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Lecture I presented a general framework for policy
evaluation.

Lecture II focused on IV and showed the relationship
between IV and structural selection models in
environments with essential heterogeneity:
(Y1 − Y0) ⊥�⊥ D | X .

It showed how to obtain marginal returns not just average
returns.

It focused on means.

Methods for identifying means can also identify marginal
distributions.

E [1(Y1 ≤ y1) | X ] = F (y1 | X )

E [1(Y0 ≤ y0) | X ] = F (y0 | X )
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These lectures focused primarily on ex post analyses and
did not account for uncertainty.

Today I want to consider the analysis of distributions of
outcomes ex ante and ex post.

As Hicks (1946, p. 179) puts it,

“Ex post calculations of capital accumulation have their place
in economic and statistical history; they are useful measures
for economic progress; but they are of no use to theoretical
economists who are trying to find out how the system works,
because they have no significance for conduct.
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Two distinct problems that we consider:

1 Identifying distributions of treatment effects.
2 Explicitly introducing uncertainty.

First consider recovering ex post joint distributions.
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The problem

We do not usually observe (Y0, Y1) as a pair.

The problem of recovering joint distributions from cross
section data has two aspects.

The first is the selection problem.

From data on outcomes, F1 (y1 | D = 1, X ),
F0 (y0 | D = 0, X ), under what conditions can one recover
F1 (y1 | X ) and F0 (y0 | X ), respectively?

The second problem is the evaluation problem: how to
construct the joint distribution of F (y0, y1 | X ) from the
two marginal distributions.
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Why bother identifying joint distributions?

Why not settle for the marginals F (y0 | X ) and
F (y1 | X )?

These can be identified in a straightforward way using
standard tools.

The literature on the measurement of economic inequality
as surveyed by Foster and Sen (1997) focuses on marginal
distributions across different policy states.

Invoking the anonymity postulate, it does not keep track
of individual fortunes across different policy states.

It does not consider mechanisms of assignment of
treatment.
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Why bother identifying joint distributions?

Thus, in comparing policies p and p′, it compares the
marginal distributions of

Y p = DpY p
1 + (1− Dp) Y p

0

and
Y p′

= Dp′
Y p′

1 +
(
1− Dp′

)
Y p′

0 ,

where Dp and Dp′
are the treatment choice indicators

under policies p and p′, respectively.

It does not seek information on the subjective valuations
of the policy change or the components of the treatment
distributions under each policy(
Y p

0 and Y p
1 ; Y p′

0 and Y p′

1

)
.

It only compares F (yp | X ) and F (yp′ | X ) in making
comparisons of welfare.
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Why bother identifying joint distributions?

Some economists appeal to classical welfare economics
and classical decision theory to argue that marginal
distributions of treatment outcomes are all that is
required to evaluate policy.

The argument is that under expected utility maximization
with information set I, the agent should be assigned to
(choose) treatment 1 if

E (Υ (Y1)−Υ (Y0) | I) > 0,

where Υ is the preference function and I is the
appropriate information set.

For other criteria used in classical decision theory,
marginal distributions are all that is required.
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Why bother identifying joint distributions?

If one seeks to know the proportion of people who benefit
from the program in gross terms (Pr (Y1 > Y0)), one
needs to know the joint distribution of (Y0, Y1) given the
appropriate information set.

For the Roy model,

D = 1 [Υ (Y1) ≥ Υ (Y0)] .

In this case, the probability of selecting treatment given
the econometrician’s information set IE is

Pr (D = 1 | IE ) = Pr (Υ (Y1) ≥ Υ (Y0) | IE ) .
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Why bother identifying joint distributions?

If the agent’s information set is the same as the
econometrician’s and uses the choice rule
D = 1 [Υ (Y1) ≥ Υ (Y0)], then observed choice
proportions identify
Pr (D = 1 | IE ) = Pr (Υ (Y1) ≥ Υ (Y0) | IE ).

But analyses of objective evaluations often condition on
information sets other than IE .

Need the full joint distribution to compute e.g.,
Pr (Y1 > Y0) (the fraction who benefit ex post).
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Bounds from classical probability inequalities

The inequalities of Hoeffding (1940) and Fréchet (1951)
state that

max [F0 (y0 | X ) + F1 (y1 | X )− 1, 0]

≤ F (y0, y1 | X )

≤ min [F0 (y0 | X ) , F1 (y1 | X )] .

Assume F1, F0 are strictly monotonic.

Upper bound Y1 = F−1
1 (F0 (Y0)).

Lower bound Y1 = F−1
1 (1− F0 (Y0)).
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Bounds from classical probability inequalities

Example from Heckman, Smith, and Clements (1997).

A discrete outcome example.

Let (E , E ) denote the event “employed with treatment”
and “employed without treatment” and let (E , N) be the
event “employed with treatment, not employed without
treatment”.
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Bounds from classical probability inequalities

This model for outcomes can be written in the form of a
contingency table:

Untreated

Treated

E N
E PEE PEN PE ·
N PNE PNN PN·

P·E P·N

PE ·, PN·, P·E , P·N obtained from experiment.
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Bounds from classical probability inequalities

Estimates of the marginals of the table parameters:

PE · = PEE + PEN

(employment proportion among the treated)

P·E = PEE + PNE

(employment proportion among the untreated)

The treatment effect is usually defined as

∆ = PEN − PNE net effect (1)

= PE · − P·E (2)
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Bounds from classical probability inequalities

Fréchet-Hoeffding Bounds

max [PE · + P·E − 1, 0] ≤ PEE ≤ min [PE ·, P·E ]

max [PE · − P·E , 0] ≤ PEN ≤ min [PE ·, 1− P·E ]

max [−PE · + P·E , 0] ≤ PNE ≤ min [1− PE ·, P·E ]

max [1− PE · − P·E , 0] ≤ PNN ≤ min [1− PE ·, 1− P·E ]
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Bounds from classical probability inequalities

Table 2
Fraction Employed in the 16th, 17th or 18th Month after Random Assignment and

Fréchet-Hoeffding Bounds on the Probabilities PNE and PEN

National JTPA Study 18 Month Impact Sample
Adult Females

Parameter Estimate
Fraction employed in the treatment group 0.64

(0.01)
Fraction employed in the control group 0.61

(0.01)
Bounds on PEN [0.03,0.39]

(0.01),(0.01)
Bounds on PNE [0.00,0.36]

(0.00),(0.01)

Notes: 1. Employment percentages are based on self-reported employment in
months 16, 17 and 18 after random assignment. A person is coded as employed
if the sum of their self-reported earnings over these three months is positive.
2. Pij is the probability of having employment status i in the treated state and
employment status j in the untreated state, where i and j take on the values E for
employed and N for not employed. The Fréchet-Hoeffding bounds are given in the
text.
3. Standard errors are discussed in Heckman, Smith and Clements (1997).
Source: Heckman, Smith and Clements (1997).

16 / 136



Intro Treatment effects Motivation Details of our approach Empirical work Results Summary

Bounds from classical probability inequalities

Requires access to variables Q that have the property that
conditional on Q, F (y0 | D = 0, X , Q) = F (y0 | X , Q)
and F (y1 | D = 1, X , Q) = F (y1 | X , Q).

Matching assumes that conditional on observed variables,
Q, there is no selection problem. (In linear equation, OLS
is matching)

(Y0 ⊥⊥ D | Q) and (Y1 ⊥⊥ D | Q).

Identify the joint distribution

F (y0, y1 | X )

=

∫
F0 (y0 | X , q) F1 (y1 | X , q) dµ (q | X ) .
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Bounds from classical probability inequalities

Conditional on X , Y0 and Y1 are assumed to be
deterministically related:

Y1 − Y0 = ∆ (3)

where ∆ is a constant given X .

F1 (Y1) = F0 (Y0 + ∆) .

Can generalize using Fréchet upper and lower bounds.

Enforce perfect ranking but not equality of differences
across all quantiles.
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Bounds from classical probability inequalities

Markov kernels M(y1, y0 | X ) and M̃(y0, y1 | X ) that map
marginals into marginals:

F1(y1 | X ) =

∫
M(y1, y0 | X )dF0(y0 | X ),

F0(y0 | X ) =

∫
M̃(y0, y1 | X )dF1(y1 | X ).
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Bounds from classical probability inequalities

Y1 = µ1(X ) + U1 E (U1 | X ) = 0

Y0 = µ0(X ) + U0 E (U0 | X ) = 0

Y = µ0(X ) + (µ1(X )− µ0(X ) + U1 − U0)︸ ︷︷ ︸D

β(X )

+ U0 (4)

= µ0(X ) + (µ1(X )− µ0(X )) D + (U1 − U0) D + U0

= µ0(X ) + β̄(X )D + Dη + U0

β(X ) = β̄(X ) + η

η = U1 − U0
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Information from revealed preference

D = 1 [Y1 ≥ Y0] (5)

Y1 = µ1(X ) + U1 E (U1 | X ) = 0

Y0 = µ0(X ) + U0 E (U0 | X ) = 0

Can identify F (y0, y1) under Roy assumption and some
variation in the X . (Heckman and Honoré, 1990)
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Using additional information

See Aakvik, Heckman, and Vytlacil (2005), Carneiro,
Hansen, and Heckman (2001,2003), Cunha, Heckman,
and Navarro (2005,2006), and Cunha and Heckman
(2006a,b).

Assume separability:

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0.

Let I denote the latent variable generating schooling
choices:

I = µI (Z ) + UI

D = 1 [I ≥ 0] .

Normality assumptions make it easy to understand how
the method works and can be relaxed.
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Using additional information

Restrict the dimension of the unobservables.

If we have many measurements relative to the
dimensionality of the latent variables, we get
identification of the joint distribution.

Assume a one factor model where θ is the factor that
generates dependence across the unobservables:

U0 = α0θ + ε0

U1 = α1θ + ε1

UI = αUI
θ + εUI

θ ⊥⊥ (ε0, ε1, εUI
) , ε0 ⊥⊥ ε1 ⊥⊥ εUI

.

To set the scale of the unobserved factor, we normalize
one “loading” (coefficient on θ) to 1.
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Using additional information

Assume that E (U0) = 0, E (U1) = 0 and E (UI ) = 0 and
E (θ) = 0.

From standard analysis of censored models, we can

recover the distribution of
(
U0,

UI

σUI

)
and

(
U1,

UI

σUI

)
(Heckman, 1990)

From the joint distributions of
(
U0,

UI

σI

)
and

(
U1,

UI

σI

)
we

can identify

Cov

(
U0,

UI

σUI

)
=

α0αUI

σUI

σ2
θ

Cov

(
U1,

UI

σUI

)
=

α1αUI

σUI

σ2
θ

where σ2
UI

= Var(εUI
).
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Using additional information

We obtain the sign of the dependence between U0, U1

because
Cov(U0, U1) = α0α1σ

2
θ .

Can’t identify other parameters without further
assumptions.

With additional information, we can identify the full joint
distribution of (U0, U1, UI ).
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Using additional information

Suppose we have additional “measurements” (e.g., a test
score; labor supply; outcomes generated by θ)
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Using additional information

Example 1. Access to a single proxy measure (e.g., a test score)

M = µM (X ) + UM

where
UM = αMθ + εM

so
M = µM (X ) + αMθ + εM

where εM is independent of ε0, ε1, εUI
,and θ, as well as (X , Z ).

Cov (Y1, M) = α1αMσ2
θ

Cov (Y0, M) = α0αMσ2
θ

Cov (I , M) =
αUI

σUI

αMσ2
θ
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Using additional information

Example 1. Access to a single proxy measure (e.g., a test score)

Normalize the loading on the proxy (or test score) to one
(αM = 1).

Cov (Y1, I )

Cov (I , M)
=

α1αUI
σ2

θ

αUI
αMσ2

θ

= α1

because αM = 1.

Cov (Y1, I )

Cov (Y0, I )
=

α1αUI
σ2

θ

α0αUI
σ2

θ

=
α1

α0

We obtain σ2
θ from Cov (Y1, M) or Cov (Y0, M).

We obtain αUI
(up to scale σUI

) from
Cov (I , M) = αUI

αMσ2
θ since we know αM (= 1) and σ2

θ .
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Using additional information

Example 1. Access to a single proxy measure (e.g., a test score)

The model is overidentified.

We write out the decision rule in terms of costs, we can
characterize the latent variable determining choices as:

I = Y1 − Y0 − C

where C = µC (Z ) + UC and UC = αCθ + εC , and εC is
independent of θ.

UI = U1 − U0 − UC , and

αUI
= α1 − α0 − αC

εUI
= ε1 − ε0 − εC

Var
(
ε

UI

)
= Var (ε1) + Var (ε0) + Var (εC ) .
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Using additional information

Example 1. Access to a single proxy measure (e.g., a test score)

The scale σUI
is identified if there are variables in X but

not in Z .
Var(M)− α2

Mσ2
θ = σ2

εM
.

We can thus construct the joint distribution of
(Y0, Y1, C ) and hence the joint distribution of (Y0, Y1).

We have assumed normality because it is convenient to
do so. Carneiro, Hansen, and Heckman (2003); Cunha
and Heckman (2006b); Cunha, Heckman, and Navarro
(2005,2006); and Cunha, Heckman, and Schennach
(2006a,b) relax this assumption.
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Using additional information

Example 2. identification without choice data

Let I be any indicator that depends on θ and assume that
it is observed.

By limit operations (P(X , Z ) → 0 or P(X , Z ) → 1 along
certain sequences in its support) or some randomization
we observe triplets (Y0, M , I ), (Y1, M , I ).

Not Y0 and Y1 together.

We can identify all of the variances and covariances of the
factor model as well as the factor loadings up to one
normalization.

We can identify the joint distribution of (Y0, Y1).

We can identify σUI
rather than normalizing it to one.
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Using additional information

Example 3. Two (or more) periods of panel data on outcomes

For each person we have two periods of outcome data in
one counterfactual state or the other.

We observe choices and associated outcomes
Yjt = µjt(X ) + Ujt , j = 0, 1, t = 1, 2.

We write

U1t = α1tθ + ε1t and U0t = α0tθ + ε0t

to obtain

Y1t = µ1t(X ) + α1tθ + ε1t t = 1, 2

Y0t = µ0t(X ) + α0tθ + ε0t t = 1, 2.
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Using additional information

Example 3. Two (or more) periods of panel data on outcomes

I = (Y12 + Y11)− (Y02 + Y01)− C

D = 1 [I ≥ 0] ,

I = µ11(X ) + µ12(X )− µ01(X )− µ02(X )− µC (Z )

+ U11 + U12 − U01 − U02 − UC .

From normality, we can recover the joint distributions of
(I , Y11, Y12) and (I , Y01, Y02) but not directly the joint
distribution of (I , Y11, Y12, Y01, Y02).
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Using additional information

Example 3. Two (or more) periods of panel data on outcomes

Thus, conditioning on X and Z we can recover the joint
distribution of (UI , U01, U02) and (UI , U11, U12) but
apparently not that of (UI , U01, U02, U11, U12).

From the available data, we can identify the following
covariances:

Cov(UI , U12) = (α12 + α11 − α02 − α01 − αC )α12σ
2
θ

Cov(UI , U11) = (α12 + α11 − α02 − α01 − αC )α11σ
2
θ

Cov(UI , U01) = (α12 + α11 − α02 − α01 − αC )α01σ
2
θ

Cov(UI , U02) = (α12 + α11 − α02 − α01 − αC )α02σ
2
θ

Cov(U11, U12) = α11α12σ
2
θ

Cov(U01, U02) = α01α02σ
2
θ .
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Using additional information

Example 3. Two (or more) periods of panel data on outcomes

Normalize α01 = 1. Then,

Cov(UI , U12)

Cov(UI , U01)
= α12,

Cov(UI , U11)

Cov(UI , U01)
= α11,

Cov(UI , U02)

Cov(UI , U01)
= α02.

Cov(U11, U12)

α11α12
= σ2

θ

and
Cov(U01, U02)

α01α02
= σ2

θ .
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Using additional information

Example 3. Two (or more) periods of panel data on outcomes

We can recover σ2
θ (since we know α11α12 and α01α02)

from Cov(U11, U12) and Cov(U01, U02).

We can also recover αC since we know σ2
θ ,

α12 + α11 − α02 − α01 − αC , and α11, α12, α01, α02.

We can form (conditional on X )
Cov(Y11, Y01) = α11α01σ

2
θ ; Cov(Y12, Y01) = α12α01σ

2
θ ;

Cov(Y11, Y02) = α11α02σ
2
θ and Cov(Y12, Y02) = α12α02σ

2
θ .

Thus we can identify the joint distribution of
(Y01, Y02, Y11, Y12, C ) since we can identify µC (Z ) from
the schooling choice equation since we know
µ01 (X ) , µ02 (X ) , µ11 (X ) , and µ12 (X ).
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Relationship to matching

If the analyst knows θ and can condition on it, we obtain
the conditional independence assumption of matching,
(M-1):

(Y0, Y1) ⊥⊥ D | X , Z , θ.

Aakvik, Heckman, and Vytlacil (2005) proxy for θ and
identify the distribution of θ under the following
assumption:

θ ⊥⊥ X , Z .

Thus the factor approach is a version of matching on
unobservables.

We do not need normality (Kotlarski’s Theorem).
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Nonparametric extensions

Theorem

T1 = θ + ε1

and
T2 = θ + ε2

and θ ⊥⊥ ε1 ⊥⊥ ε2, the means of all three generating random
variables are finite and are normalized to E (ε1) = E (ε2) = 0,
and the conditions of Fubini’s theorem are satisfied for each
random variable, and the random variables possess
nonvanishing (a.e.) characteristic functions, then the densities
of (θ, ε1, ε2) , g(θ), g1(ε1), g2(ε2), respectively, are identified.
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Nonparametric extensions

Applied to our context, consider the first two equations of
a vector of indicators M .

We write

M1 = λ1θ + ε1, where λ1 = 1

M2 = λ2θ + ε2, where λ2 6= 0

M1 = θ + ε1

M2

λ2
= θ + ε∗2

where ε∗2 = ε2/λ2.

Applying Kotlarski’s Theorem, we can nonparametrically
identify the densities gθ(θ), g1(ε1), and g2(ε

∗
2).
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Accounting for uncertainty

Thus far we have ignored uncertainty which is an essential
feature of a modern economy.

For the rest of this talk, we focus on a specific problem.

To understand the evolution of inequality and uncertainty
in labor earnings for the U.S. economy.

According to Levy and Murnane (1992):

Earnings inequality was stable in the 1970s but increased
rapidly over the 1980s.
Inequality between age-education groups was stable in
the 1970s and rose sharply in the 1980s.
Inequality within age-education groups has grown
steadily since the 1970s.
This trend stopped in the mid 1990s.
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Accounting for uncertainty

How should we interpret this increase?
More uncertainty?
More heterogeneity? (Or diversity among agents?)

One way to think about these issues is using the
Gorman-Lancaster characteristics model of earnings (see,
for example, Heckman and Scheinkman, 1987):

Yi ,s,t = Xi ,s,tβs,t + θiαs,t + εi ,s,t

Yi ,s,t are earnings of person i at time t in sector s,
i = 1, . . . , I , t = 1, . . . , T , s = 1, . . . , S .

The vectors X , θ represent the endowments of observable
and unobservable skills, respectively. The vectors β, α are
prices of the skills.
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Accounting for uncertainty

εi ,s,t could represent unmeasured (but known by the
individual) factors that affect outcomes Yi ,s,t or
productivity shocks (not known by the individual).

Gottschalk and Moffitt (1994) separate permanent from
transitory shocks by considering a version of the model:

log Yi ,t = Xi ,tβt + θi + εi ,t

They show that both the variance of θ and the variance
of ε has increased when one compares the period
1970-1978 with the period 1978-1987.

They call the increase in the variance of temporary shocks
ε an increase in earnings instability.
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Accounting for uncertainty

Today we focus our attention on how much of the
increase in inequality is forecastable by agents early in life
(i.e., around ages 17-18).

We call heterogeneity the part of lifetime inequality that
is forecastable at ages 17-18.

We call uncertainty the part of lifetime inequality that is
not forecastable at ages 17-18.

We build on Gottschalk and Moffitt (1994) and analyze
the dynamics of heterogeneity and uncertainty in the U.S.
economy.
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Accounting for uncertainty

We build on Carneiro, Hansen and Heckman (2003) and
Cunha, Heckman and Navarro (2005) to estimate
uncertainty facing new cohorts of labor market entrants
and how uncertainty evolves over cohorts.

We estimate the information set that agents act on. We
do not impose it.

We show how heterogeneity and uncertainty change over
time by analyzing two distinct cohorts: The NLS/1966
versus the NLSY/1979.

By exploring schooling choices together with realized
earnings, we are able to distinguish which elements of θ
are known by the agent and which elements of θ are not
known at the time of schooling choice (i.e., among the
early cohorts).
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Accounting for uncertainty

We find that lifetime earnings inequality has a substantial
predictable component for the agent by age 17–18.

Forecastability at age 17-18 for the NLS/1966 was both
relatively and absolutely larger than for the NLSY/1979
cohort.
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The model

The model

This model builds on the framework developed for ex post
models.

Schooling choices S

Use S instead of D because we are considering schooling.

Realized Earnings Yt = SY1,t + (1− S) Y0,t for t = 1, 2.

Explanatory variables in earnings equations X .

Determinants of cost Z .

A set of K test scores M1, M2, . . . , MK for each individual.

Explanatory variables in test score equations XM .
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The model

We assume that Ys,t for s = 0, 1, t = 1, . . . , T can be
decomposed in in the following manner:

Y0,t = µ0,t + U0,t , E (U0,t) = 0 (6)

Y1,t = µ1,t + U1,t , E (U1,t) = 0 (7)

The psychic costs C are decomposed in observable Z and
unobservable UC determinants in the following manner

C = µC + UC (8)

The test score Mk follows a linear in parameters model
where XM are test score predictors:

Mk = µM
k + UM

k , k = 1, 2, . . . , K .
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The model

The schooling equation is based on

I = E

[∑
t

(
1

1 + ρ

)t

(Y1t − Y0t)− C

∣∣∣∣∣ I
]

(9)

If we replace (6), (7), and (8) into (9) we get:

I = E


∑

t

(
1

1+ρ

)t

(µ1,t − µ0,t)− µC

+
∑

t

(
1

1+ρ

)t

(U1t − U0t)− UC

∣∣∣∣∣∣ I

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The model

We observe college earnings Y1,t only for the individuals
who choose S = 1.

S = 1 if, and only if I > 0, i.e.,

E


∑

t

(
1

1+ρ

)t

(µ1,t − µ0,t)− µC

+
∑

t

(
1

1+ρ

)t

(U1,t − U0,t)− UC

∣∣∣∣∣∣ I
 ≥ 0
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The model

Assume that UC , X , Z ∈ I. The event S = 1 corresponds
to the event

E

Ū︷ ︸︸ ︷∑
t

(
1

1 + ρ

)t

(U1,t − U0,t)

∣∣∣∣∣∣ I
− UC

≥ µC −
∑

t

(
1

1 + ρ

)t

(µ1,t − µ0,t)︸ ︷︷ ︸
µI

.

or, in more compact notation:

E
(
Ū
∣∣ I)− UC ≥ −µI .
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The model

Consequently, from data, we can compute:

E
[
Y1,t |E

(
Ū
∣∣ I)− UC ≥ −µI

]
= µ1,t + E [U1,t |E (U | I)− UC ≥ −µI ]

We want to separate out two unobservable components:

The component that is known and acted on by the agent
(heterogeneity):

E

(∑
t

(
1

1 + ρ

)t

(U1,t − U0,t)

∣∣∣∣∣ I
)

.
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The model

The component that is unknown by the agent
(uncertainty):(∑

t

(
1

1 + ρ

)t

(U1,t − U0,t)

)

−E

(∑
t

(
1

1 + ρ

)t

(U1,t − U0,t)

∣∣∣∣∣ I
)

.

How do we formally do it?
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Factor models

Factor models

Remember that the test score equations were specified as:

Mk = µM
k + UM

k , k = 1, 2, . . . , K

Now we break unobservable UM
k into factors and

uniquenesses to obtain

Mk = µM
k + αM

k θ1︸ ︷︷ ︸
factor

+ εM
k︸︷︷︸, k =

uniqueness

1, 2, . . . , K .

We assume:

θ1 ∼ N
(
0, σ2

θ1

)
(normality is not necessary) and

independent from εM
k .
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Factor models

εM
k ∼ N

(
0, σ2

εM
k

)
(normality is not necessary) and

independent from εM
` for ` 6= k .

αM
1 = 1 ( recall that in factor analysis one such

normalization is always necessary because scales are
arbitrary).

Note, in particular, that the covariance between UM
k and

UM
` is captured only by θ1 for k 6= `.
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Factor models

Remember that we proposed the following model for
earnings equations:

Y0,t = µ0,t + U0,t

Y1,t = µ1,t + U1,t

Now we break unobservables Us,t into three different
components to obtain

Y0,t = µ0,t + α0,tθ1 + δ0,tθ2︸ ︷︷ ︸
factors

+ ε0,t︸︷︷︸
uniqueness

(10)

Y1,t = µ1,t + α1,tθ1 + δ1,tθ2︸ ︷︷ ︸
factors

+ ε1,t︸︷︷︸
uniqueness

(11)
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Factor models

We assume:

θ2 ∼ N
(
0, σ2

θ2

)
(normality is not necessary) and

independent from θ1, and {ε0,t}
εs,t ∼ N

(
0, σ2

s,t

)
(normality is not necessary) and

independent from εs′,τ for τ 6= t.

δ1,1 = 1.

Note, again, that the dependence between Ys,t and Ys′,t′

is captured only by θ1 and θ2.

Remember that we proposed the following model for
costs C :

C = µC + UC
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Factor models

Now we decompose the residuals UC in three different
components to obtain

C = µC + αCθ1 + δCθ2 + εC , εC ∼ N
(
0, σ2

C

)
. (12)

The schooling equation is generated by

I = E

{
µI +

∑
t

(
1

1 + ρ

)t

(U1t − U0t)− UC

∣∣∣∣∣ I
}
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Factor models

Given (10), (11), and (12) the schooling equation
becomes:

I = µI + E

[
θ1

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)∣∣∣∣∣ I
]

+

+E

[
θ2

(∑
t

(
1

1 + ρ

)t

(δ1,t − δ0,t)− δC

)∣∣∣∣∣ I
]

+

+E

[∑
t

(
1

1 + ρ

)t

(ε1,t − ε0,t)− εC

∣∣∣∣∣ I
]

+
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Factor models

We assume:

εC ∈ I
εs,t /∈ I and E (εs,t | I) = 0.

We postulate H0 : {θ1, θ2} ⊂ I . We test among
alternative specifications of I
We don’t want to impose a priori that certain factors are
in the information set of the agents.
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Factor models

We want to determine whether θ1 ∈ I or θ1 /∈ I and
whether θ2 ∈ I or θ2 /∈ I .

Under (1)-(3) the schooling equation can be written as:

I = µI +
∑

t

(
1

1 + ρ

)t

[(α1,t − α0,t) θ1 + (δ1,t − δ0,t) θ2]

−αCθ1 − δCθ2 − εC
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How to identify the information set of the agent

How to identify the information set of the agent

Postulate H0 : θ1, θ2 ∈ I against H1 : θ1 ∈ I but θ2 /∈ I.

How do we test it? Under H0:

Cov (I − µI , Y1,1 − µ1,1)

= α1,1

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)
σ2

θ1
+

+δ1,1

(∑
t

(
1

1 + ρ

)t

(δ1,t − δ0,t)− δC

)
σ2

θ2
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How to identify the information set of the agent

Under H1 :

Cov (I − µI , Y1,1 − µ1,1)

= α1,1

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)
σ2

θ1
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How to identify the information set of the agent

Another way to state the test is:

Cov (I − µI , Y1,1 − µ1,1)

= α1,1

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)
σ2

θ1
+

+∆2δ1,1

(∑
t

(
1

1 + ρ

)t

(δ1,t − δ0,t)− δC

)
σ2

θ2

H0 : ∆2 6= 0 versus H1 : ∆2 = 0.

We iterate among the alternative specifications of I and
produce a model which fits the data best.
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Identification

Identification

How can the tests be implemented?

Take the test score equations:

Mk = µM
k + αM

k θ1 + εM
k , k = 1, 2, . . . , K . (13)

If K ≥ 3 we can identify αM
k and f (θ1) up to a

normalization (say αM
1 = 1).

Because of independence we can identify µM
k from a

simple OLS regression in (13).
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Identification

We can construct the covariances:

Cov
(
M1 − µM

1 , M2 − µM
2

)
= αM

2 σ2
θ1

(14)

Cov
(
M1 − µM

1 , M3 − µM
3

)
= αM

3 σ2
θ1

(15)

Cov
(
M3 − µM

3 , M2 − µM
2

)
= αM

3 αM
2 σ2

θ1
(16)

Consequently, can recover αM
2 , αM

3 , and σ2
θ1

.

Recent work by Schennach (2004) allows these to be
identified under much more general conditions than
independence.
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Identification

Consider now the college earnings equation

Y1,t = µ1,t + α1,tθ1 + δ1,tθ2 + ε1,t

We cannot use OLS regression anymore because of the
selection problem:

E (Y1,t | S = 1) = µ1,t + E (α1,tθ1 + δ1,tθ2 + ε1,t | S = 1)
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Identification

Assuming that the unobservables are all normal, it follows
that:

E (Y1,t | S = 1) (17)

= µ1,t + π1,tλ


∑

t

(
1

1+ρ

)t

(µ1,t − µ0,t)− µC

σU


︸ ︷︷ ︸

selection correction
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Identification

Under normality we can use standard selection estimators
and recover µ1,t .

Normality is not required, just easy to understand. It
motivates how it is possible to identify these parameters.

We can do the same analysis for high school earnings
equations and recover µ0,t

πs,t is a coefficient that depends on ρ, σ2
θ1

, σ2
θ2

, σ2
εC

, αs,t ,
and δs,t for s = 0, 1 and t = 1, 2, . . . , T .

Once we recover βs,t we can compute the covariances:

Cov
(
M1 − µM

1 , Ys,t − µs,t

)
= αs,tσ

2
θ1
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Identification

And it is easy to see that we can identify αs,t for all s, t
because we have already determined σ2

θ1
from the test

score equations.

We use the covariance of earnings over time to identify
the parameters associated to θ2 :

Cov (Ys,τ − µs,τ , Ys,t − µs,t) = αs,ταs,tσ
2
θ1

+ δs,τδs,tσ
2
θ2

Under the normalization δ1,1 = 1 we repeat the argument
used in test scores and can recover δs,t and σ2

θ2
.

It is interesting to note that we can then recover joint
distributions:

Cov (Y1,t , Y0,τ ) = α0,τα1,tσ
2
θ1

+ δ0,τδ1,tσ
2
θ2
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Identification

To identify αC we use:

Cov(M1 − µM
1 , I − µI )

=

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)
σ2

θ1
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Identification

To identify δC we use:

Cov (Y1,1 − Xβ1,1, I − µI )

= α1,1

(∑
t

(
1

1 + ρ

)t

(α1,t − α0,t)− αC

)
σ2

θ1
+

+

(∑
t=1

(
1

1 + ρ

)t

(δ1,t − δ0,t)− δC

)
σ2

θ2
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Summary of Empirical Results

Returns to college have increased in past 20 years.

Predictable components are more than half of 1966
variance for college and about half for high school in
1966.

Variance of residual earnings increases across cohorts.

Earnings variances less predictable for 1979 than 1966.

Increase in unforecastability happens after age 30.

Persistence of shocks has increased over time.

Cognitive skill prices as in Gorman-Lancaster model have
gone up.
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Data Description

To study the evolution of labor earnings risk in the U.S.
economy we compare two different samples:

1 NLSY/1979–The first sample consists of white males
born between 1957 and 1964 and we obtain their
information from NLSY/1979 data pooled their
counterparts from the PSID data.

2 NLS/1966 - The second sample consists of the white
males born between 1941 and 1952 and are surveyed
from the NLS/1966 combined with their counterparts
from the PSID data.

We consider only two schooling choices: high school and
college graduation.

We consider labor income from ages 22 to 41.

Concepts of labor income are the same in both years.
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In both data sets we observe cognitive test scores:

For the NLSY/1979 we use five components of the
ASVAB test battery: arithmetic reasoning, word
knowledge, paragraph comprehension, math knowledge
and coding speed.

In the NLS/1966 there are many different achievement
tests, but we use the two most commonly reported ones:
the OTIS/BETA/GAMMA and the California Test of
Mental Maturity (CTMM).

One problem in the NLS/1966 sample is that there are no
respondents for whom we observe scores from two
distinct tests.
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We complement the information from these test scores by
considering other proxies for cognitive achievement.
These are the tests on “knowledge of the world of work.”

Even after controlling for parental education, number of
siblings, urban residence at age 14, and dummies for year
of birth, the “knowledge of the world of work” test scores
are correlated with the cognitive test scores. The
correlation with OTIS/BETA/GAMMA and CTMM is
stronger for the occupation and education tests than for
the earnings-comparison test.
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Densities of earnings at age 30 (college sample NLS/1966)

Let Y1 denote earnings at age 30.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line) .
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Densities of earnings at age 28 (college sample NLS/1966)

Let Y1 denote earnings at age 28.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line) .
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Densities of earnings at age 37 (college sample NLSY/1979)

Let Y1 denote earnings at age 37.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line) .
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Densities of earnings at age 24 (college sample NLSY/1979)

Let Y1 denote earnings at age 34.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line) .
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Densities of earnings at age 40 (college sample NLS/1979)

Let Y1 denote earnings at age 40.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line) .
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Schooling Group Mean Returns Standard Error Mean Returns Standard Error
High School Graduates 0.2937 0.0083 0.3095 0.0113

College Graduates 0.3307 0.0114 0.3994 0.0129
Individuals at the Margin 0.3081 0.0446 0.3511 0.0535

NLS/1966 NLSY/1979
Mean Rates of Return to College by Schooling Group

        

Note: Under linearity, ex ante mean = ex post mean.
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Densities of present value of ex post earnings–high school sample NLSY/1979

Let Y0 and Y1 denote the present value of high-school and college earnings, respectively.  Here we plot
the factual density function of high-school earnings for high-school graduates, f(y0|S=0) (the solid curve), 
against the counterfactual of college earnings for high-school graduates, f(y1|S=0) (the dashed line). 
We use kernel density estimation to smooth these functions. The present value of earnings are calculated 
using an interest rate of 5%.
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Densities of present value of ex post earnings–college sample NLSY/1979
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Let Y0 and Y1 denote the present value of high-school and college earnings, respectively.  Here we plot
the factual density function of college earnings for college graduates, f(y1|S=1) (the solid curve), 
against the counterfactual of high-school earnings for college graduates, f(y0|S=1) (the dashed line). 
We use kernel density estimation to smooth these functions. The present value of earnings are calculated 
using an interest rate of 5%.
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Densities of Returns to College NLSY/1979 Sample

Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio

 R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
 The solid line is the density of ex post returns to colege for high school graduates,  
  that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college

   graduates, that is, f(r|S=1). 
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Densities of Returns to College NLSY/1979 Sample

Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio
 R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
 The solid line is the density of ex post returns to colege for high school graduates,  
  that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college

   graduates, that is, f(r|S=1). 
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Densities of Returns to College NLS/1966 Sample
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Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio

 R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
 The solid line is the density of ex post returns to colege for high school graduates,  

  that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college
   graduates, that is, f(r|S=1). 

86 / 136



Intro Treatment effects Motivation Details of our approach Empirical work Results Summary

Densities of Returns to College NLS/1966 Sample
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Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio

 R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
 The solid line is the density of ex post returns to colege for high school graduates,  
  that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college
   graduates, that is, f(r|S=1). 
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Densities of monetary value of psychic cost NLS/1966
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Densities of monetary value of psychic cost NLSY/1979
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College High School Returns
Total Residual Variance 460.6260 284.8089 351.4026
Variance of Unforecastable Components 181.3712 128.4315 327.3480

College High School Returns
Total Residual Variance 709.7487 507.2910 906.0066
Variance of Unforecastable Components 372.3509 272.3596 432.8733

College High School Returns
Percentage Increase in Total Residual Variance 54.083% 78.116% 157.826%
Percentage Increase in Variance of Unforecastable Components 105.298% 112.066% 32.236%

Panel A: NLS/1966

Panel B: NLSY/1979

Panel C: Percentage Increase

Evolution of Uncertainty
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College High School Returns
Total Residual Variance 460.6260 284.8089 351.4026
Variance of Forecastable Components (Heterogeneity) 279.2549 156.3774 24.0546

College High School Returns
Total Residual Variance 709.7487 507.2910 906.0066
Variance of Forecastable Components (Heterogeneity) 337.3978 234.9314 473.1333

College High School Returns
Percentage Increase in Total Residual Variance 54.083% 78.116% 157.826%
Percentage Increase in Variance of Forecastable Components 20.821% 50.234% 1866.914%

Panel A: NLS/1966

Panel B: NLSY/1979

Panel C: Percentage Increase

Evolution of Heterogeneity (Diversity)
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Greater variance of returns in 1979.

Greater predictability of returns in 1979 as a fraction of
the variance.
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The densities of total residual vs unforecastable components in present value of

college earnings for the NLS/1966 sample
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Figure 13B
The densities of total residual vs unforecastable components
in present value of college earnings for the NLS/1966 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Components

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable  components  (the dashed  curve) for the  present  value of  college earnings 
from ages 22 to 41 for the NLS/1966 sample of white males. The present value of earnings 
is calculated using a 5% interest rate. 93 / 136
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Densities of total residual vs unforecastable components returns college vs high

school for the NLSY/1979 sample
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Figure 14A
Densities of total residual vs unforecastable components

returns college vs high school for the NLSY/1979 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Component s

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences 
(or returns to college) for the white males sample of the NLSY/1979 from ages 22 to 41. 
The present value of returns to college is calculated using a 5% interest rate. 
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Densities of total residual vs unforecastable components returns college vs high

school for the NLS/1966 sample
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Figure 14B
Densities of total residual vs unforecastable components
returns college vs high school for the NLS/1966 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Components

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences 
(or returns to college) for the white males sample of the NLSY/1979 from ages 22 to 41. 
The present value of returns to college is calculated using a 5% interest rate. 
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The densities of total residual vs unforecastable components in present value of

high school earnings for the NLSY/1979 sample
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Figure 12A
The densities of total residual vs unforecastable components

in present value of high school earnings for the NLSY/1979 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Component s

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings 
from ages 22 to 41 for the NLSY/1979 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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The densities of total residual vs unforecastable components in present value of

high school earnings for the NLS/1966 sample
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Figure 12B
The densities of total residual vs unforecastable components

in present value of high school earnings for the NLS/1966 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Components

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings 
from ages 22 to 41 for the NLS/1966 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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The densities of total residual vs unforecastable components in present value of

college earnings for the NLSY/1979 sample
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Figure 13A
The densities of total residual vs unforecastable components

in present value of college earnings for the NLSY/1979 sample

Ten Thousand Dollars

 

 
Total Residual
Unforecastable Components

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable  components  (the dashed  curve) for the  present  value of  college earnings 
from ages 22 to 41 for the NLSY/1979 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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Schooling Group NLS/1966 NLSY/1979
Percentage of High School Graduates who 

Regret Not Graduating from College
0.0966 0.0749

Percentage of College Graduates who Regret 
Graduating from College 0.0337 0.0311

Percentage that Regret Their Schooling Choices
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table 6

High School 1 2 3 4 5 6 7 8 9 10
1 0.2995 0.1685 0.1114 0.0789 0.0570 0.0413 0.0393 0.0431 0.0471 0.1137
2 0.2273 0.2119 0.1597 0.1271 0.0907 0.0678 0.0450 0.0288 0.0180 0.0236
3 0.1532 0.1840 0.1656 0.1472 0.1146 0.0914 0.0642 0.0434 0.0230 0.0132
4 0.1110 0.1368 0.1492 0.1474 0.1418 0.1184 0.0882 0.0588 0.0334 0.0148
5 0.0748 0.1100 0.1244 0.1413 0.1459 0.1403 0.1172 0.0836 0.0462 0.0162
6 0.0494 0.0866 0.1146 0.1204 0.1371 0.1399 0.1283 0.1242 0.0736 0.0258
7 0.0306 0.0582 0.0904 0.1094 0.1264 0.1436 0.1506 0.1430 0.1064 0.0414
8 0.0236 0.0348 0.0531 0.0769 0.0989 0.1252 0.1638 0.1799 0.1676 0.0761
9 0.0264 0.0262 0.0316 0.0459 0.0651 0.0929 0.1308 0.1784 0.2431 0.1594

10 0.0457 0.0182 0.0214 0.0216 0.0321 0.0446 0.0772 0.1176 0.2291 0.3925

College

Table 6: Ex-Ante Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes unknown θ at their means, so Information Set={θ1,θ2,θ3}

Corrrelation(YC,YH) = 0.1666

Page 1
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High School 1 2 3 4 5 6 7 8 9 10
1 0.2118 0.1614 0.1188 0.0932 0.0782 0.0654 0.0532 0.0554 0.0651 0.0974
2 0.1684 0.1777 0.1557 0.1213 0.1038 0.0862 0.0640 0.0516 0.0417 0.0296
3 0.1374 0.1676 0.1464 0.1390 0.1244 0.0954 0.0754 0.0577 0.0333 0.0234
4 0.1080 0.1336 0.1433 0.1378 0.1213 0.1115 0.0980 0.0746 0.0475 0.0243
5 0.0787 0.1105 0.1232 0.1335 0.1345 0.1291 0.1144 0.0862 0.0614 0.0286
6 0.0656 0.1028 0.1149 0.1201 0.1276 0.1330 0.1250 0.0998 0.0823 0.0288
7 0.0548 0.0779 0.0842 0.1097 0.1196 0.1224 0.1410 0.1331 0.1132 0.0441
8 0.0428 0.0507 0.0741 0.0880 0.0994 0.1224 0.1410 0.1585 0.1539 0.0693
9 0.0416 0.0436 0.0474 0.0577 0.0803 0.1001 0.1277 0.1728 0.1939 0.1348

10 0.0386 0.0204 0.0269 0.0292 0.0339 0.0520 0.0704 0.1155 0.1945 0.4186

College

Table 7: Ex-Post Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Information Set={θ1,θ2,θ3,θ4,θ5,θ6}

Corrrelation(YC,YH) = 0.2842

Page 1
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High School 1 2 3 4 5 6 7 8 9 10
1 0.7036 0.2155 0.0622 0.0137 0.0035 0.0015 0.0000 0.0000 0.0000 0.0000
2 0.2225 0.3780 0.2475 0.1085 0.0285 0.0110 0.0035 0.0000 0.0005 0.0000
3 0.0500 0.2505 0.2960 0.2320 0.1090 0.0455 0.0120 0.0035 0.0015 0.0000
4 0.0145 0.1005 0.2250 0.2585 0.2150 0.1135 0.0545 0.0135 0.0045 0.0005
5 0.0045 0.0435 0.1055 0.1945 0.2545 0.2135 0.1265 0.0460 0.0105 0.0010
6 0.0010 0.0115 0.0435 0.1190 0.2035 0.2455 0.2100 0.1335 0.0295 0.0030
7 0.0000 0.0030 0.0150 0.0500 0.1190 0.2185 0.2705 0.2095 0.1040 0.0105
8 0.0005 0.0000 0.0055 0.0200 0.0555 0.1085 0.2080 0.3125 0.2460 0.0435
9 0.0000 0.0000 0.0005 0.0035 0.0105 0.0380 0.1045 0.2390 0.3920 0.2120

10 0.0000 0.0000 0.0000 0.0005 0.0010 0.0045 0.0105 0.0425 0.2115 0.7295

College

Table 8: Ex-Ante Conditional Distributions for the NLS/1966 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes unknown θ at their means, so Information Set={θ1,θ2,θ3}

Corrrelation(YC,YH) =  0.9174

Page 1
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High School 1 2 3 4 5 6 7 8 9 10
1 0.4001 0.1813 0.1023 0.0717 0.0611 0.0406 0.0422 0.0306 0.0337 0.0364
2 0.2144 0.2239 0.1663 0.1207 0.0862 0.0676 0.0486 0.0261 0.0256 0.0205
3 0.1286 0.1716 0.1591 0.1496 0.1181 0.0960 0.0695 0.0515 0.0340 0.0220
4 0.0870 0.1426 0.1551 0.1576 0.1386 0.1131 0.0810 0.0650 0.0365 0.0235
5 0.0450 0.0905 0.1390 0.1400 0.1405 0.1395 0.1165 0.0960 0.0625 0.0305
6 0.0350 0.0720 0.1126 0.1196 0.1456 0.1416 0.1306 0.1211 0.0900 0.0320
7 0.0210 0.0600 0.0710 0.1046 0.1201 0.1521 0.1466 0.1531 0.1126 0.0590
8 0.0205 0.0320 0.0455 0.0816 0.0951 0.1261 0.1562 0.1797 0.1667 0.0966
9 0.0180 0.0205 0.0305 0.0430 0.0755 0.0830 0.1476 0.1741 0.2316 0.1761

10 0.0125 0.0115 0.0235 0.0135 0.0225 0.0415 0.0611 0.1041 0.2077 0.5020

College

Table 9: Ex-Post Conditional Distributions for the NLS/1966 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Information Set={θ1,θ2,θ3,θ4,θ5}

Corrrelation(YC,YH) =  0.6226
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Evolution of variance of unforecastable components–high school sector
Figure 1

Evolution of Variance of Unforecastable Components - High School Sector
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Evolution of variance of unforecastable components–high school sector

Figure 1
Evolution of Variance of Unforecastable Components - High School Sector
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. In Figure 1, we compare the variance of Ps,t from NLS/1966 (the solid
curve) with the one from NLSY/1979 (the dashed curve) at different ages of the individuals who are high-school
graduates. We see that until age 27, the estimated variance of Ps,t from NLS/1966 and NLSY/1979 are very
similar, but from age 28 on, the variance of Ps,t from NLSY/1979 is much larger than the counterpart from
NLS/1966.

1

105 / 136



Intro Treatment effects Motivation Details of our approach Empirical work Results Summary

Evolution of variance of unforecastable components–college sector
Figure 2

Evolution of Variance of Unforecastable Components - College Sector
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Evolution of variance of unforecastable components–college sector

Figure 2
Evolution of Variance of Unforecastable Components - College Sector
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. In Figure 2, we compare the variance of Ps,t from NLS/1966 (the solid
curve) with the one from NLSY/1979 (the dashed curve) at different ages of the individuals who are college
graduates. We see that until age 30, the estimated variance of Ps,t from NLS/1966 and NLSY/1979 are very
similar, but from age 31 on, the variance of Ps,t from NLSY/1979 is much larger than the counterpart from
NLS/1966.
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One period correlation in unforecastable component of earnings–high school sample
Figure 3

One Period Correlation in Unforecastable Component of Earnings
High School Sample
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One period correlation in unforecastable component of earnings–high school sample

Figure 3
One Period Correlation in Unforecastable Component of Earnings

High School Sample
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Let φ (s, t) denote the correlation between Ps,t and Ps,t+1 :

φ (s, t) = Corr (Ps,t, Ps,t+1)

In Figure 3, we plot φ (s, t) from NLS/1966 (the solid curve) with the one from NLSY/1979 (the dashed curve) at
different ages of the individuals who are high-school graduates. We see that for both NLS/1966 and NLSY/1979,
φ (s, t) tend to increase at earlier ages (from age 26 to age 30).
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One period correlation in unforecastable component of earnings–college sample
Figure 4

One Period Correlation in Unforecastable Component of Earnings
College Sample
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One period correlation in unforecastable component of earnings–college sample

Figure 4
One Period Correlation in Unforecastable Component of Earnings

College Sample
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Let φ (s, t) denote the correlation between Ps,t and Ps,t+1 :

φ (s, t) = Corr (Ps,t, Ps,t+1)

In Figure 4, we plot φ (s, t) from NLS/1966 (the solid curve) with the one from NLSY/1979 (the dashed curve)
at different ages of the individuals who are college graduates. We see that for NLS/1966 follows a hump-shaped
profile, but not so much the one-period correlation for the NLSY/1979.
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One period correlation in unforecastable component of earnings–overall sample
Figure 5

One Period Correlation in Unforecastable Component of Earnings
Overall Sample
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One period correlation in unforecastable component of earnings–overall sample

Figure 5
One Period Correlation in Unforecastable Component of Earnings

Overall Sample
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

The overall earnings at age t, Yt, is defined as:

Yt = S
¡
Xβ1,t + θα1,t + ε1,t

¢
+ (1− S)

¡
Xβ0,t + θα0,t + ε0,t

¢
For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Define Pt as the unforecastable component for overall earnings at the
time of the schooling choice:

Pt = S (α4,1,tθ4 + α5,1,tθ5 + ε1,t) + (1− S) (α4,0,tθ4 + α5,0,tθ5 + ε0,t)

Let φ (t) denote the correlation between Pt and Pt+1 :

φ (t) = Corr (Pt, Pt+1)

In Figure 5, we plot φ (t) from NLS/1966 (the solid curve) with the one from NLSY/1979 (the dashed curve)
at different ages. We see that for NLS/1966 follows a hump-shaped profile, but not so much the one-period
correlation for the NLSY/1979. In the NLSY/1979, the one-period correlation in earnings fluctuates around 0.6
from age 29 on.
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College High School Returns College High School Returns
Estimated (NLSY/1979) 709.7487 507.2910 906.0066 - - -
Counterfactual Economy 1 567.9719 333.8619 815.5019 -0.1998 -0.3419 -0.0999
Counterfactual Economy 2 701.6375 471.7632 862.3676 -0.0114 -0.0700 -0.0482
Counterfactual Economy 3 474.8947 294.3037 377.0409 -0.3309 -0.4199 -0.5838

College High School Returns College High School Returns
Estimated (NLSY/1979) 372.3509 272.3596 432.8733 - - -
Counterfactual Economy 1 349.4675 205.6334 637.9935 -0.0615 -0.2450 0.4739
Counterfactual Economy 2 364.2397 236.8318 389.2343 -0.0218 -0.1304 -0.1008
Counterfactual Economy 3 192.8493 137.3770 350.4976 -0.4821 -0.4956 -0.1903

       
Counterfactual Simulations

Percentage Change

Variance of Unforecastable 
Components in NLSY/1979 Percentage Change

Total Residual Variance in 
NLSY/1979

For each schooling level s, at each age t, we model earnings as:

Y h
s,t = Xβhs,t + θhαs,t + εhs,t where h = NLSY/1979, NLS/1966.

where we introduce the superscript h to make our explanation of Table 5 clearer. For the NLSY/1979, we fit a
six-factor model, while for the NLS/1966, we fit a five-factor model. For survey h, the present value of earnings
from ages 22 through 41 in schooling level s is:

Y h
s =

41X
t=22

³
Xβhs,t +

PKh

k=1 θ
h
kα

h
k,s,t + εhs,t

´
(1 + ρ)

t−22 , s = 0, 1;h = 66, 79;Kh = 5 if h = 66, Kh = 6 if h = 79.

The total residual variance at schooling level s in NLSY/1979 is Q79s as:

Q79s =
6X

k=1

V ar
¡
θ79k
¢Ã 41X

t=22

α79k,s,t

(1 + ρ)
t−22

!2
+

41X
t=22

V ar
¡
ε79s,t
¢³

(1 + ρ)t−22
´2 (1)

Given our estimated information set, the variance of unforecastable components at the time of the schooling
choice of an individual in the NLSY/1979 sample, P 79s , is:

P 79s =
6X

k=4

V ar
¡
θ79k
¢Ã 41X

t=22

α79k,s,t

(1 + ρ)t−22

!2
+

41X
t=22

V ar
¡
ε79s,t
¢³

(1 + ρ)t−22
´2 (2)

The counterfactual economy 1 is simulated as the economic environment where the distribution of the factors
in NLSY/1979 were exactly the same as in NLS/1966. In this counterfactual economy we would compute Q79s
and P 79s exactly as above, except that we would replace V ar

¡
θ79k
¢
with V ar

¡
θ66k
¢
, for k = 1, 2, ..., 6 and fixing

V ar
¡
θ666
¢
= 0.

The counterfactual economy 2 is the economy where the distribution of the shocks ε79s,t are the same as ε
66
s,t.

In this case, we would compute Q79s and P 79s exactly as above but replacing V ar
¡
ε79s,t
¢
with V ar

¡
ε66s,t
¢
.

Finally, counterfactual economy 3 is the economy where the factor loadings α79k,s,t are the same as α
66
k,s,t. We

can obtain Q79s and P 79s after replacing α79k,s,t with α66k,s,t.
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College High School Returns College High School Returns
Estimated (NLSY/1979) 709.7487 507.2910 906.0066 - - -
Counterfactual Economy 1 567.9719 333.8619 815.5019 -0.1998 -0.3419 -0.0999
Counterfactual Economy 2 701.6375 471.7632 862.3676 -0.0114 -0.0700 -0.0482
Counterfactual Economy 3 474.8947 294.3037 377.0409 -0.3309 -0.4199 -0.5838

College High School Returns College High School Returns
Estimated (NLSY/1979) 372.3509 272.3596 432.8733 - - -
Counterfactual Economy 1 349.4675 205.6334 637.9935 -0.0615 -0.2450 0.4739
Counterfactual Economy 2 364.2397 236.8318 389.2343 -0.0218 -0.1304 -0.1008
Counterfactual Economy 3 192.8493 137.3770 350.4976 -0.4821 -0.4956 -0.1903

Table 5
Counterfactual Simulations

Percentage Change

Variance of Unforecastable 
Components in NLSY/1979 Percentage Change

Total Residual Variance in 
NLSY/1979

For each schooling level s, at each age t, we model earnings as:

Y h
s,t = Xβhs,t + θhαs,t + εhs,t where h = NLSY/1979, NLS/1966.

where we introduce the superscript h to make our explanation of Table 5 clearer. For the NLSY/1979, we fit a
six-factor model, while for the NLS/1966, we fit a five-factor model. For survey h, the present value of earnings
from ages 22 through 41 in schooling level s is:

Y h
s =

41X
t=22

³
Xβhs,t +

PKh

k=1 θ
h
kα

h
k,s,t + εhs,t

´
(1 + ρ)

t−22 , s = 0, 1;h = 66, 79;Kh = 5 if h = 66, Kh = 6 if h = 79.

The total residual variance at schooling level s in NLSY/1979 is Q79s as:

Q79s =
6X

k=1

V ar
¡
θ79k
¢Ã 41X

t=22

α79k,s,t

(1 + ρ)
t−22

!2
+

41X
t=22

V ar
¡
ε79s,t
¢³

(1 + ρ)t−22
´2 (1)

Given our estimated information set, the variance of unforecastable components at the time of the schooling
choice of an individual in the NLSY/1979 sample, P 79s , is:

P 79s =
6X

k=4

V ar
¡
θ79k
¢Ã 41X

t=22

α79k,s,t

(1 + ρ)t−22

!2
+

41X
t=22

V ar
¡
ε79s,t
¢³

(1 + ρ)t−22
´2 (2)

The counterfactual economy 1 is simulated as the economic environment where the distribution of the factors
in NLSY/1979 were exactly the same as in NLS/1966. In this counterfactual economy we would compute Q79s
and P 79s exactly as above, except that we would replace V ar

¡
θ79k
¢
with V ar

¡
θ66k
¢
, for k = 1, 2, ..., 6 and fixing

V ar
¡
θ666
¢
= 0.

The counterfactual economy 2 is the economy where the distribution of the shocks ε79s,t are the same as ε
66
s,t.

In this case, we would compute Q79s and P 79s exactly as above but replacing V ar
¡
ε79s,t
¢
with V ar

¡
ε66s,t
¢
.

Finally, counterfactual economy 3 is the economy where the factor loadings α79k,s,t are the same as α
66
k,s,t. We

can obtain Q79s and P 79s after replacing α79k,s,t with α66k,s,t.
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Evolution of cognitive skill prices – high school sector

Figure 6
Evolution of Cognitive Skill Prices - High School Sector
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Evolution of cognitive skill prices – college sector

Figure 7
Evolution of Cognitive Skill Prices - College Sector
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Summary

We discussed the estimation of the distribution of
treatment effects (ex post or under perfect cerainty).

Show how to extract uncertainty facing agents.

We use schooling choices to infer the agent information
sets at the time of the schooling choice.

A number of papers has used this strategy to separate
heterogeneity from uncertainty: Carneiro, Hansen and
Heckman (2003), Cunha, Heckman, and Navarro (2005),
Navarro (2005), Cunha and Heckman (2006a).
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The main idea: choices agents make are source of
information about what they know and act on.

Using more choices allows us to make less strict
econometric assumptions. For example, Cunha and
Heckman (2006b) show that we can model “uncertainty”
better by looking at different risks people face. In
particular, we can break the assumption that ε is
independent over time (important for quantitative results
of incomplete markets as in Aiyagari, 1994).
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Recent work by Schennach (2004) allows us to break new
ground. Her work does not require the strong
independence assumptions as Carneiro, Hansen, and
Heckman (2003), so we can study aggregate shocks.

See Cunha, Heckman and Schennach (2006a,b).
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An economic model

Agents live for T periods.

In each period there is a realization of a stochastic event
ωt ∈ Ω.

Let the histories of events up to and until time t be
denoted ωt = {ω1, ω2, . . . , ωt} .

The unconditional probability of a particular sequence of
events ωt is denoted πt (ωt) .

In the first period, before any stochastic event is realized,
agents choose schooling level S and how to allocate
consumption across states of nature and over time.

Let Yst (ωt) denote the productivity of agent with
schooling level s given history ωt .
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An economic model

cst (ωt) is consumption of an agent with schooling level s
at period t and history ωt .

qt (ωt) is price of an AD security that delivers one unit of
period-t consumption good if the history ωt is realized
and zero otherwise.

The productivity Yst (ωt) has a stochastic component.

There is no aggregate uncertainty. All uncertainty is
idiosyncratic.

Consumption goods can be produced according to a
constant returns to scale technology that depends only on
labor.
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Consumption Allocation Problem

Consumption Allocation Problem

Given schooling choice s, the consumption allocation
problem of the agent for preference function is

V (s) = Max E

[
T∑

t=1

(
1

1 + ρ

)t

u (cs,t)

∣∣∣∣∣ I
]

(18)

subject to:

T∑
t=1

∑
ωt

qt (ωt) c i
s,t (ωt) =

T∑
t=1

∑
ωt

qt (ωt) Ys,t (ωt) (19)

Lagrange multiplier is λs .
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Consumption Allocation Problem

Consumption Allocation Problem

The first-order condition is:

λsqt (ωt) =

(
1

1 + ρ

)t

πt (ωt) u′ [c i
s,t (ωt)

]
No aggregate uncertainty implies the equilibrium
consumption allocation must be such that:

cs,t (ωt) = cs

It is easy to show that

cs = A (ρ) E

(∑
t

(
1

1 + ρ

)t

Ys,t

∣∣∣∣∣ I
)

(20)
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Consumption Allocation Problem

Consumption Allocation Problem

We can use (20) in (18) to calculate lifetime utility of
schooling level s:

V (s) =
1

A (ρ)
u

[
A (ρ) E

(∑
t

(
1

1 + ρ

)t

Ys,t

∣∣∣∣∣ I
)]
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Schooling Decision Problem

Schooling Decision Problem

Let C denote the psychic costs associated with schooling
choices.

Let I denote the utility of going to college:

I = E
{

V (1)− V (0)− C̃
∣∣∣ I}

=
1

A (ρ)
E


u

[
E

(
A (ρ)

∑
t

(
1

1+ρ

)t

Y1,t

∣∣∣∣ I)]
−u

[
E

(
A (ρ)

∑
t

(
1

1+ρ

)t

Y0,t

∣∣∣∣ I)]− C

∣∣∣∣∣∣∣∣ I

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Variable
Observations Mean Standard Error Observations Mean Standard Error

Mother's Education 1045 3.8852 1.1762 843 5.1127 1.5117
Father's Education 1045 3.8699 1.4747 843 5.6987 1.8396
Number of Siblings 1045 3.1129 2.0192 843 2.5101 1.5689
Urban Residence at age 14 1045 0.7378 0.4400 843 0.8470 0.3602
Local Tuition at 4-year college2 1045 0.2154 0.0756 843 0.2056 0.0728
Year of Birth is 1958 1045 0.1120 0.3155 843 0.1186 0.3235
Year of Birth is 1959 1045 0.1321 0.3387 843 0.1127 0.3164
Year of Birth is 1960 1045 0.1416 0.3488 843 0.1234 0.3291
Year of Birth is 1961 1045 0.1254 0.3313 843 0.1281 0.3344
Year of Birth is 1962 1045 0.1397 0.3469 843 0.1352 0.3422
Year of Birth is 1963 1045 0.1091 0.3119 843 0.1293 0.3357
Year of Birth is 1964 1045 0.1120 0.3155 843 0.1257 0.3318
Enrolled at School at ASVAB Test Date 538 0.4628 0.4991 465 0.9054 0.2930
Age at ASVAB Test Date 538 19.3457 2.1994 465 19.3462 2.2367
Highest Grade Completed at ASVAB Test Date 538 11.0074 1.3075 465 11.9807 2.0838
ASVAB - Arithmetic Reasoning3 538 -0.4783 0.9454 465 0.5687 0.7194
ASVAB - Word Knowledge3 538 -0.4310 1.0522 465 0.5222 0.5715
ASVAB - Paragraph Composition3 538 -0.4413 1.0869 465 0.5070 0.5463
ASVAB - Coding Speed3 538 -0.3277 0.9855 465 0.4096 0.8758
ASVAB - Math Knowledge3 538 -0.6211 0.8044 465 0.7035 0.6823
1The sample consists of white males born between 1957 and 1964 who are high school or college graduates
2In ten thousand dollars. The tuition figures are inflation-adjusted using the CPI. The base year is 2000. 
3Not available for PSID respondents. 

Summary Statistics - NLSY/1979 and PSID1

High School Sample College Sample
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Variable
Observations Mean Standard Error Observations Mean Standard Error

Mother's Education 1117 3.3160 1.1607 1215 4.4568 1.5406
Father's Education 1117 2.9910 1.2798 1215 4.4897 1.9110
Number of Siblings 1117 3.1791 2.2042 1215 2.3358 1.7389
Urban Residence at age 14 1117 0.6634 0.4728 1215 0.8140 0.3893
Local Tuition at 4-year college2 1117 0.1577 0.0215 1215 0.1543 0.0214
Year of Birth is 1942 1117 0.0645 0.2457 1215 0.0593 0.2362
Year of Birth is 1943 1117 0.0770 0.2667 1215 0.0601 0.2377
Year of Birth is 1944 1117 0.0609 0.2392 1215 0.0700 0.2552
Year of Birth is 1945 1117 0.0430 0.2029 1215 0.0757 0.2647
Year of Birth is 1946 1117 0.0546 0.2273 1215 0.0840 0.2774
Year of Birth is 1947 1117 0.0985 0.2981 1215 0.1325 0.3392
Year of Birth is 1948 1117 0.1038 0.3052 1215 0.1119 0.3154
Year of Birth is 1949 1117 0.1182 0.3230 1215 0.1119 0.3154
Year of Birth is 1950 1117 0.1334 0.3402 1215 0.0930 0.2906
Year of Birth is 1951 1117 0.1343 0.3411 1215 0.1037 0.3050
Year of Birth is 1952 1117 0.0618 0.2408 1215 0.0494 0.2168
Otis/Beta/Gamma Test3 194 -0.5667 0.8026 170 0.6600 0.7971
California Test of Mental Maturity3 123 -0.4120 0.8964 95 0.5535 0.8267
Work Knowledge, Occupations3 769 0.0854 0.8333 785 0.7025 0.7619
Work Knowledge, Education3 772 0.1044 0.8557 787 0.6659 0.7527
Work Knowledge, Earnings Comparison3 779 -0.0320 0.9310 791 0.4057 0.9334

2In ten thousand dollars. The tuition figures are inflation-adjusted using the CPI. The base year is 2000. 
3Not available for PSID respondents. 

College
Summary Statistics - NLS/1966 and PSID1

1The sample consists of white males born between 1941 and 1952 who are high school or college graduates

High School
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Age
Observations Mean Standard Error Observations Mean Standard Error

22 715 2.0630 1.1722 515 0.8555 0.7747
23 759 2.2700 1.2146 547 1.2363 1.0917
24 795 2.4175 1.4047 588 1.9040 1.3824
25 803 2.5949 1.5033 614 2.5918 1.5434
26 811 2.7158 1.3402 650 3.0224 1.6840
27 829 2.8010 1.4065 668 3.4665 1.9002
28 835 3.0294 1.5780 683 3.8150 1.9740
29 831 3.1140 1.7353 700 4.1289 2.2189
30 814 3.1827 1.5748 706 4.4645 2.3916
31 763 3.4152 2.6028 643 4.8759 3.1723
32 755 3.3891 2.1521 625 5.1221 3.4502
33 658 3.6220 2.5321 572 5.5908 3.8108
34 652 3.6570 3.0182 516 5.8269 3.9961
35 533 3.7389 2.6047 489 6.0398 4.2698
36 530 3.8459 2.4273 445 6.4529 4.2849
37 418 3.8590 2.4618 389 6.9560 4.7483
38 405 3.9803 2.9138 367 7.2928 5.1383
39 341 4.1229 2.9622 315 7.8962 5.8720
40 268 4.2145 2.7394 263 8.0256 5.6185
41 233 4.3307 3.0308 192 8.1747 5.8771

2The sample consists of white males born between 1957 and 1964 who are high school or college graduates

1In ten thousand dollars. The earnings figures are inflation-adjusted using the CPI. The base year is 2000. 

Summary Statistics for Earnings1 per Schooling Group and Age - NLSY/1979 and PSID2

High School Sample College Sample
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Age
Observations Mean Standard Error Observations Mean Standard Error

22 435 2.7109 1.4637 330 1.3977 1.1195
23 530 2.9363 1.1182 429 2.1406 1.2643
24 601 3.0219 1.2747 580 2.7195 1.4354
25 674 3.2760 1.2396 640 3.2254 1.4483
26 646 3.3748 1.3430 683 3.6320 1.6867
27 653 3.4915 1.3516 698 3.9137 1.8280
28 622 3.5399 1.4160 702 4.3453 2.0456
29 605 3.6311 1.4138 736 4.3880 1.9873
30 593 3.6730 1.5225 699 4.7632 2.1862
31 516 3.5821 1.4622 689 4.9689 2.4219
32 491 3.7744 1.6636 648 5.1731 2.4606
33 432 3.8722 1.7439 618 5.3938 2.5211
34 382 3.8831 1.7366 574 5.6228 3.0574
35 327 4.0330 1.6510 504 5.8789 3.5867
36 280 3.9929 1.7909 476 6.0263 3.7899
37 301 4.0008 1.6679 454 6.3164 4.0824
38 273 3.8033 1.5534 413 6.4203 4.2034
39 247 3.8198 1.7512 407 6.8212 5.1467
40 207 3.7984 1.6144 360 6.7957 4.6554
41 189 3.8534 1.6041 339 6.9379 5.0353

2The sample consists of white males born between 1941 and 1952 who are high school or college graduates

1In ten thousand dollars. The earnings figures are inflation-adjusted using the CPI. The base year is 2000. 

Summary Statistics for Earnings1 per Schooling Group and Age - NLSY/1966 and PSID2

High School Sample College Sample
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Otis/Beta/Gamma 
Test

California Test of 
Mental Maturity

Work Knowledge, 
Occupations

Work Knowledge, 
Education and 

Occupation

Work Knowledge, 
Earnings 

Comparison
Otis/Beta/Gamma Test 1.0000 N/A2 0.4289 0.4457 0.0765
California Test of Mental Maturity N/A2 1.0000 0.2036 0.1714 0.1112
Work Knowledge, Occupations 0.4289 0.2036 1.0000 0.9374 0.4464
Work Knowledge, Education 0.4457 0.1714 0.9374 1.0000 0.1068
Work Knowledge, Earnings Comparison 0.0765 0.1112 0.4464 0.1068 1.0000
1We control for mother's and fatber's education, urban residency at age 14, and year of birth
2Individuals report either Otis/Beta/Gamma or the California Test of Mental Maturity, but not both.

Raw Correlation of Test Scores from NLS/19661
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Age

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 6

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 6
22 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 1.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00
26 1.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00
28 1.00 0.00 0.00
29 0.00 0.00
30 1.00
31
32
33
34
35
36
37
38
39
40
41

Age

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5
22 1.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 1.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00
26 1.00 0.00 0.00
27 0.00 0.00
28 1.00
29
30
31
32
33
34
35
36
37
38
39
40
41

High School Earnings Equations College Earnings Equations

1The empty cells correspond to factor loadings that are estimated, not normalized. 

1The empty cells correspond to factor loadings that are estimated, not normalized. 

Table 1A
Normalizations on Factor Loadings: NLSY/19791,2

Table 1B
Normalizations on Factor Loadings: NLSY/19661

High School Earnings Equations College Earnings Equations
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Age

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 6

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 6
22 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 1.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00
26 1.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00
28 1.00 0.00 0.00
29 0.00 0.00
30 1.00
31
32
33
34
35
36
37
38
39
40
41

Age

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5

Loading 
on 

Factor 1

Loading 
on 

Factor 2

Loading 
on 

Factor 3

Loading 
on 

Factor 4

Loading 
on 

Factor 5
22 1.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 1.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00
26 1.00 0.00 0.00
27 0.00 0.00
28 1.00
29
30
31
32
33
34
35
36
37
38
39
40
41

High School Earnings Equations College Earnings Equations

1The empty cells correspond to factor loadings that are estimated, not normalized. 

1The empty cells correspond to factor loadings that are estimated, not normalized. 

Table 1A
Normalizations on Factor Loadings: NLSY/19791,2

Table 1B
Normalizations on Factor Loadings: NLSY/19661

High School Earnings Equations College Earnings Equations
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Age χ2 statistic Critical Value χ2 statistic Critical Value χ2 statistic Critical Value
22 15.9253 20.7143 20.4226 24.9958 40.3457 44.9853
23 34.2904 35.1725 26.0629 31.4104 58.3545 56.9424
24 36.6979 40.1133 78.7201 41.3371 169.9024 74.4683
25 29.5390 43.7730 48.0949 48.6024 127.8453 82.5287
26 40.5503 42.5570 36.2933 44.9853 129.4631 80.2321
27 47.3649 50.9985 49.0855 44.9853 134.1814 83.6753
28 39.4947 47.3999 34.6742 46.1943 109.4980 85.9649
29 32.8477 42.5570 23.7741 49.8018 73.8654 88.2502
30 31.7484 40.1133 28.8962 47.3999 115.9924 81.3810
31 29.0581 36.4150 38.1067 47.3999 66.6677 67.5048
32 29.9466 35.1725 53.5870 47.3999 96.7551 72.1532
33 28.8073 32.6706 33.5289 42.5570 97.1011 67.5048
34 27.0961 30.1435 43.5183 42.5570 92.3537 59.3035
35 29.6717 26.2962 33.9107 33.9244 88.6647 52.1923
36 18.9902 22.3620 26.2794 32.6706 53.1827 47.3999
37 21.6758 22.3620 31.1112 32.6706 76.8646 48.6024
38 14.4640 21.0261 22.3595 31.4104 44.2595 48.6024
39 18.4237 21.0261 23.7976 31.4104 40.6077 41.3371
40 17.4722 19.6751 25.3994 28.8693 66.4910 36.4150
41 13.6884 14.0671 18.1718 26.2962 29.3257 31.4104

* 95% Confidence, equiprobable bins with aprox. 20 people per bin. A χ2 statistic lower than the critical 

value indicates a "good" fit.

Table 2B
χ2 Goodness of Fit Test*
NLS/1966 - White Males

High School College Overall
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Period χ2 statistic Critical Value χ2 statistic Critical Value χ2 statistic Critical Value
22 57.3492 47.3999 39.7989 35.1725 167.6037 77.9305
23 42.6356 50.9985 49.0880 36.4150 152.2525 81.3810
24 52.0194 52.1923 197.1642 42.5570 259.3508 84.8206
25 42.4359 46.1943 94.7095 43.7730 175.4185 84.8206
26 62.4019 53.3835 70.2619 43.7730 157.0157 89.3912
27 43.6728 52.1923 42.3386 44.9853 180.5021 91.6702
28 54.9250 48.6024 40.9173 46.1943 174.9548 91.6702
29 49.1212 48.6024 36.1557 46.1943 128.6085 89.3912
30 50.4962 50.9985 41.6969 47.3999 135.4479 89.3912
31 49.6975 48.6024 30.6494 43.7730 119.7788 84.8206
32 44.5459 50.9985 34.5965 42.5570 142.0935 83.6753
33 35.4077 43.7730 28.7575 38.8851 148.9012 77.9305
34 40.7768 42.5570 28.4552 38.8851 95.9926 68.6693
35 41.8859 36.4150 30.6125 33.9244 68.3855 62.8296
36 36.2069 38.8851 39.1018 30.1435 91.1547 62.8296
37 34.6365 31.4104 21.0079 27.5871 73.0057 52.1923
38 24.2197 28.8693 20.5837 27.5871 40.6111 49.8018
39 29.6366 27.5871 29.2055 28.8693 60.9063 42.5570
40 14.3437 21.0261 11.5051 19.6751 29.0430 33.9244
41 17.9075 19.6751 16.6693 16.9190 39.8928 33.9244

Table 2A

* 95% Confidence, equiprobable bins with aprox. 20 people per bin. A χ2 statistic lower than the critical 

value indicates a "good" fit.

χ2 Goodness of Fit Test*
NLSY/1979 - White Males

High School College Overall
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Economic model Results

High School College Overall
NLS/1966 - 5 Factors 15.6968 210.4133 114.8754
NLS/1979 - 6 Factors 70.6451 156.5446 187.5425
NLS/1979 - 5 Factors 64.2682 309.2815 226.2401

Critical Value* 222.0741 222.0741 222.0741
* 95% Confidence

Test of Equality of Predicted versus Actual Correlation 
Matrices of Earnings (from ages 22 to 41)

NLSY/1979 and NLS/1966
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