the marginal entrant into college has a lower return than the average
entrant, and the return for the average student is not the relevant return to evaluate either
policy.”

Standard estimates of the returns to schooling, such as the ones obtained using the
method of least squares, as in the vast literature surveyed by Katz and Autor (1999),
or using the method of instrumental variables, as surveyed by Card (1999), are not
designed to produce either of the policy parameters just described. It is unusual in

73 There is an additional assumption behind this example which we will maintain throughout this chapter:
that the policy does not have important general equilibrium effects.
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the recent literature on the “returns to schooling” for researchers estimating “the ef-
fect” of schooling to specify a policy or economic question of interest and address it
directly. Following Card (1999) and Angrist and Krueger (1999), many define the prob-
ability limits of instrumental variable estimators (LATE, defined below) as “the” return
to schooling without stating what economic questions these statistical objects address.
Different instruments define different parameters. These parameters answer different,
implicitly defined, economic questions. Moreover the commonly accepted interpreta-
tion of LATE — that it estimates the returns for those induced to change their schooling
status by the change in the instrument — assumes that everyone responds to the instru-
ment in the same direction (i.e., all increase their schooling or all decrease it). This is a
strong assumption that rules out heterogeneity in the response of schooling choices to
instruments.”*

In this section we distinguish between policy parameters of interest, conventional
evaluation parameters and standard estimates of the “returns to schooling.” We show
how these parameters answer different questions, and how we can recover each of them
from the data. We illustrate the empirical importance of accounting for heterogeneity
and the fragility of instruments even in an ideal data set with far richer instruments
than are available in the widely used CPS or Census data analyzed in earlier sections of
this survey. This section draws from Heckman and Vytlacil (2005, 2007b), Heckman,
Urzua and Vytlacil (2006) and Carneiro, Heckman and Vytlacil (2005). They estimate
the growth rate of earnings in schooling relevant for evaluating a particular education
policy such as a tuition subsidy (in a partial equilibrium framework) and find that it is
very different from the conventional program evaluation parameters usually defined in
the literature, such as the “return to schooling” for the average person, or the “return to
schooling” for the average student in college. It also differs from the estimates obtained
by applying least squares or instrumental variables methods, the two methods most often
used to estimate “returns” to schooling.

We clarify the interpretation of what is usually labeled “ability bias” and “selection
bias” in this literature. Standard intuitions break down in a model of heterogeneous
returns. They can be very misleading when comparing OLS and IV estimates of the
growth rates of earnings with respect to schooling [see Heckman and Vytlacil (2005)].

Instrumental variables estimates of the “return to schooling” (really growth rates of
earnings with schooling) are usually interpreted as estimating an average “return” to
schooling for individuals induced to go to school by changes in the values of the instru-
ment, following the LATE (local average treatment effect) interpretation of Imbens and
Angrist (1994). Angrist and Krueger (1999) are ardent and influential proponents of this
approach. We discuss the relationship of LATE to treatment effects and rates of return
below.

74 Heckman and Vytlacil (2005) and Heckman, Urzua and Vytlacil (2006) present an extensive discussion of
this issue.
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Intuitions about ability bias break down in a particularly serious way if individuals
have multiple skills and sort across schooling levels in such a way that the best individ-
uals in one schooling level are the worst in the other, and vice versa.” Heckman and
Robb (1985, 1986) make the point that IV does not identify interpretable parameters in
a selection model or a generalized Roy model.

8.1. The generalized Roy model of schooling

To focus the discussion, and motivate the empirical literature, we consider a two out-
come model. Heckman and Vytlacil (2005, 2007b) and Heckman, Urzua and Vytlacil
(2006) extend this discussion to ordered choice and general unordered choice models
with multiple outcomes.

As noted in Section 7, from its inception, the modern literature on the “returns to
schooling” has recognized that returns may vary across schooling levels and across per-
sons of the same schooling level.”® The early literature was not clear about the sources
of variation in returns. The Roy model (1951) and its extensions [see Heckman (1976,
1979)], as applied by Willis and Rosen (1979), gives a more precise notion of why re-
turns vary and how they depend on S. In the generalized Roy framework, the potential
outcomes associated with two different schooling levels are generated by two random
variables (U, U1):

InYy = o + Uy, (15a)
InY  =a+pB+U, (15b)

where E(Up) = 0and E(U;) = 0so«a (= E(InYy)) and o + B (= E(InY))) are the
mean potential outcomes for In Yy and In Y; respectively. The common coefficient model
assumes Ug = U;. We implicitly condition on X, the regressors determining potential
outcomes. Let C(Z) denote costs of schooling measured in proportional terms. The Z
are the variables determining costs. The individual level “causal effect” of educational
choice § = 1is

/3=1nY1—1nY0=B+U1_U0.

In general, this is not a rate of return but a growth rate of earnings with schooling. There
is a distribution of § in the population.
Observed earnings are written in a “switching regression” form,

InY=SnY 1 +(1—-SInYy=a+8S+ U
=a+ S+ {Uo + S — Un)}. (16)

75 As opposed to what we would expect from a single skill model where the best individuals in one sector
would also be the best individuals in the sector they did not choose if they were placed there instead.
76 See Becker and Chiswick (1966), Chiswick (1974) and Mincer (1974).
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Persons live once and we only observe them in one or the other education state (recall
S = Oor 1). This equation captures the literature on counterfactual states that was devel-
oped by Roy (1951). It is also a version of Quandt’s (1958, 1972) switching regression
model. It is equivalent to the familiar semilog specification of the earnings—schooling
equation popularized by Mincer (1974), given in Equation (11), which in the current
notation writes log earnings In Y as a function of S,

InY =a+BS+U, (17
where U = Uy + S(U; — Up).”” In terms of the notation of Section 7, Uy = &4,
Uy —Up = ¢,.

In the generalized Roy framework, the choice of schooling is explicitly modeled. In
its simplest form

1 iflnYj—InYy>C<+ g8 >C,
= : (18)
0 otherwise.
If agents know or can partially predict S at the time they make their schooling decisions,
there is dependence between 8 and S in Equation (16). This produces the “correlated
random coefficient model” that is often applied to general versions of (16). Decision
rules similar to (18) characterize many other economic choices.

The conventional approach to estimating selection models postulates normality of
(Up, Uy) in Equations (15a) and (15b), writes 5 and o as linear functions of X and
postulates independence between X and (Up, Uy). Parallel normality and independence
assumptions are made for the unobservables and observables in selection equation (18).
From estimates of the structural model, it is possible to answer a variety of economic
questions and to construct the various treatment parameters and distributions of treat-
ment parameters.”® However in recent years these assumptions have often been viewed
as unacceptably strong by empirical labor economists [see, e.g., Angrist and Krueger
(1999)].7%

A major advance in the recent literature in econometrics is the development of frame-
works that relax conventional linearity, normality and separability assumptions to esti-
mate various economic parameters. Heckman and Vytlacil (2000, 2005, 2007b) develop

77 For simplicity, throughout this section we suppress explicit notation for dependence of the parameters on
the covariates X unless it is clarifying to make this dependence explicit.

78 Willis and Rosen (1979) is an example of the application of the generalized Roy model. Textbook treat-
ments of the normal selection model are available in Amemiya (1985) and Ruud (2000). Aakvik, Heckman
and Vytlacil (2005), Heckman, Tobias and Vytlacil (2001, 2003) and Heckman and Vytlacil (2007a) de-
rive all of the treatment parameters and distributions of treatment parameters for several parametric models
including the normal. The Heckman, Tobias and Vytlacil papers present one elementary discussion of the
normal selection model applied to the generalized Roy framework. Carneiro, Hansen and Heckman (2003)
and Cunha, Heckman and Navarro (2005) estimate the distribution of treatment effects under semiparametric
assumptions. We review this work in the last two sections of this chapter.

A large literature, starting with Heckman and Sedlacek (1985) and exemplified most recently by Blundell,
Reed and Stoker (2003) shows that correcting for selection and sectoral choices, a log normality assumption
for sectoral earnings fits the data well.
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a framework for estimating rates of return to schooling (mean growth rates of earn-
ings with schooling) that do not depend on normality, independence of the conditioning
variables with the regressors, separability or linearity of the estimating equations. Their
work unites IV and selection models and presents a new local IV approach as a way
to estimate selection models. Heckman, Urzua and Vytlacil (2006) and Heckman and
Vytlacil (2005) present extensive discussions of the relationship between the two ap-
proaches.
Heckman and Vytlacil work with general nonseparable models,

InY; = pui(X,Up) and InY¥y = uo(X, Vo). 19)

The growth rate of earnings due to schooling is InY; — InYy = 8 = u1(X,Uy) —
wo(X, Up), which is a general nonseparable function of (U, Up). It is not assumed that
X 1 (Up, Uy), so X may be correlated with the unobservables in potential outcomes.
As demonstrated by Heckman and Vytlacil (2000, 2005, 2007a), one needs exogeneity
of X only if one is seeking to make out of sample projections. Like virtually the entire
microeconomic literature, they ignore any general equilibrium effects of policies on
Y1, Ygor ,3.80
A latent variable model that captures decision rule (18) in a general way is:

S* = us(Z) — Us,
(20)
S=1 ifS*>0.

In this notation the Z can include all of the variables in the outcome equations plus the
variables in the cost function which are a source of exclusion restrictions. pug(Z) is a
general function of the observables where Us is an unobservable arising from Y1, Yy
and C. A person goes to school (S = 1) if $* > 0. Otherwise S = 0. In this notation,
(Z, X) are observed and (Uj, Uy, Us) are unobserved. Us may depend on U; and Uy
and the unobservables in C in a general way. The Z vector may include some or all of
the components of X.

The separability between Z and Uy in (20) plays a crucial role in the entire mod-
ern instrumental variables literature based on LATE and its extensions. It produces the
“monotonicity” or “uniformity” condition of Imbens and Angrist (1994). Without the
separability, changes in the instruments in Z can induce two-way flows into and out
of treatment and cause IV to break down as a method for estimating treatment effects.
See Heckman and Vytlacil (2005, 2007b) and Heckman, Urzua and Vytlacil (2006).
Those authors explore the consequences of a simple random coefficient choice model
us(Z) = Zy, where y is a random coefficient that is statistically independent of Z
and Ug. If y can assume both positive and negative values, then monotonicity can be

80 Heckman, Lochner and Taber (1998) analyze generalized Roy models of schooling in a general equilibrium
framework.
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violated. But it can also be violated if y is a nonnegative random vector since different
components of y would differ across persons experiencing the same change in Z.

The separability that is required to justify (20) and that underlies the entire LATE-
based literature cannot be justified in many choice-theoretic models of schooling in-
cluding dynamic discrete choice models. The Bellman equation producing the value
function in multiperiod settings generates nonseparability between observables and un-
observables in the choice equation in early stage decisions even if final stage choices are
separable in those variables [see Cunha, Heckman and Urzua (2006)]. The method of
1V applied to a heterogeneous outcome model is fundamentally asymmetric. It allows
for heterogeneity in responses to schooling (i.e., it imposes no restrictions on 8§ which
may be general random variables). At the same time, it restricts the heterogeneity in re-
sponses of schooling choices to changes in Z. Consider the special case us(Z) = Zy.
The “monotonicity conditions” invoked in the recent literature to justify IV as estimat-
ing the return to schooling for people induced into schooling by a change in instrument
rules out a random coefficient model for y except for very special cases. Thus it does not
allow for heterogeneity in choices, but it allows for heterogeneity in outcomes. See the
discussion in Heckman and Vytlacil (2005, 2007b) and Heckman, Urzua and Vytlacil
(2006).

Heckman and Vytlacil (2001a, 2007b) assume that (a) Z has some variables that shift
us(Z) given X (the other variables) — an exclusion condition that is standard in the IV
literature; (b) The unobservables (Uy, U;, Us) are independent of Z given X (a standard
instrumental variables condition) and (c) 0 < Pr(S = 1|X) < 1, so in large samples
there are some people who have S = 1 and some who have § = 0, so comparisons
between treated and untreated persons can be made for those values of X. They make
additional mild regularity assumptions. Under these conditions it is possible to interpret
IV as a weighted average of willingness to pay measures called the marginal treatment
effect (MTE). A version of this treatment effect was introduced into the econometrics
literature by Bjorklund and Moffitt (1987) for a linear-in-parameters model.®!

Let P(z) be the probability of receiving schooling level 1, S = 1 conditional on
Z =1z, P(z) = Pr(§ = 1|Z = z) = Fyy(us(z)) where Fy; is the distribution of Ug.
Without loss of generality, one may write Ugs ~ Unif[0, 1] so us(z) = P(z).8? (If §* =
v(Z) — Vs, and Vg is a continuous random variable, one can always reparameterize the
model using simple transformation of variable rules so us(Z) = Fy,(v(Z)), where Fy
is the distribution of V and Ug = Fy(Vs).) The propensity score P(z) is a monotonic
transformation of the mean utility of attending school and we will refer to it as the mean
utility.

81 Vytlacil (2002) shows that under the conditions stated in this paragraph, separability (20) implies and is
implied by the monotonicity and independence conditions of Imbens and Angrist (1994) and Angrist and
Imbens (1995). Heckman and Vytlacil (2005, 2007b) present three alternative definitions of the MTE for a
general nonlinear model which are equivalent in a linear model.

82 we say a random variable is uniformly distributed over [0, 1] if its density is identically equal to 1 over
this interval.
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When g varies in the population, the growth rate of earnings with schooling is a
random variable and there is a distribution of “causal effects.” There are various ways
to summarize this distribution and, in general, no single statistic will capture all aspects
of the distribution.

Many summary measures of the distribution of 8 are used in the recent literature.
Among them are

EBIX=x)=E(nY; —InYy|X = x)
= B(x)

the return to the population average person given characteristics X = x. This quantity
is sometimes called “the” causal effect of S.83 Others report the “return” for those who
attend school:

EBIS=1,X=x)=E(nY  —InYy|S=1,X=x)
=BxX)+EWU —Up|S=1,X = x).3

This is the parameter emphasized by Willis and Rosen (1979) where E (U1 — Up|S =
1, X = x) is the sorting gain — how people who take § = 1 differ from randomly
sampled persons.

Another parameter is “the return” for those who are currently not going to school:

EQBIS=0,X=x)=E(nY; —InYy|S =0, X =x)
=Bx)+ EWU; —Up|S =0, X =x).

Angrist and Krueger (1991) and Meghir and Palme (2001) estimate this parameter and
we discuss it further below. In addition to these “effects” is the effect for persons in-
different between the two levels of schooling, which in the simple Roy model without
costs (C=0)is EqnY; —InYp|InY; —InYy =0) = 0.

Depending on the conditioning sets and the summary statistics desired, a variety
of “causal effects” can be defined. Different causal effects answer different economic
questions. As noted by Heckman and Robb (1986), Heckman (1997) and Heckman and
Vytlacil (2005, 2007b), under one of two conditions,

I. Uy =Uy (common effect model),
or more generally,

II. Pr(S=1|X =x, ) =Pr(S =1]X) (conditional on X, 8 does not affect choices),

83 Itis the Average Treatment Effect (ATE) parameter. Card (1999, 2001) defines it as the “true causal effect”
of education. See also Angrist and Krueger (1999, 2001). Our chapter demonstrates that there is no unique
“true causal effect.”

84 Tt is the Treatment on the Treated parameter as discussed by Heckman and Robb (1985).
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all of the mean treatment effects conditional on X collapse to the same parameter. The
second condition is the one implicitly used by Mincer (1974). It assumes that schooling
decisions are not made on the basis of any component of the growth rate 8. If nei-
ther condition is satisfied, there are many candidates for the title of causal effect. This
ambiguity has produced considerable confusion in the empirical literature as different
analysts use different definitions in reporting empirical results and many of the estimates
are not strictly comparable.®

Which, if any, of these effects should be designated as “the” causal effect? We have
already noted that conventional “causal effects” are not estimates of a marginal internal
rate of return, but instead are estimates of some average growth rate of earnings with
schooling. Instead of hoping that a treatment effect or estimator answers an interesting
economic question, a better approach is to state an economic question and find the an-
swer to it. This obvious and traditional approach is not pursued in the recent literature.
Heckman and Vytlacil (2001c, 2005, 2007b) develop this approach using a standard
welfare framework. They introduce the notion of a policy relevant treatment effect. Ag-
gregate per capita outcomes under one policy are compared with aggregate per capita
outcomes under another. One of the policies may be no policy at all. For utility crite-
rion V(Y), a standard welfare analysis compares an alternative policy with a baseline
policy. The Policy Relevant Treatment Effect (PRTE) is

E(V(Y) |Alternative Policy) — E(V(Y) |Baseline Policy). 21

Adopting the common coefficient model, so 8 = B, a log utility specification (V(Y) =
InY) and ignoring general equilibrium effects, where B is a constant, 8, the mean
change in welfare is

E(In Y |Alternative Policy) — E (In Y |Baseline Policy) = (A P),

where (A P) is the change in the proportion of people induced to attend school by the
policy. This can be defined conditional on X = x or overall for the population. In terms
of gains per capita to recipients, the effect is . This is also the mean change in log
income if B is a random variable but independent of S if conditions I or II apply. In
the general case, when agents partially anticipate 8, and comparative advantage dic-
tates schooling choices, none of the traditional treatment parameters plays the role of 8
in (21) or answers the stated economic question. Heckman and Vytlacil (2001c, 2005,
2007b) show how the policy relevant treatment effect can be represented as a weighted
average of the MTE. The weights are given in Table 9b. See Heckman, Urzua and Vyt-
lacil (2006) for further examples.

In the empirical literature on the returns to schooling the aim is often to estimate
E(B|X = x), although this is unlikely to be the answer to many relevant policy

85 For example, Heckman and Robb (1985) note that in his survey of the union effects on wages, Lewis
(1986) confuses these different “effects.” This is especially important in his comparison of cross section and
longitudinal estimates where he inappropriately compares conceptually different parameters.
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questions. The standard estimation method is instrumental variables. However, in the
presence of heterogeneity and self-selection, we cannot identify E(8|X = x) by us-
ing standard instrumental variables methods. Instead, we identify LATE [Imbens and
Angrist (1994)], or a weighted average of LATE parameters, which is an instrument de-
pendent parameter. It is usually broadly defined as the “average ‘return’ to schooling
for individuals induced to change their schooling by the observed change in the instru-
ment”. The economic interpretation of this parameter is unclear. In general, LATE does
not correspond to a policy relevant parameter or a rate of return. The LATE parameter
of Imbens and Angrist (1994) is often invoked by empirical analysts to justify an in-
strumental variable estimate, without providing any precise definition of the economic
question it addresses.

One way to make this general point is to explore what is estimated by using com-
pulsory schooling as an instrument. Compulsory schooling is sometimes viewed as an
ideal instrument [see Angrist and Krueger (1991)]. But when “returns” are heteroge-
neous, and agents act on that heterogeneity in making schooling decisions, compulsory
schooling used as an instrument identifies only one of many possible treatment parame-
ters and in general does not estimate a rate of return to schooling.

Compulsory schooling selects at random persons who ordinarily would not be
schooled (S = 0) and forces them to be schooled. It is straightforward to establish
that it identifies treatment on the untreated:

E(nY; —InYy|X =x,S=0) = E(B|X = x, S = 0)

butnot ATE = E(InY; —In Yy) = B, treatment on the treated 7T = E(In Y] —In Yo|X =
x,8=1) = E(B|X =x,S = 1), or the marginal internal rate of return.3¢

Treatment on the untreated answers an interesting policy question. It is informative
about the earnings gains for a policy directed toward those who ordinarily would not
attend school and who are selected into school at random from this pool. If the policy
the analyst seeks to evaluate is compulsory schooling then the instrumental variable
estimand®” and the policy relevant treatment effect coincide. More generally, if the
instrumental variable we use is exactly the policy we want to evaluate, then the IV
estimand and the policy relevant parameter are the same. But whenever that is not the
case, the IV estimand does not identify the effect of the policy when returns vary among
people and they make choices of treatment based on those returns.?® For example, if the
policy we want to consider is a tuition subsidy directed toward the very poorest within
the pool of nonattenders, then an instrumental variable estimate based on compulsory
schooling will not be the relevant return to evaluate the policy.3’

86 See Carneiro, Heckman and Vytlacil (2005).

87 An estimand is the probability limit of an estimator.

88 See Heckman, Urzua and Vytlacil (2006) for an analysis of this case.

89 Heckman and Vytlacil (2005) show that for every policy it is possible in principle to define an instrumental
variable that generates the correct policy relevant treatment effect. However, such an instrument may not be
feasible in any given data set because of support problems. (Support is the range of a random variable where
it has positive density.) Different policies define different policy relevant instrumental variables.
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8.2. Defining treatment effects in the generalized Roy model and relating them to true
rates of return

The index model (18) and (20) can be used to define the marginal treatment effect
(MTE),

AMTE(x ug) = E(B|X = x, Us = us).

This is the mean gain to schooling for individuals with characteristics X = x and with
unobservable Us = ug.”" It is a willingness to pay measure for an additional year of

Table 9a
Treatment effects and estimands as weighted averages of the marginal treatment effect

ATE(x) = fol MTE(x,ug)dug (Average Treatment Effect)

TT(x) = fol MTE(x,ug)hrr(x,ug)dug (Treatment on the Treated)

TUT (x) = fol MTE(x,ug)htyr(x,ug)dug  (Treatment on the Untreated)
PRTE(x) = fol MTE(x, ug)hprr(x,ug)dug (Policy Relevant Treatment Effect)
IV(x) = [y MTE(x, ug)hpy (x, ug) dusg

OLS(x) = [y MTE(x, us)hors(x, us) dusg

Source: Heckman and Vytlacil (2001a, 2001b, 2005, 2007b).

Table 9b
Weights™*

hrr(x,us) = [fus £(PIX = ) dp] zrpiv=s

hrur (o us) = [fo'* £(pI1X =) dp] - srr=—pye=s

Fps x(us)—Fp x(us)
hprr(x,ug) = [ L2X0S)_Frxs) )

hiy(x,ug) = [, (p = E(PIX =) £ (pIX = %) dp] varply=s

h _ EWU|X=x,Ug=ug)h)(x,up)—EU|X=x,Ug=ug)ho(x,us)
OLS = MTE(x,ug)

hix,us) = [ F(PIX = %) dp] gprv=s

ho(x, ug) = 5’5 fplX =x)dp]m

Source: Heckman and Vytlacil (2001a, 2001b, 2005, 2007b).
* f(p|X = x) is the density of P(Z) given X = x.

90 Bjorklund and Moffitt (1987) introduced this parameter in the context of the parametric normal Roy model.
See Heckman and Vytlacil (2005, 2007a, 2007b) for a discussion of this literature.
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schooling for persons indifferent between attending or not attending college at a mean
utility P(Z) = us.

Under their assumptions, Heckman and Vytlacil (1999, 2001b, 2005, 2007b) estab-
lish that all of the conventional treatment parameters used in the program evaluation
literature are different weighted averages of the MTE where the weights integrate to
one. The conventional treatment parameters are the average treatment effect or ATE,
E(Y1 —Yy|S = 1, x), and treatment on the untreated or TUT, E (Y1 — Yy|S = 0, x). See
Table 9a [from Heckman and Vytlacil (2000, 2005, 2007b)] for the treatment parame-
ters expressed in terms of MTE and Table 9b for the weights. The analysis of Heckman
and Vytlacil (2001b, 2005, 2007b) unites the selection literature and the modern IV lit-
erature using a common analytical framework. Heckman, Urzua and Vytlacil (2006)
discuss how to construct the weights.”!

These tables also show how one can write the IV and OLS estimates and the Policy
Relevant Treatment Effect as weighted averages of the MTE. The crucial observation
to extract from this table is that the weights on MTE are different for IV and for the
treatment parameters. Thus, not only is it true that the treatment parameters are not
rates of return, but /V does not in general estimate the treatment parameters.

Figure 10a plots the marginal treatment effect (MTE) derived from a generalized
normal Roy model using the parameterization of (17) and (18) shown at the base of
Figure 10b. It displays the prototypical pattern that the returns to schooling decline for
those persons who have higher costs of schooling (higher Uyg), i.e., for persons less
likely to attend school.”> The same figure is implicit in the analysis of Willis and Rosen
but they do not develop or exposit it. The treatment effect parameters generated from
this model are presented in Table 10. It also presents /V and OLS estimates as well as
the sorting gain and selection bias terms for this model.

Figure 10a also displays the weights on MTE used to form ATE (Average Treat-
ment Effect), TT (Treatment on the Treated) and TUT (Treatment on the Untreated) for
a generalized Roy model (with tuition costs).”> TT overweights the MTE for persons
with low values of Ug who, ceteris paribus, are more likely to attend school. TUT over-
weights the MTE for persons with high values of Us who are less likely to attend school.
ATE weights MTE uniformly. The decline in MTE reveals that the “gross return” (B)
declines with Ug. Those more likely to attend school (based on lower Ug) have higher
“gross returns” or higher growth rates of earnings with schooling. Not surprisingly, in
light of the shape of MTE and the shapes of the weights, 7T > ATE > TUT. There
is a positive sorting gain (E(U; — Up|X = x, S = 1) > 0) and a negative selection
bias (E(Up|X = x,S = 1) — E{Up|X = x,S = 0) < 0). Figure 10b displays the
MTE and the weights for OLS and for IV using P(Z) as the instrument. /V weights

91 The website for their paper provides software for doing so.

92 Recall that § = 1(5* > 0) = 1(ns(Z) > Ug) so that the higher Ug, the less likely is a person to attend
college or have S = 1.

93 The form of the Roy model we use assumes additive separability and generates Ug, Uy and Ug from a
common unobservable ¢. Thus, in this example, the distribution of U; — Uy given Uy is degenerate.
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Figure 10a. Weights for the marginal treatment effect for different parameters.

the MTE more symmetrically and in a different fashion than ATE, TUT or TT. The
shape of the IV weight is prototypical when P (Z) is the instrument. However, for other
instruments, including individual components of Z, the shapes of the weights are dif-
ferent [see Heckman, Urzua and Vytlacil (2006), for further analysis and examples].
We present examples of these weights below. OLS weights MTE very differently. The
contrast between the OLS weight and the IV weight conveys the contrast between the
CPS/Census literature and the modern IV literature. In general, neither identifies ATE or
the other treatment effects, and the conventional treatment effects are not rates of return.

To estimate ex post rates of return, it is necessary to account for foregone earnings
and direct costs. The treatment effect literature typically accounts for neither and reports
differences in labor market payments to different schooling levels. To cast the discussion
of Section 4 into the framework of this section, let Y1 ; be the earnings of a college-
educated person at age ¢. Let Yo be the earnings for a high school-educated person
at age ¢. (To this point in this section we have abstracted from age-dependent growth
rates of earnings.) Suppose that it takes t periods to complete college and that direct
costs are C; per period while in college. The interest rate is r, assumed to be constant.
Assume that while in school persons receive no earnings. (If they did, they could help
offset costs C.) College educated persons retire at age 7. High school educated persons
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Figure 10b. Marginal treatment effect vs. linear instrumental variables and ordinary least squares weights.
Roy example. Source: Heckman and Vytlacil (2005).

Table 10
Treatment parameters in the generalized Roy example

Ordinary least squares 0.1735
Treatment on the treated 0.2442
Treatment on the untreated 0.1570
Average treatment effect 0.2003
Sorting gain* 0.0440
Selection bias’ —0.0707
Linear instrumental variables? 0.2017

*E[U; — Up|S = 1] = TT — ATE.
TE[Uy|S = 11— E[Up|S = 0] = OLS — TT.

'T'Using propensity score as the instrument.
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retire at age 7p. One definition of the return to college R is

Z e _ xTo (ou+Cr)
1=t (14r)~ 7 t=0 (I+r)!

Z Yo +Cy
t=0 (1+r)"
This is a version of the Becker (1964) formula. It compares the present values of two
earnings streams realized t periods apart.
As discussed in Section 3, in the special case assumed by Mincer, log earnings are

parallel in experience across schooling categories. For the case of geometric growth and
defining Yo = Yp,0 and Y'; = Y|, earnings may be written as:

R =

Yo = Yo(l +g)',
Yi.= )71(1 +g)t7t, t >,

where g is the growth rate of earnings with age.”* Mincer further assumes that
T1 — Tp = t so working lives are the same for both schooling classes. The discounted
growth rate of earnings with experience, e, is

e_Z(Hr)'

Assume that direct costs (psychic and tuition) are the same per period during the school-
ing years and define

T 1 j
=5k

J=0

The return in this case is
_ Yie—Yoe — CA(1)
 CA() +Yge

The growth rate of earnings with schooling is

Yi-Y% . - -
¢p=———~InY; —InYy.
Yo
This is the “Mincer return” to schooling. An alternative expression for the return is
é— C?(r)
R= 0
1+ CAD
Yoe

94 Mincer assumes more general period-specific growth rates. The argument in the text can be modified to
account for this at the cost of more notational complexity.
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This shows that the Mincer return ¢, is greater than the true return, R, whenever costs
are positive. When costs are zero (C = 0), R equals the Mincer return, ¢. Thus, the
Mincer assumptions justify the conventional practice of equating growth rates to rates of
returns, the implicit assumption in the recent literature on estimating rates of return. In
general, if 1+ R > (1+4r)7, it pays to go to college; otherwise, it does not. An alternative
way to state this criterion is that it pays to go to college if

I1+¢>0+r".

When 7 = 1, this simplifies to the conventional criterion that ¢ > r.

The evidence presented in Sections 3 and 4 of this chapter argues strongly against the
practice of equating growth rates with rates of return. Mincer’s parallelism assumption
across schooling levels (i.e., that growth rates of earnings with experience, g, are the
same for all schooling levels) is not accurate for earnings profiles from more recent
data. Additionally, the evidence presented below in Section 10 points to the existence
of substantial psychic cost components and an adjustment for psychic cost components
substantially reduces the rate of return to schooling. The current literature on estimating
rates of return makes none of these adjustments and instead reports the growth rate of
earnings as a “return.” While the growth rate of ¢ is an ingredient of returns, it is not in
general a return, as the expression for R reveals.”

We can use the modern literature to identify growth rates of earnings for persons
at different margins of choice. Costs, discount rates and horizons need to be adjusted
appropriately to get true rates of return. To our knowledge, this has not been done in the
vast IV literature on computing rates of return.

8.3. Understanding why IV estimates exceed OLS estimates of the schooling coefficient

In the generalized Roy model, there are three sources of potential econometric prob-
lems; (a) S is correlated with Uy; (b) B is correlated with S (i.e., U; — Uy is correlated
with §); (c) B is correlated with Uy. The relative importance of the problems depends
on what question the analyst seeks to answer. Source (a) arises in ability bias or mea-
surement error models. Source (b) arises if agents partially anticipate 8 when making
schooling decisions so that Pr(S = 1|X, 8) # Pr(S = 1|X). In this framework, § is an
ex post “causal effect,” which may not be known to agents ex ante. In the case where de-
cisions about § are made in the absence of information about 8, 8 is independent of S.
Source (c) arises from the possibility that the gains to schooling (8) may be dependent
on the level of potential earnings in the unschooled state (¥) as in the Roy model.

When U; = Uy, B is a constant for all persons (conditional on X), and we obtain the
conventional /V model as analyzed by Griliches (1977). In this framework, because § is
a constant, there is a unique effect of schooling. Indeed, B is “the” effect of schooling,
and the marginal effect is the same as the average effect (conditional on X).

95 In addition, in this two choice example, there are no option values. Accounting for them is a factor toward
raising the rate of return above the measured growth rate.
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In the notation of Equation (17), the usual assumption in the literature is that
COV(S, Up) > 0. Measured schooling S may be correlated with unmeasured Uy be-
cause of omitted ability factors. Therefore, when B is constant across individuals, the
OLS estimate of the “return” is an upward biased estimate of 8:

lim f 5t CovV (S, Up) 5
im = ——— > 8.
p OLS VS)
Following Griliches (1977) and the scholars who preceded him, many advocate using
instrumental variable estimators for § to correct for this problem. If there is an instru-
ment Z such that COV(Z, S) # 0 and COV(Z, Uyp) = 0, then:

COvV(Z,Up)

lim By = it bk LA
plim By = B + COV(Z.S)

Therefore we expect that BIV < BOLS.

However, as noted by Griliches (1977) and Card (1995, 1999, 2001), almost all of
the empirical literature on the returns to schooling shows precisely the opposite pattern:
/§1V > ,éOLS. How can one rationalize this finding? One standard explanation is that
schooling is measured with error. This would induce a downward bias in the schooling
coefficient, which would be corrected by the use of IV.

This simple explanation has been questioned in two different ways. Kane, Rouse
and Staiger (1999) claim that measurement error in schooling is nonclassical and there-
fore we might not expect the standard attenuation bias that results from nonclassical
measurement error.”® Card (1999, 2001) argues that, if measurement error is classical,
the amount of measurement error in schooling that would have to exist to justify the
large gaps between OLS and IV estimates is unreasonably large. He argues that, in fact,
schooling is relatively well measured in the U.S., so that the measurement error expla-
nation for the empirical regularity is likely to be of second order importance.

The explanation for the empirical regularity that Card (1999, 2001) favors is that there
is heterogeneity in the returns to schooling so 8 is a random variable and it is correlated
with schooling. For a model with two levels of schooling, this is just the generalized
Roy model. In this case, it is possible that IV estimates of returns to schooling exceed
OLS estimates. Implicitly, his argument has three steps: (1) OLS is an upward biased
estimate of the average “return to schooling” (this is the standard ability bias intuition
in a model in which g is the same for everyone); (2) IV corresponds to an estimate of the
returns to schooling for individuals at the margin;97 and therefore, (3) if the IV estimate
of the “return” exceeds the OLS estimate of the “return,” then individuals at the margin

96 Nonclassical measurement error is measurement error of a true variable that is stochastically dependent on
the true value of the variable. Thus the mean, the variance and other moments of the measurement error may
depend on the true value.

97 This argument is based on LATE [Imbens and Angrist (1994)]. Card does not provide a precise definition
of the concept. Carneiro, Heckman and Vytlacil (2005) precisely define and estimate the return for the average
marginal person. See also the discussion in Heckman and Vytlacil (2005).
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have higher “returns” than the average individual in the economy.’® In our notation, the
probability limits of the least squares and /V estimators are

COV(S,Up) = COVIS, S(Ur — Uy)l

plim Bors = B + VS + 7S , 22)
lim A = B+ Cov(Z,S(U; — Uyl COV(Z,Uy)
plim fv = ¢ COV(Z, 5) COV(Z.S)
_z  CoVIZ,S(U, — Up)]
=h+ cov(z,s) (23)

In general, plim BOLS can be larger than, smaller than or equal to plim ,élv. We can
rewrite (22) and (23) as:
plim Bors = B+ E(Uo|S = 1) — E(Uo|S = 0) + E(U; — Up|S = 1)
=E@IS=1D+EWlS=1) — EWlS =0),

plim By = B+ E(U; — Up|S = 1)
n CoviZ, (U —Uy|S=1]1Pr(S=1)

COV(Z.S)
CoVIZ, (U —Uy|S=11Pr(S=1
_E@IS=1)+ [Z, (U 0l 1Pr( )'
Cov(Z,S)
Therefore, plim Brv > plim Bows if coviz. (UICOI‘J/(E)Z|SS)1 PrS=D o EWUS = 1) —

EUp|S = 0).°

The assumption implicit in Card’s argument, and in the standard ability bias literature,
isthat E(Up|S = 1)— E(Up|S = 0) > 0. This condition is satisfied if persons who go to
college are above average in high school. In such a case, current college graduates would
be at the top of the high school wage distribution if they chose to become high school

graduates. If this model generates the data, the only way that plim ﬂ;v > plim ,30LS is
if COVIZ.(Ui—Up)|S=11Pr(S=D) _
COV(Z,S) :

How plau51ble is this condition? Recall that Z is a determinant of the cost of school-

ing C(Z) and satisfies the standard instrumental variable assumptions. Assume that C
is increasing in Z which is assumed to be scalar.'® As a consequence of these two
conditions,

COV(Z,S) <0 and COV(Z,U;) = COV(Z,Uy) = 0. (24)

98 Card’s model was described in Section 7. It allows for multiple levels of schooling, but assumes a com-
mon rate of return across all schooling levels or else reports an average return to schooling across schooling
levels. Heckman, Urzua and Vytlacil (2006) and Heckman and Vytlacil (2005, 2007b) develop methods for
identifying marginal returns to different schooling levels. For simplicity, we assume a two outcome schooling
model.

99 This argument appears in Carneiro and Heckman (2002).

100 7 may be a vector, but in this example we assume it is a scalar.
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In the simple two outcome model of schooling, individuals enroll in school if benefits
are higher than costs as is clear from Equation (18) (S = 1if 8 — C(Z) = ,3_ +
(U1 — Uy) — C(Z) > 0). In such a model the average individual who attends school
has a higher return than the marginal individual (E(B8|S = 1) > E(B|B = C(2))).
Furthermore, even though COV(Z, Uy — Upy) = 0, COV(Z, Uy — Up|S = 1) > 0 (if an
individual has a high cost, or high Z, he or she will only attend school if he or she also
has a high U; — Up). But in that case, because COV(Z, §) < 0, plim /§1V < plim /_%LS.
Implicit in Card’s analysis is the assumption that it is not possible for the average student
to have a hlgher return than the marginal student and still find that /31V > ,30LS Card
rationalizes ﬁ;v > ,30L5 by assuming that the marginal student with a higher return
than the average student is out of school because of some external constraint, such as a
liquidity constraint so E(B|S = 1) < E(B8|8 = C(Z)). The less able (lower ) people
are excluded from school. In Card’s original model, the “returns” to schooling decrease
with the amount of schooling for each individual (k; < 0O in Section 7), and those
individuals whose schooling decision is more sensitive to changes in the instrument
have relatively little schooling and, as a consequence, relatively high returns.

Drawing on the generalized Roy model, Carneiro and Heckman (2002) and Carneiro,
Heckman and Vytlacil (2005) argue instead that the reason why ﬂlv > ,BOLS is not
that the marginal student has a higher return than the average student (E(8|S = 1) <
E(B|B = C(Z))), but instead that E(Up|S = 1) — E(Up|S = 0) < 0. They show em-
pirically, for a nationally representative sample of U.S. white males (NLSY79), that the
marginal “return” is below the average for college goers while, simultaneously, B >

Bovs. In their setup, COV[Z’<UIC‘O$(;>Z'S;1]P“S:1> <0,E(Up|S=1)—EWU|S =0) <0

and CZLO PSRN~ E(UlS = 1) — E(UolS = 0)."°' OLS estimates
are downward biased for E(B|S = 1) because E(Up|S = 1) — E(Up|S = 0) < 0.
For example, if individuals with § = 1 become teachers and those with § = 0 be-
come plumbers, then the latter are better plumbers than the average teacher would be if
he became a plumber.'%? This possibility is featured in Willis and Rosen (1979), who
speculate that, contrary to conventional wisdom, COV (U1, Up) < O, although, with
their model, they cannot identify this correlation from the data. Carneiro, Heckman and
Vytlacil (2005) and Cunha, Heckman and Navarro (2005) identify this covariance and
find evidence that supports the Willis—Rosen conjecture of a negative correlation. When
analysts use OLS, they compare E(Y1|S = 1) with E(Yp|S = 0) (see Equation (22)),
and since E(Yp|S = 0) > E(Yp|S = 1), the OLS estimate is an underestimate of
E(Y| —YolS=1).

To summarize, an important lesson from the recent literature is that in a model of
heterogeneous returns, intuitions about ability bias are no longer as simple as in the stan-
dard homogeneous returns model with a single measure of ability [Griliches (1977)]. In

101 Carneiro (2002) shows that their conclusions hold for white females and across different data sets.
102 11 such a model we need to have more than one dimension of ability.
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such a model, the most able people enroll in school.!%% In a more general Roy-type
model, there can be multiple abilities (in this case, U and Up), which can be arbitrarily
correlated (positively or negatively). The idea that individuals with “high ability” are
more likely to enroll in school is no longer obvious. Recent evidence supports the claim
that the most able persons in the Uy distribution (high school skills) do not go on to
college. This is true not only in models of schooling, but also in many other models in
economics where returns to an activity are heterogeneous and people sort into different
activities based on those returns.!%*

8.4. Estimating the MTE

We now show how the local IV methods of Heckman and Vytlacil (1999, 2001b, 2005,
2007b) can be used to estimate average returns to school for any population of inter-
est. Heckman, Urzua and Vytlacil (2006) show how to estimate the MTE and generate
all of the weights shown in Table 9b. They also provide software for doing so. Using
Equation (16) the conditional expectation of logY (= InYp(1 — S) +InY;S) is

E(nY|Z=2z) = E(nYy|Z = 2)
+E(nY; —InYZ=28=1)PrS =1|Z =2),

where we keep the conditioning on X implicit. From the index structure generated by
decision rules (18) and (20), we may write this expectation as

E(InY|Z =z) = E(InYp) + E(B|P(2) > Us, P(Z) = P(2)) P(2).

Observe that the instruments enter the model through the probability of selection or the
propensity score (P (z)). Using P(z) as the instrument, and applying the Wald estimator
for two different values of Z, z and 7/, assuming P(z) < P(z'), we obtain the IV
formula:

E(InY|P(Z) = P(z)) — E(nY|P(Z) = P(2))

P(z) — P(2)
E(Uy = Ug|P(z) 2 Us)P(z) — E(Ur — Ug|P(2') > Us) P(2')
P(z) — P(Z)

=B+

= E(BIP(z) < Us < P(2))
= AMTE(p(2), P(2)),

103 However, even in the one ability model, Griliches (1977) shows that it is possible that the most able do
not enroll in school because their opportunity costs of doing so are too high.

104 Eor example, returns to job training or unionism vary across individuals and individuals make choices
based on them. The productivity of different inputs varies across firms and they choose different quantities
of inputs according to the productivity patterns they face (this is relevant for the estimation of production
functions). Different consumers have different demand elasticities for a good and their choice of quantities
depends on their elasticity.
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where AATE s the LATE parameter. This is the average return to schooling for indi-
viduals who have Ug between P(z) and P(zZ') (P(z) < Us < P(Z)). As we make z
and 7’ closer to each other, we identify 8 for a narrower group of individuals defined in
terms of their Ug. The MTE can therefore be estimated by taking a limit of LATE when
z and 7’ are arbitrarily close to each other. When U; = Uy or (U} — Uy)1LUsg, cor-
responding to the two special cases in the literature, IV based on P(Z) estimates ATE
(= B) because the second term on the right-hand side (second line) of this expression
vanishes. Otherwise IV estimates an economically difficult-to-interpret combination of
MTE parameters with weights given in Table 9b.

Another representation of E(InY|P(Z) = P(z)) reveals the index structure underly-
ing this model more explicitly and writes

E(InY|P(Z) = P(2))
=a+BP()
[} P(z)
+/ / (Ui = Uo) f(Ui — UoplUs = ug) dus d(Uy — Up). (25)
—00 J0
Differentiating with respect to P(z), we obtain MTE:

IE(InY|P(Z) = P(2))
dP(2)

-y +/ (U1 = Uo) f(Ur = UplUs = P(2)) d(Uy — Up)

= AMTE(P(2)).

IV estimates g if AMTE (4 5) does not vary with ug. Under this condition E(In Y |P(Z) =
P(z)) is a linear function of P(z). Thus, under our assumptions, a test of the linearity of
the conditional expectation of In Y in P(z) is a test of the validity of linear IV for f. It
is also a test for the validity of conditions I and II. Heckman, Urzua and Vytlacil (2006)
elaborate on this point.

More generally, a test of the linearity of E(InY|P(Z) = P(z)) in P(z) is a test
of whether or not the data are consistent with a correlated random coefficient model
and is also a test of comparative advantage in the labor market for educated labor. If
E(InY|P(z)) is linear in P(z), standard instrumental variables methods identify “the”
effect of S on InY. In contrast, if E(InY|P(z)) is nonlinear in P(z), then there is het-
erogeneity in the return to college attendance, individuals act at least in part on their
own idiosyncratic return, and standard linear instrumental variables methods will not in
general identify the average treatment effect or any other of the treatment parameters
defined earlier. This test for nonlinearity in P (Z) as a sign of correlated heterogeneity is
simple to execute and interpret. Carneiro, Heckman and Vytlacil (2005) and Heckman,
Urzua and Vytlacil (2006) implement it and find evidence in support of nonlinearity in
the data they analyze.

It is straightforward to estimate the levels and derivatives of E(InY|P(Z) = P(2))
and standard errors using the methods developed in Heckman et al. (1998). The deriv-
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ative estimator of MTE is the local instrumental variable (LIV) estimator of Heckman
and Vytlacil (1999, 2001b, 2005, 2007b).'03

This framework can be extended to consider multiple treatments, which in this case
can be either multiple years of schooling, or multiple types or qualities of schooling.
These can be either continuous [see Florens et al. (2002)] or discrete [see Carneiro,
Hansen and Heckman (2003), Heckman and Vytlacil (2005, 2007a, 2007b), Heckman,
Urzua and Vytlacil (2006)].

Heckman, Urzua and Vytlacil (2006) establish the close relationship between selec-
tion models and instrumental variables models when the response of earnings to changes
in education varies among persons. Essentially, /V estimates the derivatives of outcome
equations while the control function estimates them in levels.

8.5. Evidence from the instrumental variables literature

Card (1999) surveys empirical estimates from the instrumental variables literature. In
the case of the general model presented in this chapter, different instruments identify
different weighted averages of the MTE and in general do not identify any interpretable
economic object such as a rate of return to schooling. The intensity of the search for
instruments Z uncorrelated with (Up, U;) and correlated with S has not been matched
by an equally intense search for an interpretation of what economic question the instru-
mental variables estimators answer. As noted by Heckman and Vytlacil (2007a, 2007b)
and Heckman, Urzua and Vytlacil (2006), since the question being addressed by the
recent literature is not clearly stated, it is not obvious that /V is better than OLS. The
estimates produced from many of the commonly used instruments have large standard
errors in producing any particular parameter of interest except for parameters defined
by instruments. On a purely statistical basis there is often little difference between IV
and OLS estimates once sampling variation is accounted for. Many of the instruments
used in this literature are controversial.

Parental education and number of siblings have been used as instruments by Willis
and Rosen (1979) and Taber (2001). They tend to produce estimates of “effects” with
small standard errors. However, they are controversial. It is necessary to assume that
potential wages in both the college and high school state are independent of family
background, but many studies show that these are determinants of ability [see Cunha et
al. (2006)]. Unless one controls for ability, the quality of the instruments is in question.
Many data sets lack direct measures of ability.

Other popular instruments are based on the geographic location of individuals at the
college going age. If the decision of going to college and the location decision are corre-
lated then these instruments are not valid. For example, individuals who are more likely
to enroll in college may choose to locate in areas where colleges are abundant and in-
expensive. Distance to college is used as an instrument for schooling by Card (1993),

105 Software is available in Heckman, Urzua and Vytlacil (2006).
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Kling (2001) and Cameron and Taber (2004). Carneiro and Heckman (2002) show that
distance to college in the NLSY79 is correlated with a measure of ability and is an
invalid exclusion unless the analyst conditions on ability since ability determines out-
comes. Tuition is used as an instrument by Kane and Rouse (1995). Average tuition in
the county of residence may also be a problematic instrument since it is correlated with
average college quality in the county [see Carneiro and Heckman (2002)]. Finally, lo-
cal labor market variables have been used by Cameron and Heckman (1998), Carneiro,
Heckman and Vytlacil (2005) and Cameron and Taber (2004). Cameron and Taber use
a measure of the local wage. Carneiro, Heckman and Vytlacil use a measure of local
unemployment. They also control for long term wages in the county of residence both
in the selection and in the outcome equations, so that the instrument measures business
cycle fluctuations orthogonal to the long term quality of the location of residence.

The CPS and Census data sets lack strong instruments and for that reason few analysts
of those data use the method of /V. The “quarter of birth” instrument used by Angrist and
Krueger (1991) to identify treatment on the untreated is notoriously weak [see Staiger
and Stock (1997)].

Rather than reproduce Card’s (1999) survey, we present some evidence from
Carneiro, Heckman and Vytlacil (2005) on estimates of the MTE using the method
of local instrumental variables and some estimates from Heckman, Urzua and Vytlacil
(2006). Both sets of authors use the NLSY data set. The fragility of the estimates and
the large standard errors document the problems that plague the application of the IV to
data sets with rich instruments that typically have only a few thousand observations.

The details of the estimation procedure used to generate the numbers reported in this
section are described in Carneiro, Heckman and Vytlacil (2005) and Heckman, Urzua
and Vytlacil (2006). The regressors in the choice equation are a measure of ability (the
Armed Forces Qualifying Test or AFQT), number of siblings, mother’s and father’s
education levels, tuition, distance to college, local unemployment rate, and interaction
terms. Tuition is a strong predictor of schooling, as are family background and AFQT.
The exclusions from the earnings equations are tuition, distance to college, local unem-
ployment and opportunity wages in blue collar work at age 17. “Distance to College
at 14” and “Local Unemployment Rate at 17" have weak effects. The only strong ex-
clusions are tuition and opportunity wages, conditioning on ability.

The density of P(Z) and the support of the estimated propensity score P(Z) (the
region over which P(Z) has positive density) is shown in Figure 11 for the Carneiro,
Heckman and Vytlacil (2005) study. It is almost the full unit interval,'%® although at
the extremes of the interval the cells of data become very thin. In their estimation of
the MTE, Carneiro, Heckman and Vytlacil only use values of P between 0.07 and 0.98.

106 Formally, for nonparametric analysis, we need to investigate the support of P(Z) conditional on X.
However, the partially linear structure that we will impose below implies that we only need to investigate the
marginal support of P(Z).
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Note: P is the estimated probability of going to college. It is estimated from a logit regression of
college attendance on corrected AFQT, father’s education, mother’s education, number of siblings,
tuition, distance to college and local unemployment.

Figure 11. Density of P given S = 0 and S = 1 (estimated probability of enrolling in college). Source:
Carneiro, Heckman and Vytlacil (2005).

(They trim 5% of the observations in the sample.'"’) Even after trimming, the sparse-
ness of data in the tails results in a large amount of noise (variability) in the estimation
of E(Y|X, P(Z) = p) for values of p close to 0.07 or 0.98, which in turn makes prob-
lematic estimation of the parameters defined over the full support of Ug (which require
estimation of E(Y|X, P(Z) = p) over the full unit interval).

The lack of full support of P(Z) means that ATE, TT and TUT are not identified
nonparametrically by the method of instrumental variables. However the MTE can be
estimated pointwise for a wide range of evaluation points without full support. This
highlights what LATE can and cannot do in these data. It can produce a number. It cannot
produce even a conventional treatment effect, much less a rate of return to schooling.
The pattern of support of P(Z) is similar in the Heckman, Urzua and Vytlacil (2006)
study. See Figure 12 taken from their analysis.

107 The importance of trimming in a semiparametric model similar to the one we use is illustrated in
Heckman, Ichimura and Todd (1997).
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Cognitive ability (as measured by AFQT) is an important determinant of the returns to
schooling. Simple least squares regressions of log wages on schooling, ability measures,
and interactions of schooling and ability (ignoring selection arising from uncontrolled
unobservables) have been widely estimated in this and other data sets and generally
show that cognitive ability is an important determinant of the returns to schooling.!?8
Carneiro, Heckman and Vytlacil (2005) and Heckman, Urzua and Vytlacil (2006) in-
clude AFQT in their model as an observable determinant of the returns to schooling and
of the decision to go to college. In the absence of such a measure of cognitive ability,
selection arising from unobservables should be important. Most of the data sets that are
used to estimate the returns to education (such as the Current Population Survey or the
Census) lack such ability measures.

The test for selection on the individual returns to attending college checks whether
E(InY|X, P) is a linear or a nonlinear function of P. Nonlinearity in P means that
there is heterogeneity in the returns to college attendance and that individuals select
into college based at least in part on their own idiosyncratic return (conditional on X).
One possible way to implement this test is to approximate K (P) with a polynomial in
P and test whether the coefficients in the terms of the polynomial of order higher than
one are jointly equal to zero. Carneiro, Heckman and Vytlacil test and reject linearity,
indicating that a correlated random coefficient model describes the NLSY data.

Carneiro, Heckman and Vytlacil (2005) partition the estimated MTE into two com-
ponents, one depending on X and the other on ug,

MTE(x, us) = E(nY; — InYo|X = x, Us = us)
= u1(X) — wo(X) + E(Uy — Up|Us = ug).

Figure 13 plots the component of the MTE that depends on Ug but not on X where the
confidence interval bands are bootstrapped. The estimates are obtained using Robin-
son’s (1988) method for estimating partially linear models. E(U; — Up|Us = ug) is
declining in u g for values of ug below 0.7, and then it is flat and if anything it slightly
rises.!%% Returns are annualized to reflect the fact that college goers on average attend
3.5 years of college. The most college worthy persons in the sense of having high gross
returns are more likely to go to college (they have low Us).!'” The magnitude of the
heterogeneity in returns is substantial: returns can vary from 13% to 40% per year of
college.!!!

108 See Blackburn and Neumark (1993), Bishop (1991), Grogger and Eide (1995), Heckman and Vytlacil
(2001a), Murnane, Willett and Levy (1995), Meghir and Palme (2001).

109 Notice that the decision rule is § = 1 if P(Z) — U s = 0 so, for a given Z, individuals with a higher Ug
are less likely to go to college.

10 ¢y s may be interpreted as the unobservable cost of college.

11 The bootstrapped confidence intervals are very wide. However, the estimates of each point of the curve
are highly correlated which will reduce the imprecision of the implied treatment parameters. For example,
Carneiro, Heckman and Vytlacil can reject (at the 10% level) the hypothesis that MTE(x, Ug = 0.05) =
MTE(x, Ug = 0.5) (although, they cannot reject that MTE(x, Ug = 0.5) = MTE(x, Ug = 0.95)).
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Note: To estimate the function in this figure (E (Y] — Yp|X, Ug)) we use a two step procedure. We
first estimate 1o(X) and w1 (X) from a regression of log wages on polynomials in X, interactions of
polynomials in X and P, and a nonparametric function of P (where P is the predicted probability
of attending college). We estimate a partially linear model. X includes experience, corrected AFQT
and local unemployment. Then we compute the residual of this regression by subtracting pg(X) +
P x [pu1(X) — pno(X)] from log wages. Finally we estimate the nonlinear function in the figure by
running a local quadratic regression of this residual on P and taking the coefficients on the linear
term. Then we add a constant term to this function which is simply the average of 1 (X) — uo(X).
E(Y| —Ypl|X, Ug) is divided by 3.5 to account for the fact that individuals that attend college have on
average 3.5 more years of schooling than those who do not. Therefore these correspond to estimates

of returns to one year of college. The confidence interval bands are bootstrapped (250 replications).
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Figure 13. E(Y] — Yp|X, Ug) estimated using locally quadratic regression (averaged over X). Source:

Carneiro, Heckman and Vytlacil (2005).

The wide standard error bands are symptomatic of a phenomenon that plagues the
entire /V literature. Estimates are not precisely determined. Figure 14 from Heckman,
Urzua and Vytlacil (2004) reveals a similar pattern and a wide band of standard errors.
Over broad intervals the confidence bands include zero indicating no effect of schooling
on earnings. If 8 is independent of S, the MTE is flat. The evidence clearly rejects this
so a correlated random coefficient model describes their data but there is a considerable

loss in precision in using instrumental variables.
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Figure 14. MTE with confidence interval. Sample of HS graduates and four year college graduates — males
at age 30 — nonparametric. Source: Heckman, Urzua and Vytlacil (2004).

Table 11 presents estimates of different summary measures of returns to one year
of college for two models from Carneiro, Heckman and Vytlacil (2005). In the first
column they use family background as an exclusion and in the second they do not. The
point estimates are similar in both models but they are more precise in the first one,
and therefore we focus on those. However, this precision in estimation is obtained by
using what many would argue are invalid exclusion restrictions. These parameters are
obtained by using the appropriate weights for each parameter [see Carneiro, Heckman
and Vytlacil (2005)].

The limited support of P near the boundary values of P = 0 and P = 1 creates a
practical problem for the computation of the treatment parameters such as ATE, TT, and
TUT, since MTE cannot be estimated for values of Ug outside the support of P. The
sparseness of the data in the extremes does not allow accurate estimation of the MTE at
evaluation points close to 0 or 1. The numbers presented in Table 11 are constructed after
restricting the weights to integrate over the region [0.07, 0.98]. These can be interpreted
as the parameters defined in the empirical (trimmed) support of P(Z), which is close to
the full unit interval.'!2

The sensitivity of estimates to lack of support in the tails (P = Oor P = 1) is
important for parameters, such as ATE or T7, that put substantial weight on the tails of
the MTE distribution. Even with support over most of the interval [0, 1], such parameters

12 Alternative ways to deal with the problem of limited support are to construct bounds for the parameters
or to use a parametric extrapolation outside of the observed support. Bounds on the treatment effects are
generally wide even though the support is almost full. Parametric extrapolation outside of the support is
potentially sensitive to the choice of extrapolation model. Estimates based on locally adapted extrapolations
show much less sensitivity than do estimates based on global approximation schemes. See Carneiro, Heckman
and Vytlacil (2005) for further discussion.
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Table 11

Estimates of various returns to one year of college

Family background is exclusion

0.07 < P <098

Family background is not exclusion

0.07 < P <0.98

Average treatment effect

Treatment on the treated

Treatment on the untreated

Policy relevant treatment effect

($500 tuition subsidy)

Ordinary least squares

Instrumental variables

0.2124

(0.0648)
[0.0069; 0.2641]
0.3202

(0.1103)
[0.0045; 0.4094]
0.1042

(0.0802)
[—0.0027; 0.2522]
0.2489

(0.0854)
[0.0024; 0.3520]
0.0788

(0.0091)
[0.0654; 0.0955]
0.1649

(0.0389)
[0.0888; 0.2166]

0.1638

(0.0916)
[—0.0074; 0.2955]
0.2279

(0.1171)
[—0.0036; 0.3820]
0.0897

(0.1285)
[—0.1400; 0.3024]
0.1905

(0.1651)
[—0.1037; 0.3602]
0.0796

(0.0114)

[0.0614; 0.0983]
0.1530

(0.0758)

[0.0036; 0.2479]

Notes: Bootstrapped 5-95% standard errors (in parentheses) and confidence intervals (in brackets) are pre-
sented below the corresponding coefficients (250 replications).
Source: Carneiro, Heckman and Vytlacil (2005).

cannot be identified unless O (for both ATE and TT) and 1 (for ATE) are contained in the
support of the distribution of P(Z). Estimates of these parameters are highly sensitive to
imprecise estimation or extrapolation error for E(Y|X, P(Z) = p) for values of p close
to 0 or 1. Even though empirical economists often seek to identify ATE and 77, usually
they are not easily estimated nor are they always economically interesting parameters.
As we have stressed repeatedly, they are not rates of return.

Integrating only over P(Z) in the interval [0.07, 0.98], Table 11 reports estimates of
the average annual return to college for a randomly selected person in the population
(ATE) of 21.24%, which is between the annual return for the average individual who
attends college (77), 32.02%, and the average return for high school graduates who
never attend college (TUT), 10.42%. Card reports IV estimates between 6 and 16%
using different instruments but, as previously noted, different instruments weight MTE
differently and answer different implicit questions. None of these numbers corresponds
to the average annual return to college for those individuals of poor backgrounds who
are induced to enroll in college by a $500 tuition subsidy (PRTE), which is 24.89%.!13

113 The policy consists of a subsidy of $500 for individuals who have higher than median ability and for
whom both parents have less than a high school degree. The purpose of this simulation is to approximate a
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This is the relevant return for evaluating this specific policy using a Benthamite welfare
criterion. It is below 7T, which means that the marginal entrant induced to go to college
by this specific policy has an annual return well below (ten log points) that of the average
college attendee.

Carneiro, Heckman and Vytlacil (2005) compare all of these estimated summary
measures of returns with the OLS and IV estimates of the annual return to college, where
the instrument is P\ (Z), the estimated probability of attending college for individuals
with characteristics Z. OLS estimates ATE if S and X are orthogonal to Up+S(U; —Up).
Since the returns estimated by OLS and by IV both depend on X, they evaluate the OLS
and IV returns at the average value of X for individuals induced to enroll in college
by a $500 tuition subsidy,''# so that they can compare these estimates with the policy
relevant treatment effect. The OLS estimate of the return to a year of college is 7.88%
while the IV estimate is 16.49%.!!> Only by accident does IV identify policy relevant
treatment effects when the MTE is not constant in Ug and the instrument is not the
policy. Carneiro, Heckman and Vytlacil (2005) display the weights for all the treatment
parameters reported in this section.

Carneiro, Heckman and Vytlacil (2005) report that ,30LS < f}]V. This finding is com-
mon in the literature [Card (2001)]. At the same time, the returns to schooling are higher
for individuals more likely to enroll in college, which means that the average return for
the marginal individual is below the return for the average student in college. As ex-
plained in Section 8.3 and confirmed in the empirical work of Carneiro, Heckman and
Vytlacil (2005) reported here and in Cunha, Heckman and Navarro (2005), this is possi-
ble because the conventional measure of selection bias (E (Up|S = 1) — E(Up|S = 0))
is negative and not positive, as is implicitly assumed in Card (1999, 2001) and in most of
the empirical literature. In a model of heterogeneous returns, standard intuitions about
instrumental variables and ability bias break down. Carneiro, Heckman and Vytlacil
(2005) confirm the conjecture of Willis and Rosen (1979). The evidence of Cunha,
Heckman and Navarro (2005) shows that the single skill or efficiency units representa-
tion of the labor market which is implicit in most of the literature is invalid.

Table 12, taken from the analysis of Heckman, Urzua and Vytlacil (2004), demon-
strates the sensitivity of IV estimates to the choice of instruments and to whether or

means tested tuition subsidy for high ability individuals. The standard error of this estimate is quite high, even
though it overweights the MTE where it is more precisely estimated. The reason is that the flexible form we
use for the selection equation, although useful for the estimation of the MTE, creates some imprecision in
the policy simulation because not all the coefficients on the terms involving tuition are precisely estimated,
at least for this policy. It is easier to simulate policies in models where tuition enters the choice equation in
a simpler way, although in some cases the standard errors of the MTE become larger because it is important
(for the standard errors) to be flexible in the way the instruments affect choices. See Carneiro, Heckman and
Vytlacil (2005) for further details.

14 This is obtained by integrating X with respect to fx (x|PRT) = fx(x|us(Z) — Us < 0, ug(Z') — Ug
= 0).

15 When they compute the /V parameter by weighting up the MTE using the IV weights, they get an estimate
of 12.12%, which is close to the IV estimate we obtain using the direct method.
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not the estimates are conducted on samples where there is full support. As Figure 12
reveals, there are many intervals over which support is less than full, or very thin. In
Table 12, for the full sample (first column) or the common support sample (second col-
umn), the IV estimates are all over the map. [Their estimates should be divided by 3.5
to get the annual returns to college reported in Carneiro, Heckman and Vytlacil (2005).]
The final three columns show the /V based on an estimated MTE using (a) a parametric
normal model (third column); (b) a semiparametric polynomial estimation method and
(c) a nonparametric method based on local linear regression. The weights used to pro-
duce the 1V estimates are given in Table 9b and are tailored to each estimation situation.
There is close agreement between the two semiparametric methods and they are very
different from the estimates in the third column that assume normality. The instability

Table 12
Instrumental variables estimates NLSY-HS graduates and four-year college graduates males at age 30*

Instruments Standard IV IV-MTE (common support)§

Full sampleT Common Parametric Polynomial Nonparametric

support'T'

Number of 0.983 1.122 0.390 0.634 0.634
siblings at 14 (0.512) (0.591) (0.121) (0.163) (0.160)
Family income in 1.667 1.803 0.416 0.590 0.612
1979 (thousands) (0.432) (0.630) (0.121) (0.143) (0.147)
Local wage of 94.600 41.400 0.407 0.591 0.618
HS graduates at (1713.300) (334.000) (0.141) (0.269) (0.190)
county level at
age 17
Two year coll. 5.008 5.394 0.426 0.600 0.622
grad’s local wage 4.077) (4.941) (0.135) (0.216) (0.188)
atage 17
Four year coll. 2.742 3.149 0.428 0.614 0.629
grad’s local wage (1.093) (1.537) (0.125) (0.187) (0.162)
atage 17
Local unemp. 0.675 0.612 0.203 0.523 0.526
rate of HS (0.604) (0.675) (0.442) (33.651) (15.377)

graduates at
county level at

age 17

Two year coll. 0.210 0.187 0.363 0.580 0.588
grad’s local (0.579) (0.727) (0.260) (1.824) (1.927)
unemployment

rate at age 17

Four year coll. 3.465 4.480 0.405 0.554 0.588
grad’s local (13.476) (11.586) (0.144) (0.294) (0.220)
unemployment

rate at age 17

(Continued on next page)
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Table 12
(Continued)
Instruments Standard IV IV-MTE (common support)§
Full sampleT Common Parametric Polynomial Nonparametric
support*t

Distance to a two 3.369 4.603 0.416 0.606 0.621
year college (3.223) (6.282) (0.139) (0.186) (0.165)
Distance to a four 4.810 7.440 0.415 0.629 0.634
year college (5.180) (12.150) (0.120) (0.170) (0.161)
Two year college —2.637 —1.870 0.417 0.798 0.677
tuition (3.321) (2.172) (0.767) (8.690) (5.931)
Four year college 12.500 72.300 0.436 0.650 0.642
tuition (42.780) (1465.920) (1.248) (0.729) (0.604)
Propensity score 0.496 0.505 0.420 0.572 0.604

(0.093) (0.103) (0.121) (0.138) (0.143)

*We excluded the oversample of poor whites and the military sample.

TThe IV estimates and the standard deviations (in parentheses) are computed applying the traditional formulae
to the full sample. The number of observations in our sample is 982.

The IV estimates and the standard deviations (in parentheses) are computed applying the traditional formulae
to the common support sample. This sample contains only observations for which the estimated propensity
score belongs to the common support of the propensity score between the control (HS graduates) and treat-
ment group (4 year college graduates) (912 observations).

$1n the first column the IV estimates are computed by taking the weighted sum of the MTE estimated using
the parametric approach. In the second column the IV estimates are computed by taking the weighted sum
of the MTE estimated using a polynomial of degree 4 to approximate E(Y|P). The IV estimates in the last
column are computed by taking the weighted sum of the MTE estimated using the nonparametric approach.
The propensity score (Prob(D = 1|Z = z)) is computed using the instruments presented in the table as well
as two dummy variables as controls for the place of residence at age 14 (south and urban), and a set of dummy
variables controlling for the year of birth (1958-1963). The standard deviations (in parentheses) are obtained
using bootstrapping (100 draws).

Source: Heckman, Urzua and Vytlacil (2004).

manifest in the numbers reported in the first two columns is reduced by using the MTE.
But the instability is manifest in a number of studies in the literature.

Table 13 shows estimates of the various treatment parameters based on the three
versions of the MTE. There is a sharp contrast in the estimates produced from the
parametric and nonparametric approaches. The different treatment parameters estimate
different objects. The LATE estimators, defined for different points of evaluation P(Z)
(given by the arguments in parentheses) estimate very different numbers.

Figures 15a and 15b from Heckman, Urzua and Vytlacil (2004) graph the weights
for the MTE for some of the instruments used to generate the numbers in Table 12.
The weights for P(Z) as an instrument are very different from the weights for four-
year college tuition (Figure 15a) and especially two-year college tuition (Figure 15b).
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Table 13
Treatment parameter estimates NLSY-HS graduates and four-year college graduates males at age 30*

Treatment paralmeter'Ir Parametric? Polynomiallfr Nonparametric§
Treatment on the treated 0.362 0.758 0.696
(0.123) (0.201) (0.181)
Treatment on the untreated 0.509 0.687 0.652
(0.149) (0.142) (0.167)
Average treatment effect 0.455 0.713 0.668
(0.127) (0.153) (0.151)
LATE(0.62, 0.38) 0.483 0.59 0.659
(0.138) (0.185) (0.192)
LATE(0.79, 0.55) 0.555 1.04 0.792
(0.175) (0.269) (0.245)
LATE(0.45,0.21) 0.412 0.157 0.383
(0.120) (0.184) (0.159)

*We excluded the oversample of poor whites and the military sample.

TThe treatment parameters are estimated by taking the weighted sum of the MTE estimated using a polynomial
of degree 4 to approximate E (Y |P).

#The treatment parameters were estimated by taking the weighted sum of the MTE estimated using the para-
metric approach.

§$The treatment parameters were estimated by taking the weighted sum of the MTE estimated using the non-
parametric approach. The standard deviations (in parentheses) are computed using bootstrapping (100 draws).
Source: Heckman, Urzua and Vytlacil (2004).

This accounts for why different instruments define different parameters in terms of their
weighting of a common MTE function. It is the MTE function and not an /V estimate that
plays the role of a policy invariant parameter in the modern literature on instrumental
variables.

8.6. The validity of the conventional instruments

This section examines the validity of conventional instruments in the NLSY data which
is unusually rich. Many data sets on earnings and schooling do not possess measures
of cognitive ability. For example, the CPS and many other data sets used to estimate
the returns to schooling surveyed in Katz and Autor (1999) do not report measures of
cognitive ability. In this case, ability becomes part of U;, Uy and Uy instead of being
in X.

The assumption of independence between the instrument and Uy and Uy implies that
the instruments have to be independent of cognitive ability. However, the instruments
that are commonly used in the literature are correlated with AFQT, a widely used mea-
sure of ability. The first column of Table 14a shows the coefficient of a regression of
each instrument (Z) on college attendance (S), denoted by Bs z. With the exception
of the local unemployment rate, all candidate instruments are strongly correlated with
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Figure 15a. IV weights for the MTE. Propensity score vs. four year college tuition as the instrument NLSY —
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Figure 15b. IV weights for the MTE. Propensity score vs. two year college tuition as the instrument NLSY
— sample of HS graduates and four year college graduates — males at age 30. Source: Heckman, Urzua and
Vytlacil (2004).

schooling. The second column of this table presents the coefficient of a regression of
each instrument on AFQT scores (A), denoted by B4, z. It shows that most of the candi-
dates for instrumental variables in the literature are also correlated with cognitive ability.
Therefore, in data sets where cognitive ability is not available most of these variables
are not valid instruments since they violate the crucial /V assumption of independence.
Since few data sets have measures of cognitive ability, this finding calls into question
much of the IV literature. Notice that the local unemployment rate is not strongly cor-
related with AFQT. However, it is only weakly correlated with college attendance.
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Table 14a
Regression of instrumental variables (Z) on schooling (S) and AFQT (A)

Instrumental variable Bs.z Ba.z F-Stat

Number of siblings —0.0302 —0.0468 15.04
(0.0078) (0.0141)

Mother’s education 0.0760 0.1286 157.56
(0.0060) (0.0110)

Father’s education 0.0582 0.0986 201.33
(0.0041) (0.0075)

Average county tuition at 17 —0.0062 —0.0044 13.32
(0.0017) (0.0031)

Distance to college at 14 —0.0038 —0.0081 8.56
(0.0013) (0.0023)

State unemployment rate at 17 —0.0052 —0.0038 0.42
(0.0081) (0.0148)

Source: Carneiro, Heckman and Vytlacil (2005).

The third column of Table 14a presents the F-statistic for the test of the hypothe-
sis that the coefficient on the instrument is zero in a regression of schooling on the
instrument. Staiger and Stock (1997) suggest using an F-statistic of 10 as a threshold
for separating weak and strong instruments.!'® The table shows that the local unem-
ployment variable has an F statistic well below 10 which suggests that it is a weak
instrument when used by itself. Therefore either the candidate instrumental variable is
correlated with ability or it is weakly correlated with schooling.

Table 14b presents coefficients of regressions of each instrument on schooling and
ability, after controlling for family background variables (number of siblings and
parental education). Conditioning on family background weakens the correlation be-
tween AFQT and the instruments. However the F-test for a regression of schooling on
the residualized instrument is low by Staiger—Stock standards. Residualizing on family
background attenuates the correlation between the instruments and ability but also be-
tween the instruments and schooling. The strength of this dependence is reported in the
third column of Table 14b.

The instrument used by Carneiro, Heckman and Vytlacil (2005) is P(Z). Regressing
schooling on polynomials in experience, corrected AFQT, number of siblings, mother’s
education, father’s education (the variables we include in the wage regression) and
P(Z), the F-statistic of the coefficient on P is 33.76. By including AFQT in the wage
regression they attenuate the possibility of using invalid instruments. By using an in-
dex of instruments instead of a single instrument, it is possible to overcome the weak

116 1p 4 recent paper Stock and Yogo (2002) propose a different test. However they still find that the rule of
thumb first proposed in Staiger and Stock (1997) works well in general.
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Table 14b
Residualized regression of instrumental variables (Z) on schooling (S) and
AFQT (A)
Instrumental variable Bs.z Ba.z F-Stat
Average county tuition at 17 —0.0041 —0.0009 6.81
(0.0015) (0.0029)
Distance to college at 14 —0.0008 —0.0032 0.53
(0.0012) (0.0022)
State unemployment rate at 17 —0.0027 0.0005 0.13
(0.0075) (0.0138)

Source: Carneiro, Heckman and Vytlacil (2005).

instrument problem. Furthermore, using an index of instruments instead of a single in-
strument tends to reduce support problems for any instrument. Even if one instrument
has limited support, other instruments can augment the support of P. Observe that the
1V estimates based on P (Z) are more stable in Table 12 than are the estimates based on
the individual components.

8.7. Summary of the modern literature on instrumental variables

Heckman and Vytlacil (2001a, 2005, 2007b) show how to write different conventional
mean parameters and IV estimates as weighted averages of the marginal treatment effect
(MTE). In a model with heterogeneous responses, different instruments define different
parameters. Unless the instruments are the policies being studied, these parameters an-
swer well-posed economic questions only by accident. It is possible to identify and
estimate the MTE using a robust nonparametric selection model. Their method allows
them to combine diverse instruments into a scalar instrument motivated by economic
theory. This combined instrument expands the support of any one instrument, and allows
the analyst to perform out-of-sample policy forecasts. Focusing on a policy relevant
question, they construct estimators based on the MTE to answer it, rather than hoping
that a particular instrumental variable estimator happens to answer a question of eco-
nomic interest. The approach based on the MTE unites the selection and IV literatures.
As noted by Heckman, Urzua and Vytlacil (2006), both methods use P(Z) but one
conditions on it (the selection model) while the other (the IV literature) does not.

The recent literature confirms in a semiparametric setting a central claim of the
parametric Willis and Rosen (1979) analysis [Carneiro, Hansen and Heckman (2003),
Cunha, Heckman and Navarro (2005)]. Individuals sort into schooling on the basis of
both observed and unobserved gains where the observer is the economist analyzing the
data. Moreover, as noted by Willis and Rosen (1979), it is not possible to rationalize la-
bor market data with the single skill (or efficiency units) model that governs most of the
standard intuitions about ability bias in schooling. In fact, these intuitions break down in
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a general model of heterogeneous returns, and lead to potentially wrong interpretations
of the data.

Instrumental variables are not guaranteed to estimate policy relevant treatment pa-
rameters or conventional treatment parameters. Different instruments define different
parameters, and in the empirical analysis of Carneiro, Heckman and Vytlacil (2005)
and Heckman, Urzua and Vytlacil (2006) they produce wildly different “effects” of
schooling on earnings. The current practice of reporting /V estimates as “returns” to
schooling defines the parameter being identified by an econometric method and not by
an economic question. Our examples show that the IV method does not produce an eco-
nomically interesting or interpretable parameter, and in general does not estimate a rate
of return. Different /V estimators weight the MTE differently and are not comparable in
their economic content.

Even granting the validity and the strength of the instruments, the entire recent
1V enterprise for correlated random coefficient models is premised on a fundamental
asymmetry. Returns (growth rates) are allowed to be heterogeneous in a general way.
Schooling may either increase or decrease rates of return. However, choices are not per-
mitted to be heterogeneous in a general way [Heckman and Vytlacil (2005), Heckman,
Urzua and Vytlacil (2006)]. The monotonicity assumptions (or index structure assump-
tions embodied in (18) or (20) so that schooling is determined by an index of “net
utility” where the observables are separable from the nonobservables) impose the con-
dition that all persons respond in the same way in their schooling choices for any change
in Z. Thus if increasing a coordinate of Z, say Z1, increases schooling for one person,
the same increase cannot decrease schooling for anyone else. This condition rules out
heterogeneity in the choice equations. These conditions are at odds with a variety of eco-
nomic models for schooling such as models for dynamic discrete choice [see Heckman
and Navarro (2006)]. See Belzil and Hansen (2005) for an interesting contrast between
1V and structural estimates of returns to schooling. Their structural models and those of
Heckman and Navarro do not impose monotonicity conditions on the choice data.

If the monotonicity conditions are violated, increases in Z1| may increase participa-
tion in schooling for some and decrease it for others. In this case, instrumental variables
methods do not estimate treatment effects and the local instrumental variable does
not identify the marginal treatment effect. See Heckman and Vytlacil (2001c, 2005),
Heckman, Urzua and Vytlacil (2006), for further discussion of this point.

9. Estimating distributions of returns to schooling

Following the representative agent tradition, economists usually summarize the distri-
bution of the growth rate of earnings with schooling by some mean. In Section 8, we
presented a variety of mean treatment effects which are defined by the conditioning
variables used. Different means answer different policy questions.

The research reported in this section [based on Aakvik, Heckman and Vytlacil (2005),
Heckman, Smith and Clements (1997), Carneiro, Hansen and Heckman (2001, 2003),
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Cunha, Heckman and Navarro (2005, 2006), Cunha and Heckman (2006a)] moves
beyond means as descriptions of policy outcomes and considers joint counterfactual dis-
tributions of outcomes (for example, F (Y1, Yy), gains F (Y] — Yp) or F (Y1, Yo|S = 1)).
These are ex post distributions realized after schooling decisions are completed. We
analyze ex ante distributions in the next section. From knowledge of the ex post joint
distributions of counterfactual outcomes, it is possible to determine the proportion of
people who benefit or lose from schooling, the origin and destination outcomes of those
who change status because of schooling and the amount of gain (or loss) from vari-
ous policy choices such as tuition subsidies by persons at different deciles of an initial
prepolicy income distribution.!!” Using the joint distribution of counterfactuals, it is
possible to develop a more nuanced understanding of the distributional impacts of pub-
lic policies directed toward education, and to move beyond comparisons of aggregate
distributions induced by different policies to consider how people in different portions
of an initial distribution are affected by public policy. From knowledge of the mean
treatment effects presented in Section 8, if Y1 — Y( varies in the population, it is not
possible to answer the simple question of who benefits from schooling and the propor-
tion of people benefiting, except in the special case where everyone with the same X
receives the same benefit. Our methods can be used to explain effects of schooling (and
other interventions) on earnings, employment and health. In this chapter, we focus on
earnings measures.

Under the assumptions of Section 8, joint distributions of counterfactuals are not
identified nonparametrically [see Heckman (1990)]. We observe Y| or Yy for the same
person but not both. Thus it is not possible to use cross section data to tabulate the joint
distribution of (Y, Y1) from the raw data. However, with additional information, it is
possible.

More precisely, an agent can experience one of two possible counterfactual schooling
levels with associated outcomes (Y, Y1). As before, we denote X as determinants of the
counterfactual outcomes (Yp, Y1); S = 1 if the agent is in state 1; S = 0 otherwise. The
observed outcome is ¥ = SY; + (1 — §)Yp. Let Z be a determinant of S that does
not affect Y;, ¥p.!!8 The standard treatment effect model analyzed in Section 8 and in
this section considers policies that shift Z and that affect choices of treatment but not
potential outcomes (Yo, Y7). It ignores general equilibrium effects.'!”

The goal is to recover F (Yy, Y1|X) and hence F (Y] — Y| X), and related distributions
such as those for gross gains (ﬁ Y1 — Yp) or net gains (11% — Yy — C) assuming one
period of foregone earnings is required to move from “0” to “1”.

17 1t is also possible to generate all mean, median or other quantile gains to schooling, to identify all pair-
wise treatment effects in a multi-outcome setting, and to determine how much of the variability in returns
across persons comes from variability in the distributions of the outcome selected and how much comes from
variability in opportunity distributions.

U8 Thus (¥}, ¥9)LZ|X and Pr(S = 1|Z, X) depends on Z for all X.

119 See Heckman, Lochner and Taber (1998) for a treatment of general equilibrium policy evaluation.
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The problem of recovering joint distributions from cross section data has two aspects.
The first is the selection problem. From data on the distribution of earnings by schooling
and characteristics X, F(Y|S = 1, X) and F (Yp|S = 0, X), under what conditions can
one recover F(Y1|X) and F(Yp|X), respectively? The second problem is how to con-
struct the joint distribution F (Yp, Y1|X) from the two marginal distributions of earnings
for each secondary schooling level.

If the selection problem can be solved and the marginal distributions of Y and Y are
identified, results from probability theory due to Fréchet (1951) and Hoeffding (1940)
can be used to bound F (Y7, Yy|S, X) from the marginal distributions. In practice these
bounds are often very wide, and the inferences based on the bounding distributions are
often not very helpful.!?°

A second approach, based on matching, postulates access to variables Q that have
the property that conditional on Q, F(Yp|S = 0, X, Q) = F(Yp|X, Q) and F(Y1|S =
1, X, Q) = F(Y1]1X, Q). Matching thus assumes that conditional on observed vari-
ables, there is no selection problem. If it is further assumed that all of the dependence
between (Yp, Y1) given X comes through Q, then it follows that F (Y1, Yp|X, Q) =
F(M|X, Q)F (Yp|X, Q). Using these results, it is possible to create the joint distribu-
tion F (Yy, Y1|X) because

F(Yo, Y1|X) = f F(YolX. Q)F(Y1|X, 0) du(Q|X).

u(QlX) is the conditional distribution of Q given X. We obtain F(Yp|X, Q),
F(Y1]1X, Q) by matching. We know the distribution of Q given X because we observe
QO and X. Thus we can construct the right-hand side of this expression. Matching makes
the strong assumption that conditional on (Q, X) the marginal return to schooling is the
same as the average return.'?!

One traditional approach in economics assumes that the joint distribution F'(Yy, Y1|X)
is a degenerate one-dimensional distribution. It assumes that conditional on X, ¥; and
Yo are deterministically related,

Y1 =Y+ A, (26)

where A is the difference in means between Y7 and Yy for the selection corrected dis-
tribution.'?> This assumes that schooling has the same effect on everyone (with the
same X) and that effect is A.

Heckman and Smith (1998) and Heckman, Smith and Clements (1997) relax this
assumption by assuming perfect ranking in the positions of individuals F(Y|X) and
F (Yo|X) distributions. (The best in one distribution is the best in the other.) Assuming
continuous and strictly increasing marginal distributions, they postulate that quantiles

120 See Heckman and Smith (1998) and Heckman, Smith and Clements (1997).
121 §ee Heckman and Vytlacil (2005, 2007b).
122 A may be a function of X.
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are perfectly ranked so Y| = F]_I(FO(Y())) where F| = F1(y11X) and Fyp = Fo(yp|X).
This assumption generates a deterministic relationship which turns out to be the tight
upper bound of the Fréchet bounds.'>3 An alternative assumption is that people are
perfectly inversely ranked so the best in one distribution is the worst in the other: Y =
F'(1 — Fo(Yp)). This is the tight Fréchet lower bound.'>*

A perfect ranking (or perfect inverse ranking) assumption generalizes the perfect-
ranking, constant-shift assumptions implicit in the conventional literature. It allows
analysts to apply conditional quantile methods to estimate the distributions of gains.'??
However, it imposes a strong and arbitrary dependence across distributions. When the
perfect ranking assumption is relaxed and tested, it is rejected.!?°

A more general framework attacks this problem in a different way than does matching
or invoking special assumptions about relationships between the ranks of persons in the
Yy and Y7 distribution. This line of research starts from the analysis of Heckman (1990),
Heckman and Smith (1998), Aakvik, Heckman and Vytlacil (2005), Carneiro, Hansen
and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha
and Heckman (2006a). In this chapter we draw on the analysis of Carneiro, Hansen
and Heckman (2003).!27 They start with the marginal distributions of Y7 and of Yy
given X. They allow for unobservables to generate the joint dependence and do not rely
on matching.

The basic idea is to restrict the dependence among the (Uyp, Uy, Ug) by factor models
or other restrictions. A low dimensional set of random variables generates the depen-
dence across the unobservables. Such dimension reduction coupled with use of the

123 An upper bound is “tight” if it is the smallest possible upper bound. A lower bound is tight if it is the
largest lower bound.

124 More generally, one can associate quantiles across distributions more freely. Heckman, Smith and
Clements (1997) use Markov transition kernels that stochastically map quantiles of one distribution into quan-
tiles of another. They define a pair of Markov kernels M (y1, yo|X) and M(yo, ¥11X) such that

Fl(ynX):/M(yl,me) dF(yolX).

Fo(yo|X>=/A7(yo,y1|X)dF1(y1\X>.

Allowing these kernels to be degenerate produces a variety of deterministic transformations, including the
two previously presented, as special cases of a general mapping. Different (M, M) pairs produce different
joint distributions. These stochastic or deterministic transformations supply the missing information needed
to construct the joint distributions.

125 See, e.g., Heckman, Smith and Clements (1997).

126 However, testing it requires invoking other assumptions. See Cunha, Heckman and Navarro (2005, 2006)
and Cunha and Heckman (2006a).

127 Using a version of Equation (19) separable in X and (U, Uy), and using Equation (20), under the
assumption that (Z, X)L (Up, Uy, Us) and including the condition that (i) w1 5(Z) is a nontrivial function
of Z conditional on X and that (ii) the support assumptions on 1(X), no(X) and pg(Z) matches that
of Uy, Uy, Ug, they establish nonparametric identification of F(Uy, Us), F(U;, Us) up to a normalization
for Ug, and full identification of 11 (X), ;o (X) over their supports and 5 (Z) suitably scaled over its support.



Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 411

choice data and measurements that proxy components of the (Up, Uy, Us), provides
enough information to identify the joint distribution of (Y7, Yy) and of (Y1, Yo, S).

Assume separability between unobservables and observables and that Y] and Y are
lifetime earnings:

Yy =i (X)+ Uy,
Yo = po(X) + Up.

Denote S* as the latent variable generating schooling choices:

S* = us(Z) + Us,
S=1(5* > 0).

Recall that we allow any X to be in Z. To motivate the approach, assume that
(Uo, Uy, Us) is normally distributed with mean zero and covariance matrix Xg (“G”
for Generalized Roy). If the distributions are normal, they can be fully characterized
by means and covariances. To simplify the discussion, we focus our exposition on nor-
mal models although that is not essential. We assume that (Uy, Uy, Ug) are statistically
independent of (X, Z).

Under normality, standard results in the selection bias literature show that from data
on Y given § = 1, and X, and data on Yy for S = 0 and X, and data on choices of
schooling given Z, one can identify w@1(X), po(X) and ps(Z), the latter up to scale
os (where U§ = Var(Us)). See Heckman (1976) or Cunha, Heckman and Navarro
(2005). In addition, one can identify the joint densities of (U, Us/os) and (U;, Us/0s).
Without further information, one cannot identify the joint density of (Uy, Uy, Us /o).

Recent developments in microeconometrics show that analysts can identify these
same objects without a normality assumption provided that there are variables Z that
generate enough variation in @ g(Z). The intuition for why variation identifies the model
is presented in Heckman and Honoré (1990), Heckman (1990) and Cunha, Heckman
and Navarro (2006). If Z has sufficient variation, there are limit sets where P(Z) = 1
and other sets where P(Z) = 0 so there is no selection problem in those limit sets.128
Formal proofs and general conditions are given in Carneiro, Hansen and Heckman
(2003). Normality plays no central role in the analysis of this section. We use it because
it is familiar in the economics of education due to the application of the Generalized
Roy model by Willis and Rosen (1979).12°

To get the gist of the method underlying recent work, we adopt a factor structure
model for the Uy, Uy, Us. Other restrictions across the unobservables are possible [see

128 We identify F(Yp|X) in the limit sets where P(Z) = 0 and F(Y;{|X) in the limit sets where P(Z) = 1.
Heckman and Navarro (2006) present evidence on the failure of the limit set conditions in a schooling exam-
ple. When the limit sets fail to exist, identification can be secured using functional forms of the distributions
of the unobservables. An alternative is to construct bounds or equivalently to perform a sensitivity analysis of
the estimates to alternative values of the parameters of the model.

129 Separability can also be relaxed using the methods of Matzkin (2003).
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Urzua (2005)]. Factor models are extensively developed by Joreskog and Goldberger
(1975). Aakvik, Heckman and Vytlacil (2005) and Carneiro, Hansen and Heckman
(2001, 2003) apply their analysis to generate counterfactuals. For simplicity, we as-
sume a one factor model where 6 is the factor that generates dependence across the
unobservables:

Uy = apb + s,
Uy =a10 + ¢,
Us = ag0 + ¢5.

We assume E(Uy) = 0, E(Uy) = 0, E(Us) = 0. In addition, E(0) = 0, E(gg) = 0,
E(e;) = 0and E(es) = 0. To set the scale of the unobserved factor, we can normalize
one “loading” (coefficient on #) to 1. Other normalizations are possible. We assume that
0 is a scalar factor (say unmeasured ability) and the (gq, €1, €5) are independent of 6
and of each other. All the dependence across the unobservables arises from 6.

Under normality or from the general semiparametric identification analysis of
Carneiro, Hansen and Heckman (2003), we can identify

U

COV(U(), —S> = 29552
os s
U

COV(Ul, _S) _ s 2
os g

From the ratio of the second covariance to the first we obtain z—(‘), assuming og # O.
Thus we obtain the sign of the dependence between Uy, U; because

COV(Up, Uy) = apa1 0.

From the ratio, we obtain ¢ if we normalize «p = 1. Without further information, we
can only identify the variance of Usg up to scale, which can be normalized to 1. (Alter-
natively, we could normalize the variance of €5 to 1.) Below, we present a condition that
sets the scale of Ug.

Knowledge of the sign of g—(‘) is informative on the sign of the correlation between
college and high school skills, a key unanswered question in the analysis of Willis
and Rosen (1979). They conjecture that COV(Uy, U1) < 0. The evidence reported in
Carneiro, Hansen and Heckman (2001, 2003), Cunha, Heckman and Navarro (2005,
2006) and Cunha and Heckman (2006a) supports their conjecture. Those with high lev-
els of U; have lower levels of U0.130

130 oyr terminology is different from that of Willis and Rosen (1979). What they call a “one factor model” is
an efficiency units model where U; = Uy (or, more generally, that U and U are perfectly dependent). As our
analysis reveals, it is possible to have (U7, Uy) not perfectly dependent and have a one factor representation.
Uy and Uy would be perfectly dependent in a one factor model only when the uniquenesses are identically
zero: g9 = &1 = 0.
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With additional information, we can identify the full joint distribution. We now
present some examples. Cunha, Heckman and Navarro (2005) present a more com-
prehensive analysis.

Example 1. Access to a single test score

Assume access to data on Yy given S = 0, X, Z; to data on Y given S = 1, X, Z; and
data on § given X, Z. Suppose that the analyst also has access to a single test score T
that is a proxy for 6,

T=pupur(X)+Ur,

where Ur = ar0 + &7 so

T = pr(X)+ard +er,

where e7 is independent of g, €1, £5 and (X, Z). We can identify the mean 7 (X) from
observations on 7 and X. We pick up three additional covariance terms, conditional
onX, Z:

COV(Y\,T) = ayaray,
COV (Yo, T) = aparog,
o
COV(S*, T) = —arog.3!
os
To simplify the notation we keep the conditioning on X and Z implicit. Suppose that
we normalize the loading on the test score to one («¢r = 1). It is no longer necessary

to normalize op = 1 as in the preceding section. From the ratio of the covariance of Y}
with §* with the covariance of S* with T, we obtain the left-hand side of

CovV(Yy, S _ 0[10[5(792
COV(S*,T)  asaro}

:a],

because r = 1 (normalization). From the preceding argument without the test score,
we obtain o since

Cov(Yy, S*) ot1oz5002 o]

COV(Yo, 5%)  awpusof @0’

From knowledge of «; and «g and the normalization for a7, we obtain 092 from
COV (Y1, T) or COV(Yy, T). We obtain ag (up to scale og) from COV(S*, T) =
o SaTaez since we know a7 (= 1) and 002. The model is overidentified. We can set

131 Conditioning on X, Z, we can remove the dependence of Y1, Yy, T and $* on these variables and effec-
tively work with the residuals Yy — uo(X) = Ug, Y1 — u1(X) = Uy, T —up(X) = Ur, S* — nug(Z) = Us.



414 J.J. Heckman et al.

the scale of og by a standard argument from the discrete choice literature. See the dis-
cussion below.

Observe that if we write out the decision rule for schooling in terms of costs, we can
characterize the latent variable determining schooling choices as:

S*=Y, —-Yy—C,

where C = uc(Z) + Uc and Uc = acO + ec, where ¢ is independent of 6 and the
other ¢’s. E(Uc) = 0 and Uc is independent of (X, Z). Then,

ag =001 — oy — o,
Es = &1 — &) — &C,
Var(eg) = Var(e1) + Var(eg) + Var(ec).

Identification of «g, &1 and g implies identification of . Identification of the variance
of e implies identification of the variance of ¢ since the variances of ] and &g are
known.

Observe further that the scale oy is identified if there are variables in X but not
in Z [see Heckman (1976, 1979), Heckman and Robb (1985, 1986), Willis and Rosen
(1979)].'3? From the variance of T given X, we obtain Var(e7) since we know Var(T')

(conditional on X) and we know (1%0'022

Var(T) — a%oez = oszT.

(Recall that we keep the conditioning on X implicit.) By similar reasoning, it is possible
to identify Var(egg), Var(e1) and the fraction of Var(Ug) due to 5. We can thus construct
the joint distribution of (Yo Y1, C) since we know puc(Z) and all of the factor loadings.

We have assumed normality because it is convenient. Carneiro, Hansen and Heckman
(2003), Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman (2006a)
show that it is possible to nonparametrically identify the distributions of 6, gg, €1, €5
and e7 so these results do not hinge on arbitrary distributional assumptions.

There are other ways to construct the joint distributions that do not require a test
score. Access to panel data on earnings affords identification. One way, that leads into
our analysis of ex ante vs. ex post returns in Section 10, is discussed next.

132 The easiest case to understand writes

nc(Z) =Zy, w1 (X) = Xy, no(X) = XpBo, us(Z, X) = X(B1 — Po) — Zy.

We identify the coefficients of the index p5(Z, X) up to scale oy, but we know B; — By from the earnings
functions. Thus if one X is not in Z and its associated coefficient is not zero, we can identify oyg- See, e.g.,
Heckman (1976).
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Example 2. Two (or more) periods of panel data on earnings

Suppose that for each person we have two periods of earnings data in one counterfactual
state or the other. We write

Yir = pi:(X) + 1,0 + 61, t=1,2,
Yor = wor (X) + g0 +e0r, t=1,2.

We observe one or the other lifecycle stream of earnings for each person, but never both
streams for the same person. We assume that the interest rate is zero and that agents
maximize the present value of their income. Thus in terms of the index

S* =12+ Y1) — Yoo+ Yo)—C,

S=1 (5*>0),

where C was defined previously. We assume no test score — just two periods of panel
data.

Under normality, application of the standard normal selection model allows us to
identify w1, (X) fort = 1,2; pos(X) fort = 1,2 and p11(X) + p12(X) — por1(X) —
102(X) — e (X), the latter up to a scalar o, the standard deviation of

Us = (12 + a1 —agp — o1 —ac)f +e11 + €12 — 01 — €02 — &c.

Following our discussion of Example 1, we can recover the scale if there are variables
in (u11(X) + p12(X) — (no1(X) + no2(X))) not in pe (Z). For simplicity we assume
that this condition holds.!33

From normality, we can recover the joint distributions of (S*, Y1, Y12) and
(8*, Yo1, Yp2) but not directly the joint distribution of (S*, Y11, Y12, Yo1, Y02). Thus,
conditioning on X and Z we can recover the joint distribution of (Ug, Uy, Uyz) and
(Us, U11, Up) but apparently not that of (Ug, Up1, Unz, U11, U12). However, under our
factor structure assumptions this joint distribution can be recovered as we next show.

From the available data, we can identify the following covariances:

COV(Us, Upp) = (12 + a1y — g2 — o1 — ac)e1207,
COV(Us, Upy) = (a12 + a1y — g2 — o1 — ac)et1103,
COV(Us, Upt) = (12 + a1y — g2 — o1 — &)1 07,
COV(Us, Upp) = (12 + a1y — a2 — o1 — &c) o207,
COV(Uyy, U) = ay1a1204.
COV (U, Up) = 01020207 -

133 If not, then nc(2), 012]5 and e are identified up to normalizations.
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If we normalize «g; = 1 (recall that one normalization is needed to set the scale of 6),
we can form the ratios
CoV(Us, Ur2) Cov(Us, Urr)
COV(Us.Up) "> COV(Us. Un)
CoOV(Us, Uy) _
covUs, Uon)

o11,

From these coefficients and the remaining covariances, we identify 092 using
COV(Uq1, Uya) and/or COV (Upy, Upz). Thus if the factor loadings are nonzero,

COV(Ui1,Un) o2

0
11012

and

COV(Uo1, Un) >
— =0j.
Qo102

We can recover 092 (since we know «q1a12 and agig) from COV(Upy, Urz) and
COV (Upi1, Upz). We can also recover o ¢ since we know 092, a2 t+ar] —og —ogl —ac,
and o1, o12, ®o1, ®g2. We can form (conditional on X) COV (Y1, Yo1) = a11a01092;
COV(Y12, Yo1) = apagiod; COV(Y11,Yp) = apjapoi and COV(Yya, Yop) =
alzaogaez. Thus we can identify the joint distribution of (Yo, Y02, Y11, Y12, C) since
we can identify pc(Z) from the schooling choice equation since we know o1 (X),
Hno2(X), 11(X), m12(X) and we have assumed that there are some Z not in X so that
oy is identified.

As in Example 1, this analysis can be generalized to a general nonnormal setting using
the analysis of Carneiro, Hansen and Heckman (2003). For simplicity, we have worked
with a one factor model. The analyses of Carneiro, Hansen and Heckman (2003), Cunha,
Heckman and Navarro (2005, 2006), Cunha and Heckman (2006a) and Heckman and
Navarro (2006) use multiple factors. We offer an example in the next section.

The key idea in constructing joint distributions of counterfactuals using the analy-
sis of Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman (2006a)
is not the factor structure for unobservables although it is convenient. The motivating
idea is the assumption that a low-dimensional set of random variables generates the de-
pendence across outcomes. Other low-dimensional representations such as the ARMA
model or the dynamic factor structure model [see Sargent and Sims (1977)] can also be
used. Urzua (2005) develops such a model and applies it to estimating rates of returns to
schooling. The factor structure model presented in this section is easy to exposit and has
been used to estimate joint distributions of counterfactuals. We present some examples
in the next section. That section reviews recent work that generalizes the analysis of this
section to derive ex ante and ex post outcome distributions, and measure the fundamen-
tal uncertainty facing agents in the labor market. With these methods it is possible to
compute the distributions of both ex ante and ex post rates of return to schooling.



Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 417
10. Ex ante and ex post returns: Distinguishing heterogeneity from uncertainty

In computing ex ante returns to schooling, it is necessary to characterize what is in the
agent’s information set at the time schooling decisions are made. To do so, the recent
literature exploits the key idea that if agents know something and use that information
in making their schooling decisions, it will affect their schooling choices. With panel
data on earnings and other measurements of the factors, which may be test scores or
information on other choices, we can assess what components of those outcomes were
known at the time schooling choices were made.'3*

The literature on panel data earnings dynamics [e.g., Lillard and Willis (1978),
MaCurdy (1982)] is not designed to estimate what is in agent information sets. It esti-
mates earnings equations of the following type:

Yii: =X B+ Sit+ U, 27)

where Y; ;, Xi 1, Si, Ui ; denote (for person i at time ¢) the realized earnings, observable
characteristics, educational attainment, and unobservable characteristics, respectively,
from the point of view of the observing economist. The variables generating outcomes
realized at time t may or may not have been known to the agents at the time they made
their schooling decisions.

The error term U; ; is usually decomposed into two or more components. For exam-
ple, it is common to specify that

Uit = ¢i +6is- (28)

The term ¢; is a person-specific effect. The error term §; ; is often assumed to follow an
ARMA ((p, q) process [see Hause (1980), MaCurdy (1982)] such as §; ; = pd; —1+m;;,
where m;; is a mean zero innovation independent of X;; and the other error compo-
nents. The components X; ;, ¢;, and §; ; all contribute to measured ex post variability
across persons. However, the literature is silent about the difference between hetero-
geneity and uncertainty, the unforecastable part of earnings as of a given age. The
literature on income mobility and on inequality measures all variability ex post as in
Chiswick (1974), Mincer (1974) and Chiswick and Mincer (1972).

An alternative specification of the error process postulates a factor structure for earn-
ings, that uses the representation introduced in Section 9:

Ui,t =bjo; + Eits (29)

where 6; is a vector of skills (e.g., ability, initial human capital, motivation, and the
like), «; is a vector of skill prices, and the ¢; ; are mutually independent mean zero
shocks independent of ;. Hause (1980) and Heckman and Scheinkman (1987) ana-
lyze such earnings models. Any process in the form of Equation (28) can be written in

134 An alternative approach summarized by Manski (2004) is to use survey methods to elicit expectations.

We do not survey that literature in this chapter.
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terms of (29). The latter specification is more directly interpretable as a pricing equation
than (28).

Depending on the available market arrangements for coping with risk, the predictable
components of U; ; will have a different effect on choices and economic welfare than
the unpredictable components, if people are risk averse and cannot fully insure against
uncertainty. Statistical decompositions based on (27), (28), and (29) or versions of them
describe ex post variability but tell us nothing about which components of (27) or (29)
are forecastable by agents ex ante. Is ¢; unknown to the agent? §; ;? Or ¢; +38; ;? Or m; ;?
In representation (29), the entire vector 6;, components of the 6;, the ¢; ;, or all of these
may or may not be known to the agent at the time schooling choices are made.

The methodology developed in Carneiro, Hansen and Heckman (2003), Cunha,
Heckman and Navarro (2005) and Cunha and Heckman (2006a, 2006b) provides a
framework within which it is possible to identify components of life cycle outcomes
that are forecastable and acted on at the time decisions are taken from ones that are not.
In order to choose between high school and college, agents forecast future earnings (and
other returns and costs) for each schooling level. Using information about educational
choices at the time the choice is made, together with the ex post realization of earn-
ings and costs that are observed at later ages, it is possible to estimate and test which
components of future earnings and costs are forecast by the agent. This can be done
provided we know, or can estimate, the earnings of agents under both schooling choices
and provided we specify the market environment under which they operate as well as
their preferences over outcomes.

For market environments where separation theorems are valid, so that consumption
decisions are made independently of wealth maximizing decisions, it is not necessary
to know agent preferences to decompose realized earnings outcomes in this fashion.
Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro (2005) and
Cunha and Heckman (2006a, 2006b) use choice information to extract ex ante or fore-
cast components of earnings and to distinguish them from realized earnings under
different market environments. The difference between forecast and realized earnings
allows them to identify the distributions of the components of uncertainty facing agents
at the time they make their schooling decisions.

10.1. A generalized Roy model

To state these issues more precisely, consider a version of the generalized Roy (1951)
economy with two sectors.!> This builds on the second example of Section 9. Let S;
denote different schooling levels. S; = 0 denotes choice of the high school sector for
person i, and S; = 1 denotes choice of the college sector. Each person chooses to be

135 See Heckman (1990) and Heckman and Smith (1998) for discussions of the generalized Roy model. In
this chapter we assume only two schooling levels for expositional simplicity, although our methods apply
more generally.
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in one or the other sector but cannot be in both. Let the two potential outcomes be
represented by the pair (Yp i, Y1,;), only one of which is observed by the analyst for
any agent. Denote by C; the direct cost of choosing sector 1, which is associated with
choosing the college sector (e.g., tuition and nonpecuniary costs of attending college
expressed in monetary values). We have used this framework throughout this chapter.
Y1, is the ex post present value of earnings in the college sector, discounted over
horizon T for a person choosing at a fixed age, assumed for convenience to be zero,

and Yy ; is the ex post present value of earnings in the high school sector at age zero,

T

Yo,i s
Yoi=) G
pars (1+r)

where r is the one-period risk-free interest rate. Y1 ; and Yy ; can be constructed from
time series of ex post potential earnings streams in the two states: (Y00, ..., Y0.i.7)
for high school and (Y7 ; 0, ..., Y1, 1) for college. A practical problem is that we only
observe one or the other of these streams. This partial observability creates a fundamen-
tal identification problem which can be solved using the methods described in Section 9
and the references cited.

The variables Y ;, Yp,;, and C; are ex post realizations of returns and costs, respec-
tively. At the time agents make their schooling choices, these may be only partially
known to the agent, if at all. Let Z; o denote the information set of agent i at the time
the schooling choice is made, which is time period # = 0 in our notation. Under a
complete markets assumption with all risks diversifiable (so that there is risk-neutral
pricing) or under a perfect foresight model with unrestricted borrowing or lending but
full repayment, the decision rule governing sectoral choices at decision time ‘0’ is

_ )L i EX — Yo — CilZio) 20,
Si {O, otherwise.!30 (30)

Under perfect foresight, the postulated information set would include Y7 ;, Yy ;, and C;.
Under either model of information, the decision rule is simple: one attends school if
the expected gains from schooling are greater than or equal to the expected costs. Thus
under either set of assumptions, a separation theorem governs choices. Agents maximize
expected wealth independently of their consumption decisions over time.

The decision rule is more complicated in the absence of full risk diversifiability and
depends on the curvature of utility functions, the availability of markets to spread risk,
and possibilities for storage. [See Cunha and Heckman (2006a) and Navarro (2005), for
a more extensive discussion.] In these more realistic economic settings, the components

136 1f there are aggregate sources of risk, full insurance would require a linear utility function.
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of earnings and costs required to forecast the gain to schooling depend on higher mo-
ments than the mean. In this chapter we use a model with a simple market setting to
motivate the identification analysis of a more general environment analyzed elsewhere
[Carneiro, Hansen and Heckman (2003), Cunha and Heckman (2006b)].

Suppose that we seek to determine Z; o. This is a difficult task. Typically we can only
partially identify Z; ¢ and generate a list of candidate variables that belong in the infor-
mation set. We can usually only estimate the distributions of the unobservables in Z; o
(from the standpoint of the econometrician) and not individual person-specific infor-
mation sets. Before describing the analysis of Cunha, Heckman and Navarro (2005),
we consider how this question might be addressed in the linear-in-the-parameters Card
model.

10.2. Identifying information sets in the Card model

We seek to decompose the “returns” coefficient or the gross gains from schooling in
an earnings—schooling model into components that are known at the time schooling
choices are made and components that are not known. For simplicity assume that, for
person i, returns are the same at all levels of schooling. Write the log of discounted
lifetime earnings of person i as

Yi=a+pS + Ui, (31

where p; is the person-specific ex post return, S; is years of schooling, and Uj; is a mean
zero unobservable.!3” We seek to decompose p; into two components p; = 1; + vj,
where 7; is a component known to the agent when he/she makes schooling decisions
and v; is revealed after the choice is made. Schooling choices are assumed to depend
on what is known to the agent at the time decisions are made, S; = A(n;, Z;, t;), where
the Z; are other observed determinants of schooling and 7; represents additional factors
unobserved by the analyst but known to the agent. Both of these variables are in the
agent’s information set at the time schooling choices are made. We seek to determine
what components of ex post lifetime earnings Y; enter the schooling choice equation.
If n; is known to the agent and acted on, it enters the schooling choice equation.
Otherwise it does not. Component v; and any measurement errors in Y7 ; or Y ; should
not be determinants of schooling choices. Neither should future skill prices that are un-
known at the time agents make their decisions. If agents do not use »; in making their
schooling choices, even if they know it, n; would not enter the schooling choice equa-
tion. Determining the correlation between realized Y; and schooling choices based on
ex ante forecasts enables economists to identify components known to agents and acted
on in making their schooling decisions. Even if we cannot identify p;, n;, or v; for each
person, under conditions specified in this chapter we can identify their distributions.

137 We could equally well work with levels of discounted lifetime earnings but then p; is no longer a “rate of

return,” i.e., a growth rate in earnings, which is the conventional focus in the literature.
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If we correctly specify the X and the Z that are known to the agent at the time school-
ing choices are made, local instrumental variable estimates of the MTE as described in
Section 8 identify ex ante gross gains. Any dependence between Us and Y1 — Yy arises
from information known to the agent at the time schooling choices are made. If the con-
ditioning set is misspecified by using information on X and Z that accumulates after
schooling choices are made and that predicts realized earnings (but not ex ante earn-
ings), the estimated MTE identifies an ex post return relative to that information set.
Thus, it is important to specify the conditioning set correctly to obtain the appropriate
ex ante return. How to pick the information set?

Suppose that the model for schooling can be written in linear in parameters form, as
in the Card model exposited in Section 7:

Si = Ao+ A + Aovi +A3Z; + 15, (32)

where t; has mean zero and is assumed to be independent of Z;. The Z; and the t;
proxy costs and may be correlated with U; and p; in (31). In this framework, the goal
of the analysis is to determine the n; and v; components. By definition, Ay = 0 if v; is
not known when agents make their schooling choices.

As a simple example, consider the model of Section 7.1. We drop “i” subscripts
unless they clarify notation. We observe the cost of funds, r, and assume r L (p, o). This
assumes that the costs of schooling are independent of the “return” p and the payment
to raw ability, . We established identification of p. (If there are observed regressors X
determining the mean of p, we identify p(X), the conditional mean of p.)

Suppose that agents do not know p at the time they make their schooling decisions but
instead know E(p) = 5.'38 If agents act on this expected return to schooling, decisions
are given by

p—r
k
and ex post earnings observed after schooling are

S =

Y=a+pS+ {(a—a)+ (p—p)S}.

In the notation introduced in the Card model, n = p and v = p — p.
In this case,

COV(Y, S) = pVar(S)

because (p — p) is independent of S. Note further that (&, p) can be identified by least
squares because SLL[(¢ — ), (p — p)S].

If, on the other hand, agents know p at the time they make their schooling decisions,
OLS breaks down for identifying p because p is correlated with S. We can identify p and

138 This is a version of a rational expectations assumption for a particular information set, where the agent
forecasts p by p, the overall population mean. Under rational expectations, the mean ex ante return is the
same as the mean ex post return, but the distributions of these returns may be very different.
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the distribution of p using the method of instrumental variables presented in Section 7.1.
Under our assumptions, r is a valid instrument for S.
In this case

COV(Y, S) = pVar(S) + COV(S, (p — p)S).

Since we observe S, we can identify p and can construct (p — p) for each S, we can
form both terms on the right-hand side. Under the assumption that agents do not know
p but forecast it by p, p is independent of S so we can test for independence directly.
In this case the second term on the right-hand side is zero and does not contribute to the
explanation of COV(InY, S). Note further that a Durbin (1954)-Wu (1973)-Hausman
(1978) test can be used to compare the OLS and IV estimates, which should be the same
under the model that assumes that p is not known at the time schooling decisions are
made and that agents base their choice of schooling on E(p) = p. If the economist
does not observe r, but instead observes determinants L satisfying the conditions in
Section 7.2, then we can still conduct the Durbin—-Wu—Hausman test to discriminate
between the two hypotheses, but we cannot form COV (p, §) directly.

If we add selection bias to the Card model (so E(«|S) depends on §), we can identify
p by IV as shown in Section 7.3 but OLS is no longer consistent even if, in making their
schooling decisions, agents forecast p using p. Selection bias can occur, for example, if
fellowship aid is given on the basis of raw ability. Thus the Durbin—~-Wu-Hausman test
is not helpful in assessing what is in the agent’s information set.

Even ignoring selection bias, if we misspecify the information set, in the case where
r is not observed, the proposed testing approach based on the Durbin—Wu—Hausman
test breaks down. Thus if we include in L variables that predict ex post gains (o — p)
and are correlated with S, we do not identify p. The Durbin—Wu—Hausman test is not
informative on the stated question. For example, if local labor market variables proxy
the opportunity cost of school (the r), and also predict the evolution of ex post earnings
(p — p), they are invalid. The question of determining the appropriate information set
is front and center and cannot in general be inferred using /V methods.

The method developed by Cunha, Heckman and Navarro (2005, 2006) and Cunha
and Heckman (2006a, 2006b) exploits the covariance between S and the realized Y; to
determine which components of Y; are known at the time schooling decisions are made.
It explicitly models selection bias and allows for measurement error in earnings. It does
not rely on linearity of the schooling relationship in terms of p —r. Their method recog-
nizes the discrete nature of the schooling decision. It builds on the modern literature on
constructing counterfactual schooling models discussed in Section 9.

10.3. Identifying information sets
Cunha, Heckman and Navarro (2005, 2006) henceforth CHN, exploit covariances be-

tween schooling and realized earnings that arise under different information structures
to test which information structure characterizes the data. To see how the method works,
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simplify the model to two schooling levels. Heckman and Navarro (2006) analyze mod-
els with multiple schooling levels, but do not present empirical estimates of their model.

Suppose, contrary to what is possible, that the analyst observes Yy ;, Y1, and C;.
Such information would come from an ideal data set in which we could observe two
different lifetime earnings streams for the same person in high school and in college
as well as the costs they pay for attending college. From such information, we could
construct Y1 ; — Yp; — C;. If we knew the information set Z; o of the agent that governs
schooling choices, we could also construct E (Y1 ; —Yo,; —Ci|Z; 0). Under a given model
of expectations, we could form the residual

o =i — Yo, —Ci) — E(Y1; — Yo,; — CilZi0),

and from the ex ante college choice decision, we could determine whether S; depends
on Vz, . It should not if we have specified Z; o correctly. In terms of the model of
Equations (31) and (32), if there are no direct costs of schooling, E(Y1,; — Yo,i1Zi0) =
ni,and Vg, , = v;.

A test for correct specification of candidate information set L o 1S a test of whether
S; depends on VZ where VI =Mi—Y,—-C)—EX1,;—Y;—C; |I, 0). More
precisely, the information set is valid if S; ALV |Z 0. In terms of the simple linear
schooling model of Equations (31) and (32), this condltlon says that v; should not enter
the schooling choice equation (A = 0). A test of misspecification of I,,o is a test of
whether the coefficient of Vz o is statistically significantly different from zero in the
schooling choice equation.

More generally, fi,O is the correct information set if Vi B does not help to predict

schooling. One can search among candidate information sets Z; ¢ to determine which
ones satisfy the requirement that the generated Vi, does not predict S; and what com-
ponents of Y1 ; —Yp ; —C; (and Y7 ; — Yy ;) are predlctable at the age schooling decisions
are made for the specified information set.'3® There e may be several information sets that
satisfy this property.'*? For a properly specified I, 0> VI should not cause (predict)
schooling choices. The components of Vi, that are unpredlctable are called intrinsic
components of uncertainty, as defined in this chapter.

It is difficult to determine the exact content of Z; o known to each agent. If we could,
we would perfectly predict S; given our decision rule. More realistically, we might find
variables that proxy Z; ¢ or their distribution. Thus, in the example of Equations (31)
and (32) we would seek to determine the distribution of v; and the allocation of the
variance of p; to n; and v; rather than trying to estimate p;, 1;, or v; for each person.
This strategy is pursued in Cunha, Heckman and Navarro (2005, 2006) for a two-choice

139 This procedure is a Sims (1972) version of a Wiener—Granger causality test.

140 Thys different combinations of variables may contain the same information. The issue of the existence of
a smallest information set is a technical one concerning a minimum o -algebra that satisfies the condition on
Zio-
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model of schooling, and generalized by Cunha and Heckman (2006a). To implement
such a test requires overcoming the problem of missing counterfactual earnings equa-
tions. We now describe a method for doing so developed in Carneiro, Hansen and
Heckman (2003) and Cunha, Heckman and Navarro (2005, 2006, 2007).

10.4. An approach based on factor structures

The essence of the idea underlying the method of testing for what is in an agent’s in-
formation set at the time schooling decisions are made is communicated by adapting
Example 2 presented in Section 9. Suppose that at the time they make their schooling
decisions, agents do not know 6 or the future €1, €or, t = 1, 2. (Recall that period 1 is
the initial period in that example.) 6 is realized after schooling choices are made. The
agents know X, Z and ec. Thus Z; 0 = {X;, Zi, ec}. Suppose that 6 is independent
of X,Z,ec and E(0|X, Z,ec) = 0. Under rational expectations Ug is independent
of all future earnings disturbances so that COV(Us, U11) = 0, COV(Us, U1p) = 0,
COV(Us, Upy) = 0, COV(Us, Uyy) = 0. However realized earnings are correlated
with each other through the realized 6.

Under the assumptions of Example 2, we can test for the zero covariances. If nonzero
covariances are found, then 6 is a component of heterogeneity. Otherwise 6 contributes
to ex ante uncertainty. By design, this example is overly simplistic. It is more likely that
there are multiple sources of unobserved heterogeneity (6 is a vector) and that they may
only partially know the X that are realized after schooling decisions are made (e.g.,
macro shocks or new trends in skill prices). A more general procedure is required to
account for those possibilities which we now describe.

Consider the following linear in parameters model for a full T periods. This analysis
generalizes the example just presented. Write earnings in each counterfactual state as

Yo,i0 = Xi Boyr + Uoi,
Yii:=XiB1,+Uris, t=0,...,T.

We let costs of college be defined as
Ci=Zy+U.c.

Assume that the life cycle of the agent ends after period T. Linearity of outcomes in
terms of parameters is convenient but not essential to the method of CHN.

Suppose that there exists a vector of factors 6; = (6;,1,6; 2, ..., 6; ) such that 6; i
and 6; ; are mutually independent random variables for k, j = 1,..., L,k # j. They
represent the error term in earnings at age ¢ for agent i in the following manner:

Uo,ir = Biao,r + €0,i 15
Ul,i,l = 91‘051,1 + €1,

where o ; and o1, are vectors and 6; is a vector distributed independently across per-
sons. The €p;; and €1 ;; are mutually independent of each other and independent of
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the 6;. We can also decompose the cost function C; in a similar fashion:

Ci=Z;y+0iac +¢&ic.

All of the statistical dependence across potential outcomes and costs is generated by
0, X, and Z. Thus, if we could match on 6; (as well as X and Z), we could use matching
to infer the distribution of counterfactuals and capture all of the dependence across the
counterfactual states through the ;. Thus we could use 6 as the Q in Section 9 if we
could observe it. However, in general, CHN allow for the possibility that not all of the
required elements of 6; are observed.

The parameters a¢ and a5, fors = 0,1,and t = 0, ..., T are the factor loadings.
&i.c 1s independent of the 6; and the other ¢ components. In this notation, the choice
equation can be written as:

§*— E XT: (Xi,t/gl,t + 6’z‘Ofl,t + 81,1‘,1) - (Xi,t,BO,t + 91‘050,: + 80,i,t)
' 1 +r)

=0
—(Ziy +biac +¢€ic)|Zio |, (33)

S;i=1 ifS*>0; S; =0 otherwise.

The sum inside the parentheses is the discounted earnings of agent i in college minus the
discounted earnings of the agent in high school. The second term is the cost of college.

Constructing (33) entails making a counterfactual comparison. Even if the earnings
of one schooling level are observed over the lifetime using panel data, the earnings in
the counterfactual state are not. After the schooling choice is made, some components
of the X ;, the 6;, and the ¢; ; may be revealed (e.g., unemployment rates, macro shocks)
to both the observing economist and the agent, although different components may be
revealed to each and at different times. For this reason, application of /V even in the lin-
ear schooling model is problematic. If the wrong information set is used, the /V method
will not identify the true ex ante returns.

Examining alternative information sets, one can determine which ones produce mod-
els for outcomes that fit the data best in terms of producing a model that predicts date
t = 0 schooling choices and at the same time passes the CHN test for misspecification
of predicted earnings and costs. Some components of the error terms may be known or
not known at the date schooling choices are made. The unforecastable components are
intrinsic uncertainty as CHN define it. The forecastable information is called hetero-
geneity.!4!

To formally characterize the CHN empirical procedure, it is useful to introduce some
additional notation. Let ® denote the Hadamard product (¢ © b = (a1by, ...,arbr))

141 The term ‘heterogeneity’ is somewhat unfortunate. Under this term, CHN include trends common across
all people (e.g., macrotrends). The real distinction they are making is between components of realized earnings
forecastable by agents at the time they make their schooling choices vs. components that are not forecastable.
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for vectors a and b of length L. This is a componentwise multiplication of vectors
to produce a vector. Let Ay,, t = 0,..., T, Az, Ag, Ag,, Ag., denote coefficient
vectors associated with the X;, ¢t = 0,..., T, the Z, the 0, the 1 ; — &0;, and the ¢c,
respectively. These coefficients will be estimated to be nonzero in a schooling choice
equation if a proposed information set is not the actual information set used by agents.
For a proposed information set Il o which may or may not be the true information set
on which agents act, CHN define the proposed choice index S* in the following way:

- é Ef’;'z)’f) B — o)
+ é Xt _(lEfii)’:'Ii’O)] (Br.i — Bo) © Ay,
~ L (i — ao,)
+ E6i1Zi.0) {; Ty ac:|
= L (1 — o)
+[6: — EGi|Ti0)] { [; T Otc:| © Ae}

T ~
+ Z E(81 it — 80,i,t|Ii,0)
— 1+ r)

t

XT: [(e1,ir —€0,it) — E(e1,ir — 80,i,z|fi,o)] A,
=0 (1 + ,-)t t
— E(Zi|Zi0)y — [Zi — EZi\Zi0)]y © Az — E(gic|Zi0)
— [eic — E(eic|Zi,0)] Asc.- (34)

To conduct their test, CHN fit a schooling choice model based on the proposed
model (34). They estimate the parameters of the model including the A parameters.
This decomposition for S* assumes that agents know the 8, the y, and the «.!#? If that
is not correct, the presence of additional unforecastable components due to unknown
coefficients affects the interpretation of the estimates. A test of no misspecification of
information set Z, 0 is a joint test of the hypothesis that the A are all zero. That is, when
I, o = Z; o then the proposed choice index S* =S

In a correctly specified model, the components associated with zero A are the un-
forecastable elements or the elements which, even if known to the agent, are not acted
on in making schooling choices. To illustrate the application of the method of CHN, we
elaborate on the example based on Example 2 of Section 9, previously discussed, and

142 Cunha, Heckman and Navarro (2005) and Cunha and Heckman (2006a, 2006b) relax this assumption.
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assume for simplicity that the X; ;, the Z;, the ¢; ¢, the B1, Bo.s» the @1+, o s, and ¢
are known to the agent, and the ¢ ; ; are unknown and are set at their mean zero values.
We can infer which components of the 6; are known and acted on in making schooling
decisions if we postulate that some components of 6; are known perfectly at date r = 0
while others are not known at all, and their forecast values have mean zero given Z; ¢.

If there is an element of the vector 6;, say 6; » (factor 2), that has nonzero loadings
(coefficients) in the schooling choice equation and a nonzero loading on one or more
potential future earnings, then one can say that at the time the schooling choice is made,
the agent knows the unobservable captured by factor 2 that affects future earnings. If
6; 2 does not enter the choice equation but explains future earnings, then 6; > is unknown
(not predictable by the agent) at the age schooling decisions are made. An alternative
interpretation is that the second component of [ZtT:O % — ac] is zero, i.e., that
even if the component is known, it is not acted on. CHN can only test for what the agent
knows and acts on.

One plausible case is that for their model ¢; ¢ is known (since schooling costs are
incurred up front), but the future ¢; ; ; and &g ; ; are not, have mean zero, and are insur-
able. If there are components of the ¢;; ; that are predictable at age t = 0, they will
induce additional dependence between S; and future earnings that will pick up addi-
tional factors beyond those initially specified. The CHN procedure can be generalized
to consider all components of (34). With it, the analyst can test the predictive power of
each subset of the overall possible information set at the date the schooling decision is
being made.!43:144

In the context of the factor structure representation for earnings and costs, the contrast
between the CHN approach to identifying components of intrinsic uncertainty and the
approach followed in the literature is as follows. The traditional approach as exemplified
by Keane and Wolpin (1997) assumes that the 6; are known to the agent while the
{e0.i.zr 81,i,t}tT:0 are not.!* The CHN approach allows the analyst to determine which

143 This test has been extended to a nonlinear setting, allowing for credit constraints, preferences for risk,
and the like. See Cunha and Heckman (2006b) and Navarro (2005).

144" A similar but distinct idea motivates the Flavin (1981) test of the permanent income hypothesis and her
measurement of unforecastable income innovations. She picks a particular information set Z’,O (permanent
income constructed from an assumed ARMA(p, ¢) time series process for income, where she estimates the
coefficients given a specified order of the AR and MA components) and tests if Vj—i 0 (our notation) predicts
consumption. Her test of ‘excess sensitivity’ can be interpreted as a test of the correct specification of the
ARMA process that she assumes generates fi,o which is unobserved (by the economist), although she does
not state it that way. Blundell and Preston (1998) and Blundell, Pistaferri and Preston (2004) extend her
analysis but, like her, maintain an a priori specification of the stochastic process generating Z; . Blundell,
Pistaferri and Preston (2004) claim to test for ‘partial insurance.” In fact their procedure can be viewed as a
test of their specification of the stochastic process generating the agent’s information set. More closely related
to our work is the analysis of Pistaferri (2001), who uses the distinction between expected starting wages (to
measure expected returns) and realized wages (to measure innovations) in a consumption analysis.

145 Keane and Wolpin assume one factor where the 0 is a discrete variable and they assume all factor loadings
are identical across periods. However, their specification of the uniquenesses or innovations is more general
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components of 6; and {gg;, ¢ 1,i,z},T=0 are known and acted on at the time schooling
decisions are made.

Statistical decompositions do not tell us which components of (29) are known at the
time agents make their schooling decisions. A model of expectations and schooling is
needed. If some of the components of {eg; s, sl,i,,}tT:O are known to the agent at the
date schooling decisions are made and enter (34), then additional dependence between
S; and future Y;; — Yp; due to the {eg;, Sl,i,t}tT:o’ beyond that due to 6;, would be
estimated.

It is helpful to contrast the dependence between S; and future Yo ; ;, Y1, ; arising from
6; and the dependence between S; and the {0 ; ;, €1, }tT:O. Some of the 6; in the ex post
earnings equation may not appear in the choice equation. Under other information sets,
some additional dependence between S; and {0 ;;, € l,i,t},T:o may arise. The contrast
between the sources generating realized earnings outcomes and the sources generating
dependence between S; and realized earnings is the essential idea in the analysis of
CHN. The method can be generalized to deal with nonlinear preferences and imperfect
market environments.!4® A central issue, discussed next, is how far one can go in iden-
tifying income information processes without specifying preferences, insurance, and
market environments.

10.5. More general preferences and market settings

To focus on the main ideas in the literature, we have used the simple market structures
of complete contingent claims markets. What can be identified in more general envi-
ronments? In the absence of perfect certainty or perfect risk sharing, preferences and

than that used in factor analysis. See our discussion of their model in Section 10.8. The analysis of Hartog
and Vijverberg (2002) is another example and uses variances of ex post income to proxy ex ante variability,
removing “fixed effects” (person specific ).
146 1n a model with complete autarky with preferences W, ignoring costs,
[ i E[w<xf,zﬂ1.t + i1 +e1,00) = W (X0t Bor + 00,1 + 20,00
I+ p)

Tol.

where p is the time rate of discount, we can make a similar decomposition but it is more complicated given
the nonlinearity in W. For this model we could do a Sims noncausality test where

t=0

T
Ve = Z W(X; B+ 0oy +e1i) — V(X Bor +6icor +€0,i0)
Zio (1+p)t
t=0
T
-2 E[W(Xi,tﬁl,[ oo +e1in) = V(XitBos +0ix0.r +20,i) |5 ]
P 1+ o) "J

This requires some specification of W. See Carneiro, Hansen and Heckman (2003), who assume W (Y) =InY
and that the equation for InY is linear in parameters. Cunha and Heckman (2006b) and Navarro (2005)
generalize that framework to a model with imperfect capital markets where some lending and borrowing is
possible.
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market environments also determine schooling choices. The separation theorem allow-
ing consumption and schooling decisions to be analyzed in isolation of each other that
we have used thus far breaks down.

If we postulate information processes a priori, and assume that preferences are known
up to some unknown parameters as in Flavin (1981), Blundell and Preston (1998)
and Blundell, Pistaferri and Preston (2004), we can identify departures from specified
market structures. Cunha and Heckman (2006b) postulate an Aiyagari (1994)-Laitner
(1992) economy with one asset and parametric preferences to identify the information
processes in the agent’s information set. They take a parametric position on preferences
and a nonparametric position on the economic environment and the information set.

An open question, not yet fully resolved in the literature, is how far one can go in non-
parametrically jointly identifying preferences, market structures and information sets.
[See Cunha, Heckman and Navarro (2005).] Navarro (2005) adds consumption data to
the schooling choice and earnings data to secure identification of risk preference para-
meters (within a parametric family) and information sets, and to test among alternative
models for market environments. Alternative assumptions about what analysts know
produce different interpretations of the same evidence. The lack of full insurance in-
terpretation given to the empirical results by Flavin (1981) and Blundell, Pistaferri and
Preston (2004) may be a consequence of their misspecification of the agent’s informa-
tion set generating process. We now present some evidence on ex ante vs. ex post returns
presented by Cunha and Heckman (2006b), henceforth CH.

10.6. Evidence on uncertainty and heterogeneity of returns

Few data sets contain the full life cycle of earnings along with the test scores and school-
ing choices needed to directly estimate the CHN model and extract components of
uncertainty. It is necessary to pool data sets. CHN (2005) combine NLSY and PSID
data sets. We summarize the analysis of CH in this subsection. See their paper for their
exclusions and identification conditions.

Following the preceding theoretical analysis, they consider only two schooling
choices: high school and college graduation.'*” For simplicity and familiarity, we fo-
cus on their results that are based on assuming that complete contingent claims markets
characterize the data. We consider evidence from other market settings in Section 10.7.
Because they assume that all shocks are idiosyncratic and that complete markets op-
erate, schooling choices are made on the basis of expected present value income max-
imization. Carneiro, Hansen and Heckman (2003) assume the absence of any credit
markets or insurance. Navarro (2005) checks whether the CHN and CH findings about
components of uncertainty are robust to different assumptions about the availability of
credit markets and insurance markets. He estimates an Aiyagari—Laitner economy with

147 Heckman and Navarro (2006) present a model with multiple schooling levels.
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a single asset and borrowing constraints and discusses risk aversion and the relative im-
portance of uncertainty. We summarize the evidence from alternative assumptions about
market structures below. We now summarize the model of CH (2006b).

10.6.1. Identifying joint distributions of counterfactuals and the role of costs and
ability as determinants of schooling

Suppose that the error term for Y ; is generated by a two factor model,

Ys,t = X,Bs,t + elas,t,l + 92as,t,2 + E5,t- (35)

We omit the “i” subscripts to eliminate notational burden. Cunha and Heckman (2006b)
report that two factors are all that is required to fit the data.
They use a test score system of K ability tests:

Tir = Xrwjr + 01057 +€j7, j=1,...,K. 36)

Thus factor 1 is identified as an ability component. The cost function C is specified by:

C=Zy +6biac,1+bracr+ec. 37

They assume that agents know the model coefficients and X, Z, ec and some, but
not necessarily all, components of 8. Let the components known to the agent be 8. The
decision rule for attending college is based on:

Yiai _ Yo
1+r 0.0 1+r
S=1 ($*=0).

S* ZE(YL()—}-

X, 9‘) —EC|Z,X,0,580), (38)

Cunha and Heckman (2006b) report evidence that the estimated factors are highly non-
normal.'48

Table 15 presents the conditional distribution of ex ante potential college earnings
given ex ante potential high school earnings, decile by decile, as reported by Cunha and
Heckman (2006b). The table displays positive dependence between the relative posi-
tions of individuals in the two distributions, but it is not especially strong. In all high
school deciles save the highest, almost 90% of persons are in a different college decile.
Observe that this comparison is not made in terms of positions in the overall distribu-
tion of earnings. CH can determine where individuals are located in the distribution of

148 They assume that each factor k, k € {1, 2}, is generated by a mixture of J; normal distributions,

Jk
Ok ~ Z Pk, j®(Silik, js Tk, ;)
Jj=1

where the py ; are the weights on the normal components.
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Table 15
Ex-ante conditional distributions for the NLSY79 (College earnings conditional on high school earnings)

High school College
1 2 3 4 5 6 7 8 9 10

0.1833 0.1631 0.1330 0.1066 0.0928 0.0758 0.0675 0.0630 0.0615 0.0535
0.1217 0.1525 0.1262 0.1139 0.1044 0.0979 0.0857 0.0796 0.0683 0.0498
0.1102 0.1263 0.1224 0.1198 0.1124 0.0970 0.0931 0.0907 0.0775 0.0506
0.0796 0.1083 0.1142 0.1168 0.1045 0.1034 0.1121 0.1006 0.0953 0.0652
0.0701 0.0993 0.1003 0.1027 0.1104 0.1165 0.1086 0.1112 0.1043 0.0768
0.0573 0.0932 0.1079 0.1023 0.1110 0.1166 0.1130 0.1102 0.1059 0.0825
0.0495 0.0810 0.0950 0.1021 0.1101 0.1162 0.1202 0.1174 0.1134 0.0950
0.0511 0.0754 0.0770 0.1006 0.1006 0.1053 0.1244 0.1212 0.1297 0.1147
0.0411 0.0651 0.0841 0.0914 0.1039 0.1117 0.1162 0.1216 0.1442 0.1206
0.0590 0.0599 0.0622 0.0645 0.0697 0.0782 0.0770 0.1028 0.1181 0.3087

S O 0NN AW =

—_

Pr(d; < Yc <d; +1|dj <Yy <dj+ 1) where d; is the ith decile of the college lifetime ex-ante earnings
distribution and d; is the jth decile of the high school ex-ante lifetime earnings distribution. Individual fixes
known 6 at their means, so information set = {#; = 0, 6, = 0}. Correlation(Y¢, Yg) = 0.4083.

Source: Cunha and Heckman (2006b).

population potential high school earnings and the distribution of potential college earn-
ings although in the data we only observe them in either one or the other state. Their
evidence shows that the assumption of preservation of ranks across counterfactual dis-
tributions that is maintained in much of the recent literature [e.g., Juhn, Murphy and
Pierce (1993)] is far too strong. They also report evidence of less than perfect sorting
on ex post earnings.

Figure 16 presents the marginal density of predicted (actual) present value of earnings
for college students and the counterfactual density of the present value of their earnings
if they were high school students. When we compare the densities of present value of
earnings in the college sector for persons who choose college against the densities of
counterfactual high school earnings for college graduates, the density of the present
value of earnings for college graduates in college is to the right of the counterfactual
density of the present value of high school earnings for college graduates. A parallel
analysis for high school graduates reveals that the density of college earnings for high
school graduates is to the right of the distribution of their high school earnings so that
many high school graduates would earn more by going to college.

Table 16 from CHN reports the fitted and counterfactual present value of earnings
for agents who choose high school. The typical high school student would earn $968.5
thousand over the life cycle. He would earn $1,125.8 thousand if he had chosen to be
a college graduate.'*® This implies a return of 20.5% to a college education over the
whole life cycle (i.e., a monetary gain of $157.3 thousand). In Table 17, CHN note

149 These numbers may appear to be large but are a consequence of using a 3% discount rate.
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of 3%. Let Y; denote present value of earnings in high school sector. Let Y| denote present
value of earnings in college sector. In this graph we plot the counterfactual density function
f(yolS = 1) (the dashed line), against the factual density function f(y;|S = 1).

0

Figure 16. Densities of present value of earnings for college graduates. Factual and counterfactual
NLSY/1979 sample. Source: Cunha and Heckman (2006b).

Table 16
Average present value of ex post earnings1 for high school graduates fitted and counterfactual® white males
from NLSY79
High school (fitted) College (counterfactual) Returns?
Average 968.5100 1125.7870 0.2055
Standard error 7.9137 9.4583 0.0113

Source: Cunha and Heckman (2006b).
IThousands of dollars. Discounted using a 3% interest rate.

2The counterfactual is constructed using the estimated college outcome equation applied to the population of

persons selecting high school.

. . PV i Col)—PV, i HS
3 As a fraction of the base state, i.e., ¢ eam'"gps\(, )_ I:ammgs( ) .
eal'mngs( S)

that the typical college graduate earns $1,390.3 thousand if he goes to college (above
the counterfactual earnings of what a typical high school student would earn in col-
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Table 17
Average present value of ex post earningsl for college graduates fitted and counterfactual® white males from
NLSY79
High school (counterfactual) College (fitted) Returns®
Average 1033.721 1390.321 0.374
Standard error 14.665 30.218 0.280

Source: Cunha and Heckman (2006b).

IThousands of dollars. Discounted using a 3% interest rate.

2The counterfactual is constructed using the estimated high school outcome equation applied to the population
of persons selecting college.

(PVei\mings (Col) *PVeamings (HS))
Pveamings (HS) )

3 As a fraction of the base state, i.e.,

lege), and would make only $1,033.7 thousand over his lifetime if he chose to be a
high school graduate instead. The returns to college education for the typical college
graduate (which in the literature on program evaluation is referred to as the effect of
Treatment on the Treated) is almost double that of the return for a high school gradu-
ate. In monetary terms a college graduate has a gain of going to college almost $175
thousand higher over his lifetime than does the typical high school graduate.

Figure 17 plots the density of ex post gross returns to education excluding direct
costs and psychic costs for agents who are high school graduates (the solid curve), and
the density of returns to education for agents who are college graduates (the dashed
curve). In reporting our estimated returns, CH follow conventions in the literature and
actually present growth rates in terms of present values, and not true rates of return (ig-
noring option values).'”° Thus these figures report the growth rates in present values
(%&V(O)) where “1”” and “0” refer to college and high school and all present values
are discounted to a common benchmark level. Tuition and psychic costs are ignored.
College graduates have returns distributed somewhat to the right of high school grad-
uates, so the difference is not only a difference for the mean individual but is actually
present over the entire distribution. Agents who choose a college education are the ones
who tend to gain more from it.

With their methodology, CHN can also determine returns to the marginal student.
This could also be estimated by the MTE method discussed in Section 8. Under rational
expectations, mean ex post and ex ante returns are the same although the distributions
may differ. Table 18 reveals that the average individual who is just indifferent between
a college education and a high school diploma earns $976.04 thousand as a high school
graduate or $1,208.26 thousand as a college graduate. This implies a return of 28%.
The returns to people at the margin are above those of the typical high school graduate,

150 Recall our discussion of treatment effects in the generalized Roy model and their relationship to true rates
of return in Section 8.2.
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Let Y denote present value of earnings in high school sector. Let Y denote present value of
earnings in college sector. Let R = (Y] — Y()/ Yo denote the gross rate of return to college.
In this graph we plot the density function of the returns to college conditional on being a high
school graduate, f(r|S = 0) (the solid line), against the density function of returns to college
conditional on being a college graduate, f(r|S = 1). We use kernel density estimation to
smooth these functions.

Figure 17. Densities of returns to college. NLSY/1979 sample. Source: Cunha and Heckman (2006b).

but below those for the typical college graduate. Since persons at the margin are more
likely to be affected by a policy that encourages college attendance, their returns are the
ones that should be used in order to compute the marginal benefit of policies that induce
people into schooling.

A major question that emerges from the analyses of CHN and CH is, why, if high
school graduates have such positive returns to attending college, don’t more attend?
People do not pick schooling levels based only on monetary returns. Recall that their
choice criterion (Equation (38)) also includes both pecuniary and nonpecuniary costs
of attending college. Figure 18 shows the estimated density of the monetary value of
this cost both overall and by schooling level. Fewer high school graduates perceive a
benefit (negative cost) of attending college than college graduates. Table 19 explores
this point in more detail by presenting the mean total cost of attending college (first
row) and the mean cost that is due to ability (i.e., factor 1), given in the second row.
The mean cost of attending college is negative for the average college graduate and
positive for the average high school graduate. Costs are substantially smaller for college
graduates. Average college graduates have higher ability. The average contribution of
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Table 18
Average present value of ex post earnings1 for individuals at the margin fitted and counterfactual® white males
from NLSY79
High school College Returns’
Average 976.04 1208.26 0.2828
Std. Err. 21.503 33.613 0.0457

Source: Cunha and Heckman (2006b).
I Thousands of dollars. Discounted using a 3% interest rate.

2The counterfactual is defined as the result of taking a person at random from the population regardless of his
schooling choice.
(PVeamings (Col) _Pvearnings (HS))

3 As a fraction of the base state, i.e., PV oo (HS)
earnings
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Let C denote the monetary value of psychic costs. Let f(c) denote the density function of psychic

costs in monetary terms. The dashed line shows the density of psychic costs for high school
graduates, that is f(c|S = 0). The dotted line shows the density of psychic costs for college
graduates, that is, f(c|S = 1). The solid line is the unconditional density of the monetary value
of psychic costs, f(c).

Figure 18. Densities of monetary value of psychic cost both overall and by schooling level. Source: Cunha
and Heckman (2006b).
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Table 19
Monetary costs of schooling levels

High school College Overall

Mean monetary value

of total cost of attend- 0.4393 —26.8651 —11.9223
ing college

Mean monetary value

of ability cost of attend- 12.7152 —14.8924 0.0000
ing college

Values in thousands of dollars (2000).
Let C denote the psychic costs in monetary terms. Then C is given by

C=Zy+0ac, +brac, +éc.

The contribution of ability to the costs of attending college in monetary value
is 81 c. Recall that, on average, the ability is different between those attending
college and those attending high school.

Source: Cunha and Heckman (2006b).

ability to costs is positive for high school graduates (a true cost). It is negative for college
graduates, so it is perceived as a benefit.

This is one answer to the stated puzzle. People do not only (or even mainly) make
their schooling decisions by looking at their monetary returns in terms of earnings.
Psychic costs play a very important role. More able people have lower psychic costs
of attending college. The high estimated psychic cost is one reason why the rates of
return that ignore psychic costs (and tuition) discussed in Section 4 are so high. This
high psychic cost is one explanation why the college attendance rate is so low when the
monetary returns are so high. One convention in the classical human capital literature
— that tuition and psychic costs are negligible — is at odds with this evidence.!>! The
evidence against strict income maximization is overwhelming.

However, explanations based on psychic costs are intrinsically unsatisfactory. One
can rationalize any economic choice data by an appeal to psychic costs. Heckman,
Stixrud and Urzua (2006) show the important role played by noncognitive skills as
well as cognitive skills in explaining schooling (and other decisions). They show how,
in principle, conventional risk aversion, time preference and leisure preference para-
meters can be related to psychometric measures of cognitive and noncognitive skills.
Establishing this link will provide a better foundation for understanding what “psychic
costs” actually represent.

151 “Psychic costs” can stand in for expectational errors and attitudes towards risk. We do not distinguish
among these explanations in this chapter. The estimated costs are too large to be due to tuition alone. As
noted below, given that returns are far from perfectly forecast, an important role for expectational errors is
impossible.
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“Psychic costs” may also be a stand in for credit constraints and risk aversion. How-
ever, the evidence on psychic costs in schooling choice equations is more sturdy than
this discussion might suggest. Carneiro, Hansen and Heckman (2003) obtain similar
conclusions on the importance of psychic costs from a model where people are not al-
lowed to borrow or lend and there is risk aversion. In Cunha, Heckman and Navarro
(2005), on the other hand, there are no constraints on borrowing or lending, and they
also show sizeable components of psychic costs.

10.6.2. Ex ante and ex post returns: Heterogeneity versus uncertainty

Figures 19 through 21, from Cunha and Heckman (2006b) separate the effect of het-
erogeneity from uncertainty in earnings. The figures plot the distribution of ex ante and
ex post outcomes under different information sets. The information set of the agent is
7T =1{X,Z,Xr,ec, ®}, O contains some or all of the factors. In this paper and in the
analyses of Cunha, Heckman and Navarro (2005, 2006, 2007) and Carneiro, Hansen
and Heckman (2003), the various information sets consist of different components of 6.

First consider Figure 19. It presents results for a variety of information sets. First
assume that agents do not know their factors; consequently, ® = &. This is the ex post
or realized distribution of the variation that is observed in the data. If the agents learn
about factor 1,192 so that, ® = {61}, the reduction in the forecast variance is very
small. Factor 1, which is associated with cognitive ability, is important for forecasting
educational choices, but does not do a very good job in forecasting earnings. If the agent
is given knowledge of factor 2, but not factor 1, so that ® = {6,}, then the agent is able
to substantially reduce the forecast variance of earnings in high school. Factor 2 does not
greatly affect college choices, but it greatly informs the agent about his future earnings.
When the agent is given knowledge of both factors 1 and 2, that is, ® = {61, 6>}, he
can forecast earnings marginally better. Figure 20 reveals much the same story about
the college earnings distribution. These results suggest that selection into college is
not based primarily on expected economic returns to education. Cost factors play an
important role.

Table 20 presents agent forecast variances of the present value of future earnings
and their return. CH establish that agents know (61, 6»), the (X, Z) and the coefficient
vectors of the model at the time that agents make college enrollment decisions. Agents
do not know the ¢’s. They forecast 65% of the variance of the present value of college
earnings, 56% of the variance of the present value of high school earnings and 56% of
the gross lifetime gain to attending college. The unforecastable components are due to
uncertainty by the agent at the time schooling decisions are made. There are substantial
roles for both heterogeneity and uncertainty.

152 A opposed to the econometrician who never gets to observe either 61 or 6;.
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Let © denote the information set of the agent. Let Yy denote the present value of returns (discounted at a

3% interest rate). Let f(yg|®) denote the density of Yy conditional on information set ®. The solid line
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and dashed line plots the density of Yy when ® = {60, 6,}. The X variables are in the information set of
the agent. The factors 6, when known, are evaluated at their mean, which is zero.

Figure 19. Densities of present value of returns — NLSY/1979 under different information sets for the agent
calculated for the entire population regardless of schooling choice. Source: Cunha and Heckman (2006b).

10.6.3. Ex ante versus ex post

Once the distinction between heterogeneity and uncertainty is made, it is possible to
be precise about the distinction between ex ante and ex post decision making. From
their analysis, CH conclude that, at the time agents pick their schooling, the ¢’s in their
earnings equations are unknown to them. These are the components that correspond to
“luck.” It is clear that decision making would be different, at least for some individuals,
if the agent knew these chance components when choosing schooling levels, since the
decision rule would now be

Y, Y
Ly You

1+r 0.0 14+r
S=1 ifS*>0; S =0 otherwise,

S*=Yi0+ —C >0,
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Let ® denote the information set of the agent. Let Yy denote the present value of earnings in the high
school sector (discounted at a 3% interest rate). Let f(yg|®) denote the density of Y conditional on
information set ®. The solid line plots the density of Y; when ® = &. The dashed line plots the density
of Yy when ® = {0;}. The dotted and dashed line plots the density of Yy when ® = {0, 65}. The X
variables are in the information set of the agent. The factors €, when known, are evaluated at their mean,
which is zero.

Figure 20. Densities of present value of high school earnings — NLSY/1979 under different information sets
for the agent calculated for the entire population regardless of schooling choice. Source: Cunha and Heckman
(2006b).

where no expectation is taken to calculate S* since ex post all terms on the right hand
side of the top equation are known with certainty by the agent.

In their empirical model, if individuals could pick their schooling level using their ex
post information (i.e., after learning their luck components in earnings) 13.81% of high
school graduates would rather be college graduates and 17.15% of college graduates
would have stopped their schooling at the high school level. Using the estimated coun-
terfactual distributions, it is possible to consider a variety of policy counterfactuals on
distributions of outcomes locating persons in pre- and post-policy distributions. They
analyze how tuition subsidies move people from one quantile of a Y distribution to
another quantile of a Y| distribution. See Carneiro, Hansen and Heckman (2001, 2003),
Cunha, Heckman and Navarro (2005, 2006) and Cunha and Heckman (2006a).
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Let ® denote the information set of the agent. Let Yy denote the present value of earnings in the college
sector (discounted at a 3% interest rate). Let f(yo|®) denote the density of Y() conditional on information
set ®. The solid line plots the density of Yy when ® = @. The dashed line plots the density of Yy when
® = {61}. The dotted and dashed line plots the density of Yy when ® = {61, 6>}. The X variables are in
the information set of the agent. The factors 8, when known, are evaluated at their mean, which is zero.

Figure 21. Densities of present value of college earnings — NLSY/1979 under different information sets for
the agent calculated for the entire population regardless of schooling choice. Source: Cunha and Heckman

(2006b).

Table 20

Agent’s forecast variance of present value of earnings1 under different information sets NLSY79

For lifetime Var(Y;) Var(Yy) Var(Y: — Yp)
Total residual variance 290.84 103.13 334.02
Share of total variance due to
forecastable components 65.13% 55.94% 56.04%
Share of total variance due to

43.94%

unforecastable components 34.87% 44.06%

Source: Cunha and Heckman (2006b).
I'We use a discount rate p of 3% to calculate the present value of earnings.
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10.7. Extensions and alternative specifications

Carneiro, Hansen and Heckman (2003) estimate a version of this model with complete
autarky. Individuals have to live within their means each period. Navarro (2005) esti-
mates a version of this model with restriction on intertemporal trade as in the Aiyagari—
Laitner economy. Different assumptions about credit markets and preferences produce
a range of estimates of the proportion of the total variability of returns to schooling
that are unforecastable, ranging from 37% [Carneiro, Hansen and Heckman (2003)]
for complete autarky and log preferences, to 53—-56% [Cunha, Heckman and Navarro
(2005), Cunha and Heckman (2006b)] for complete markets, to 44% [Cunha and Heck-
man (2006a)] for another complete market economy.

This line of research has just begun. It shows what is possible with rich panel data.
The empirical evidence on the importance of uncertainty is still emerging. Yet most of
the papers suggest a substantial role for uncertainty in producing ex post returns. Ac-
counting for uncertainty and psychic costs may help to explain the high ex post rates of
return presented in Section 4. It may also account for the sluggish response of schooling
enrollment rates to rising returns to schooling that is documented in Ellwood and Kane
(2000) and Card and Lemieux (2001) because of the wedge between utility and money
returns.

10.8. Models with sequential updating of information

We have thus far discussed one shot models of schooling choice. In truth, schooling
is a sequential decision process made with increasingly richer information sets at later
stages of the choice process. We have discussed simple models of dynamic sequen-
tial decision making in Section 5. We established that with independent shocks across
schooling levels, dynamic selection leads to a downward bias of OLS estimators for
rates of return because people with good shocks to their earnings at lower levels of
schooling drop out of school. We also established that the internal rate of return is not,
in general, a valid guide to rational economic decision making.

Keane and Wolpin (1997) and Eckstein and Wolpin (1999) pioneered the estimation
of dynamic discrete choice models for analyzing schooling choices. They assume a
complete market environment and do not entertain a range of alternative market struc-
tures facing agents. In the notation of this chapter, they assume a one (discrete) factor
model with factor loadings that are different across different counterfactual states, but

are constant over time (o5; = o5, s = 1,..., S where there are S states).153 At a
pointin time, ¢, &4, s =1, ..., S, are assumed to be multivariate normal random vari-
ables. Over time the &; = (g1, ..., ¢ 5. ;) are assumed to be independent and identically
distributed. They assume agents know 6 but not the &, t = 0, ..., T. The unobserv-

ables are thus equicorrelated over time (age) because the factor loadings are assumed

153 Thys instead of assuming that 6 is continuous, as do CHN, they impose that 6 is a discrete-valued random

variable that assumes a finite, known number of values.
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equal over time and ¢; is independent and identically distributed over time. They make
parametric normality assumptions in estimating their models. They impose and do not
test the particular information structure that they use. In their model, about 90% of the
variance in lifetime returns is predictable at age 16. Their estimate of the predictability
of future earnings is much higher than any of the estimates surveyed in the previous
section, 134

Heckman and Navarro (2006) formulate and identify semiparametric sequential
schooling models based on the factor structures exposited in Sections 9 and 10 of
this chapter. They present a new semiparametric identification analysis for this class
of models. Like Keane and Wolpin, they assume a complete contingent claims market.
In preliminary research, they report substantial effects on empirical estimates from re-
laxing normality assumptions. Instead of assuming a particular information structure,
they test among alternative information structures about the arrival of information on
the components of vector § at different stages of the lifecycle. Their work supports the
analysis of CHN and CH in finding a sizable role for heterogeneity (predictable vari-
ability) in accounting for measured variability. They estimate the sequential reduction
of uncertainty as information is acquired.

11. Summary and conclusions

Since the seminal work of Becker (1964), economists have sought to estimate the rate
of return to schooling to determine whether there is underinvestment or overinvestment
in education. The quest continues to this day, and the data available to estimate it have
greatly improved. This chapter reviews the body of literature that has emerged on es-
timating returns to schooling over the past 40 years, and how access to better data has
improved estimates of the rate of return.

Mincer’s early efforts suggested one way of estimating mean rates of return and dis-
tributions of rates of return on widely available Census and CPS cross section data.
Mincer’s earnings equation still serves as the point of departure for most empirical stud-
ies of the returns to school. His analysis provides a basic theoretical underpinning for
estimating the internal rate of return to education using regressions of log earnings on
schooling and a separable quadratic function in experience.

A number of strong assumptions must hold in order to interpret the “Mincer coeffi-
cient” (i.e., the coefficient on schooling in a log earnings equation) as an internal rate of

154 Keane and Wolpin (1997) do not allow for sequential updating of serially-persistent information com-

ponents nor do they explicitly estimate agent information sets, or their evolution. They also impose a one
factor assumption with factor loadings the same across stages of the lifecycle, whereas CHN and CH allow
for multiple factors that can enter into agent information sets at different stages of the life cycle and with
factor loadings in each outcome equation that can change depending on the stage of the lifecycle. Keane and
‘Wolpin impose the same factor loadings at each stage of the life cycle for each behavioral outcome. CHN and
CN do not.
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return. While many of these assumptions turn out to hold in the 1960 data for the U.S. la-
bor market that he analyzed (e.g., separability in education and experience, log-linearity
of earnings in schooling, negligible tuition costs of school, and negligible taxes), this
chapter shows that in recent U.S. data they no longer hold. After documenting evidence
against Mincer’s assumptions, Section 4 considers alternative approaches to estimating
the marginal internal rate of return to schooling across different schooling levels.

We estimate general nonparametric earnings functions and generate from them mar-
ginal internal rates of return that account for taxes and tuition. The levels and time series
patterns of marginal internal rates of return differ dramatically from those produced by
a Mincer model. Deviations from parallelism and linearity in schooling in log earnings
equations — keystones of the Mincer approach — are quantitatively important in deter-
mining internal rates of return, as are the effects of taxes and tuition. Economists cannot
continue to pretend that violations of the required assumptions are innocuous when us-
ing Mincer regressions to estimate ‘returns to schooling’. Although we report estimates
based on U.S. data, we conjecture that similar problems with Mincer’s assumptions ap-
ply to many other countries. Replication of our study on data from other countries would
be highly desirable.!>

Our analysis shows how to use nonparametric earnings profiles reported in the re-
cent literature to estimate rates of return. The recent literature surveyed in Katz and
Autor (1999) establishes that the payment to college graduates has gone up relative to
that of high school graduates in the past two decades. It does not determine whether
rates of return have increased. We show that using the Mincer estimate of the rate of
return misrepresents trends in actual rates of return, because of misspecification of the
earnings—schooling—experience relationship and because of neglecting components of
the return such as tuition costs and taxes. It also leads to inaccurate estimates of earnings
associated with different schooling levels.

The standard representative agent income maximizing model that serves as the foun-
dation for many analyses of returns to schooling motivated by economic theory suggests
that marginal internal rates of return should be the same across observed schooling
choices and should equal the common real interest rate faced by students. Yet, our re-
ported estimates of the return to high school and college completion for recent years are
substantially larger than the real interest rates faced by consumers, even on credit card
debt.

One possible explanation for this disparity is the failure of the income maximizing
concept, rather than the utility maximizing concept, to represent schooling decisions.
Psychic costs or distaste for schooling may explain why more than fifteen percent of
new cohorts of American youth do not receive a high school degree despite its high

155 There is a considerable volume of work on estimating returns to schooling in other countries. See, e.g.,
Blundell, Dearden and Sianesi (2005) for the U.K., or Adda et al. (2005) for Germany. Zamarro (2005) uses
the MTE methods developed in Heckman and Vytlacil (1999, 2005) and Heckman, Urzua and Vytlacil (2006)
to estimate returns to schooling in Spain. None of these studies make the ex ante—ex post distinction, and none
estimate the internal rate of return to schooling or the more general return measures discussed in this chapter.
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estimated financial return. Results from Carneiro, Hansen and Heckman (2003), Cunha,
Heckman and Navarro (2005, 2006) and Cunha and Heckman (2006a, 2006b) discussed
in Section 10 show high psychic cost components estimated under different assumptions
about the economic environments facing agents. Although in theory substantial credit
constraints could explain the patterns of college-going decisions, recent research finds
them to be quantitatively unimportant in the U.S. economy [see the survey by Cunha et
al. (2006)], and the estimates of high psychic costs are robust to alternative assumptions
about credit markets.

Heckman, Stixrud and Urzua (2006) establish the importance of both cognitive and
noncognitive skills in explaining schooling decisions, wages and a variety of risky
behaviors. Psychic costs are related to both cognitive and noncognitive skills. They
discuss, but do not definitively establish, the link between psychometric measures of
cognitive and noncognitive skills and conventional measures of risk aversion, prefer-
ence for leisure and time preference that would be a more satisfactory foundation for
explaining “psychic costs.”

Mincer and many other researchers use cross sections of earnings to estimate life-
cycle earnings of the various cohorts sampled in the cross-section, the so-called syn-
thetic cohort approach. This practice is problematic when labor markets are nonsta-
tionary as in recent years. The use of repeated cross-section or panel data that follow
the experience of actual cohorts is essential for accurately measuring rates of return
to schooling. However, use of repeated cross section data does not produce lower esti-
mated returns. If anything, the return from repeated cross section data is higher, leaving
the puzzle of high estimated returns to schooling in place.

If analysts seek to estimate ex post returns, a cohort analysis is clearly preferred to a
cross-section approach. However, if analysts are interested in estimating ex ante returns
in a changing economic environment, the choice is less clear cut. Expectations about
the future need to be specified or, better, estimated or measured.!5°

We summarize an emerging literature that moves beyond estimating mean growth
rates of earnings with schooling or treatment effects to estimate distributions of growth
rates and rates of return. This approach is based on the principle that dependence across
counterfactual distributions is generated by low-dimensional unobservables. The new
methods can be implemented using panel data on earnings and schooling. Access to test
scores or other proxies for the latent factors facilitates identification of the distribution
of rates of return.

Application of the new methods to rich panel data allows analysts to disentangle un-
certainty from measured variability. We review evidence from Cunha, Heckman and
Navarro (2005, 2006) and Cunha and Heckman (2006a, 2006b), who develop and im-
plement an approach for empirically distinguishing ex ante from ex post returns to
schooling using rich panel data. They find that uncertainty about the future is empiri-
cally important for understanding schooling decisions. To the extent that individuals are

156 Manski (2004) presents a comprehensive survey of recent research on measuring expectations.
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risk averse, the evidence on uncertainty helps to explain some of the high estimated re-
turns to schooling reported in Section 4 and in the entire literature [see Navarro (2005),
Cunha and Heckman (2006b)]. At the same time, a substantial amount of observed vari-
ability in earnings is predictable at the date schooling decisions are made.

In a dynamic setting, uncertainty about future earnings and schooling outcomes cre-
ates a wedge between ex post average rates of return and real interest rates due to the
option value of continuing on in school and updating information. For example, some
individuals may attend college, knowing that the expected returns to only a few years of
college are low but the expected returns from finishing college are quite high. Even if
college graduation is not certain, many individuals may be willing to take the gamble of
attending with the hope that they will finish successfully. Our estimates of low returns to
college attendance and high returns to college completion are consistent with this story.

Our analysis of option values raises questions about the internal rate of return — a pil-
lar of classical human capital theory — as a useful measure of returns to schooling.
In a model with uncertainty and sequential decision making, there may be many dis-
count rates that equate theoretically correct value functions across different schooling
choices. The validity of internal rate of return measures depends crucially on the amount
of uncertainty in future earnings associated with different education levels. The recent
literature finds a substantial amount of predictability in future earnings and empirical
estimates of option values that are relatively small. This mitigates concerns about using
internal rates of return as a criterion for evaluating educational policy. However, work
on this topic has just begun, so any conclusion about the empirical importance of option
values has to be tempered with caution.

The most common criticism directed against the Mincerian approach questions the
strong assumption that individuals making different schooling choices are ex ante iden-
tical [see, e.g., Griliches (1977), Willis (1986), Willis and Rosen (1979), Card (1995,
1999), Heckman and Vytlacil (1999, 2005), Carneiro, Hansen and Heckman (2003),
Carneiro, Heckman and Vytlacil (2005)]. The recent literature that attempts to address
the consequences of heterogeneity on estimated rates of return focuses on mean growth
rates of earnings with schooling and not on true rates of return. Card’s (1995, 1999)
version of Becker’s Woytinsky lecture offers a useful framework for analyzing growth
rates in earnings in a heterogeneous world. Under strong assumptions that schooling
choice equations are linear in growth rates and in costs of schooling, instrumental vari-
able methods can be used to identify the average effect of schooling on earnings.

However, researchers are often interested in other treatment parameters that can be
directly linked to the effects of a particular policy intervention. These parameters are
not typically estimated by instrumental variable estimators. Since schooling is a dis-
crete outcome, traditional instrumental variables methods produce parameters that are
instrument-dependent and are rarely economically interpretable.

The empirical debate on the importance of accounting for the endogeneity of school-
ing in estimating rates of return is far from settled. Much of this literature does not
estimate rates of return but instead focuses on various treatment effects. An entire recent
literature has directed attention away from estimating rates of return, or other economi-
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cally interpretable parameters, toward estimating the probability limits of /V estimators
which often lack any economic interpretation. Many of the popular instruments are
weak and the 7V literature has lost sight of estimating distributions of returns.

Much of the recent literature has focused on the rising returns to college. The esti-
mates presented in this chapter suggest a substantially greater increase in the returns to
high school, raising the obvious questions: why do so many individuals continue to drop
out of high school and why is the correctly measured high school dropout rate increas-
ing? The answer may rely on high “psychic” costs of school, credit constraints, risk
and uncertainty, or unobserved differences in ability between dropouts and graduates. It
remains to be established whether the enormous increase in the returns to high school in
recent decades estimated using the internal rates of return implicit in the recent Census-
CPS literature can be explained by changes in ability differences between high school
dropouts and graduates. The relatively slow growth in high school dropout rates since
1970 and the continued increase in rates of return to high school (as measured by cross-
section or cohort-based estimates) since that time poses a serious challenge to simple
explanations based on this premise.'>’ The new literature is beginning to sort out these
competing explanations. Recent developments in the literature employ new methods to
take advantage of rich longitudinal microdata in order to begin distinguishing among
the many possibilities.

With better tools and better data, the conventions of 1960s labor economics should no
longer guide estimation of rates of return to schooling in the 21st century. The Mincer
model is no longer a valid guide to estimating the returns to schooling or accounting
for heterogeneity in returns. The modern 7V literature aims to recover growth rates of
earnings with schooling, allowing for heterogeneity, but has lost sight of the economic
questions posed by Mincer. Recent developments in econometrics and the economics
of education coupled with rich panel data make it possible to estimate economically
interpretable parameters including true ex ante and ex post rates of return to schooling
and their distributions in the population.

Appendix A: Derivation of the overtaking age

Based on the text,

InY(s,x) =In Psyr +In(1 — kgyx)
x—1
~ In Ps + po st+j — kstx-
j=0

157 Recent work by Heckman and LaFontaine (2006) suggests that in recent cohorts dropouts are relatively

more educated than in earlier cohorts so the basic facts work against the hypothesis suggested in the text. For
a survey of recent evidence on college—high school wage differentials, see Katz and Autor (1999).
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Further using the assumption of linearly declining investment yields

x—1
InY (s, x) ~ In P —i—K(p()Z(l —j/T)—( —x/T)).

Jj=0

Assuming only initial earnings potential (Ps) and investment levels (k) vary in the pop-
ulation, the variance of log earnings is given by

x—1 2
Var(ln Y (s, x)) = Var(In Py) + (,oo Z(l —j/T)— (1 - x/T)) Var(x)

j=0
x—1
+ 2<po Y a—j/r)—a- x/T)) Cov(ln Py, k).
j=0

If ¥ and In Py are uncorrelated, then earnings are minimized (and equal to Var(ln Py))
when

x—1
poY (1—j/T)=1-x/T, or
j=0
x(x—1) (1 /T
X—— | = —x .
£0 T £0
Clearly, limy_, oo x* = p—lo, so the variance minimizing age is % when the work-life

is long. More generally, re-arranging terms and solving for the root of this equation'>8

yields the variance minimizing experience level of

. 11 1 1\> 2r
=T+ —— [(T+z:+—) - =
2 po 2 po £0

-1
po 1
~ +—=+=) .
(p 0T or T)
where the final approximation comes from a first-order Taylor approximation of the
square root term around the squared term inside. The approximation suggests that the

variance minimizing age will generally be less than or equal to p—lo, with the difference
disappearing as T grows large.

158 There is a second root which is greater than 7' (the maximum working age), so it is ignored.
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Appendix B: Data description

Census data

The Census samples used in this chapter are taken from the 1940, 1950, 1960, 1970,
1980 and 1990 Public-Use Census Samples. The 1940 sample consists of the self-
weighting subsample which represents 1% of the population. The 1950 sample consists
of sample-line persons (for whom questions regarding earnings were asked) which rep-
resent about 0.303% of the population. The 1960 sample is a self-weighting 1% sample.
The 1970 sample is taken from two Public-Use A samples: the 1% State sample (5%
form) and the 1% State sample (15% form). It is a self-weighting sample of 2% of the
population. The 1980 and 1990 Census samples are both 5% Public Use A samples.
The 1980 sample is self-weighting but the 1990 sample is not. For 1990, we use person
weights to re-weight the sample back to random proportions.
The following sample restrictions are imposed for each Census year:

age: Sample includes individuals age 16-64. For Census years when a quarter-of-birth
variable is available, we take into account the quarter of birth in calculating the age
of each individual from the year of birth variable provided in the data set.

race: Only individuals reported as being black or white are included in the analysis.

earnings: The earnings measure used is annual earnings, which includes both wage and
salary and business income for the Census years when business income is available.
For Census years when earnings are reported in intervals, we use the midpoint of the
interval as the individual’s earnings.

imputations: Individuals with imputed information on age, race, sex, education, weeks
worked or income are excluded. For years when all the imputation flags are not pro-
vided, we omit individuals on the basis of the available imputation flags.

The following variables are constructed:

experience: Potential experience is measured by Age—Years of Education—6.

years of education: For the 1940-1980 Censuses, years of education are reported as
the highest grade completed. For the 1990 Census, years of education are reported
differently: by categories for first through fourth grade and for fifth through eighth
grade, by year for ninth through 12th grade, and then by degree attained. To main-
tain comparability with the other Census samples, we impute the number of years of
school associated with each category or degree. For those with some college but no
degree or for those with an associate degree, we assign 14 years of school. For those
with a bachelor’s degree, we assign 16 years of school. For professional degrees we
assign 17 years and for masters degrees and beyond, including doctoral degrees, we
assign 18 years of school.
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Current Population Survey (CPS) data

The CPS samples used in this chapter are taken from the 1964-2000 CPS March Sup-
plements.
The following sample restrictions are used for each year:

age: Sample includes individuals age 18-65.

race: Sample separated into whites and all nonwhites.

earnings: Annual wage and salary income (deflated using the CPI-U) is used as the
earnings measure in each year.

The following variables are constructed for our analysis:

experience: Potential experience is measured by Age—Years of Education—6.

years of education: For 1964-1991, years of education are reported as the highest
grade completed. Categories of schooling include 9-11 years, 12 years, and 16 years.
From 1992-2000, years of education are reported differently. Those completing
12 years of schooling but who do not receive a high school diploma are assigned
11 years. Only those with 12 years of schooling and a diploma are assigned 12 years
of schooling. For those with a bachelor’s degree, we assign 16 years of school.

Tuition time series

To estimate the private cost of college, we use the time series Total Revenue from Stu-
dent Fees and Tuition obtained from Snyder (1993, Table 33). Tables 24 and 33 of this
publication provide, for all institutions, statistics on total educational revenue, total tu-
ition revenue, and total enrollment. We divide total revenue for all institutions by total
enrollment. Supplementing this data with data from Snyder (2000, Tables 175 and 331),
we create a consistent time series of total educational revenue, total tuition revenue, and
total enrollment for 1940-1995.

Tax rate time series

We obtain the average marginal tax rate time series from Barro and Sahasakul (1983)
and Mulligan and Marion (2000, Table 1, column 1). The tax rates used in our pro-
gressive tax analysis are obtained from the federal schedule for a single adult with no
dependents. All income is assumed to be earned income and standard deductions are
assumed. To obtain after-tax income for 1960-90, we use the TAXSIM version 4.0 pro-
gram available at http://www.nber.org/taxsim/taxsim-calc4/index.html. For 1940 and
1950, we use the actual federal tax schedules (Form 1040) as reported in the Statis-
tics of Income.
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Appendix C: Local linear regression

In estimating the nonparametric regressions, we use local linear regression methods.
As discussed in Fan and Gijbels (1996), the local linear estimator for the conditional
expectation E[y;|x; = xo] can be computed from the minimization problem

n

. 2 Xi — X0
min ) (yi —a — b1 (x; — x0)) K(h—>
. n

where K (-) is a kernel function and 4, > 0 is a bandwidth which converges to zero
as n — 00.1%% The estimator of the conditional mean E [vilx; = x¢] is a. The lo-
cal linear estimator can be expressed as a weighted average of the y; observations,
Y iy yiWi(x0), where the weights are

Ki Y1 K7 — Ki Yy Ki
> k=1 Kk Z?:l sz' — k= Ki?
Our local regression estimator is given by

Wi(xo) =

N
(x0) = Y y(x;)Wi(xo),
i=1
where y(x;) represents log earnings at experience level x; and N represents the number
of observations. '
The asymptotic distribution of the estimator m(xg) for m(xg) = E(y;|x; = xgp) is
given by

vV nhn(’”h(xO) - m(xO)) ~ N(By, Vu) +0,(1),

where the bias and variance expressions are given by

B, = hi. - (0.5m" (xg)) - f u?K (u) du,
2 00
=2 (x0) K?(u) du,
f(x0) J-oo

and where 02(x0) = E({yi — E(yi|xi = x0)}*|xi = x0) and f (xg) is the density of x;
at x0.161

159 The kernel function we use in the empirical work is the quartic kernel, given by

K(s) = { (15/16)(s2 = D2 ifIs| < 1,
0 otherwise.
The bandwidth used is equal to 5.
160 For some of the Census years, there is a problem of nonrandom sampling with sampling weights provided
in the data. The sampling weights are taken into account when calculating the mean log earnings at each
experience level.
161 See, e.g., Fan and Gijbels (1996), for derivation of these formulae.
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Tests of parallelism

In Section 3 of this chapter, we perform nonparametric tests of whether the log-
earnings—experience profiles are parallel across schooling levels. Let 51 and s, denote
two different schooling levels (16 years and 12 years, for example). We test whether

E(yilxi, s = s1) — E(yi|xi, s = s2) = constant across x; € {10, 20, 30, 40 years}.

We select the experience values at which the hypothesis is tested to be at least 2 band-
widths apart from the other experience levels, so that the nonparametric estimates are
independent from one another. Let m(x;, s1) denote the estimator for E (y;|x;, s = s1)
for experience level x; and schooling level s = s;. The test statistic for testing paral-
lelism for two different schooling levels s and s, and two experience levels x; and xj
is given by

(m(xi, 1) — m(xi, $2)) — (M, 51) — (X, 52))
X (Vi + Va4 V3 + V™!
x (m(xi, s1) — m(xi, $2)) — (M(x, 51) — M(xg, 52)),

where f/\l, f/\z, Vg, and f/\4 are estimators for Vi = Var(m(x;, s1)), Vo = Var(m(x;, 52)),
V3 = Var(i(xk, s1)), V4 = Var(ii(xy, 52)).
To estimate the variances, we use

N
Var(iiu(x;, s5¢)) = Zé(xi, 50’ W2(xi), £=1,2,

i=1
where &(x;, s¢) = y(x;, s¢) —m(x;, s¢), £ = 1, 2, is the fitted residual from the nonpara-
metric regression evaluated at experience level x;.'92 In Table 1, we report test results
based on the test statistic that straightforwardly generalizes the test statistic given above
to four experience levels.
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