Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.

Randomized Evaluations

James Heckman University of Chicago University College Dublin

Econometric Policy Evaluation Supplement to the Koopmans Memorial Lectures Cowles Foundation Yale University September 27, 2006

Intro ●○	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Introdu	ction					

- Two cases:
 - A classical argument in experimental design.
 - Other case focuses on solving endogeneity and self-selection problems.
- Randomization is an instrumental variable.

$$Y = \alpha X + \beta D + U \tag{1.1}$$

Intro ⊙●	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Introdu	ction					

• The case for social experiments that receives the most attention focuses on the dependence between (*X*, *D*) and *U*.

Banerjee (2006):

The beauty of randomized evaluations is that the results are what they are: we compare the outcome in the treatment [group] with the outcome in the control group, see whether they are different, and if so by how much. Interpreting quasi-experiments sometimes requires statistical legerdemain, which makes them less attractive...

Intro	As IV ●0000000	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Rand	omization	as an	instrum	ental variabl	е	

• Treatment choice: Generalized Roy model

$$D=\mathbf{1}\left(Y_1-Y_0-C\geq 0\right)$$

$$Y_1 = \mu_1(X) + U_1, \qquad Y_0 = \mu_0(X) + U_0$$

$$C = \mu_C(W) + U_C, \qquad V = U_1 - U_0 - U_C$$

$$\mu_I(X, W) = \mu_1(X) - \mu_0(X) - \mu_C(W), \qquad Z = (X, W)$$

Intro	As IV ○●○○○○○○	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Rand	omization	as an	instrum	ental variabl	e	

- $\xi = 1$ if an agent is eligible to participate in the program.
- $\xi = 0$ otherwise.
- $\tilde{\xi} = \{0, 1\}.$
- Actual participation A:

$$A = D\xi. \tag{2.1}$$

• Desired participation of the agent (D).

Intro	As IV 00●00000	ID	Bias	Compliance	Dynamics	Dropout/Subst.		
-								
Randomization as an instrumental variable								

• Two types of randomization of eligibility.

Randomization of Type 1

A random mechanism (possibly conditional on (X, Z)) is used to determine ξ . The probability of eligibility is $Pr(\xi = 1 | X, Z)$.

Intro P	As IV 20000000	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Doudousi		. .	-	taltabla		

In the context of the generalized Roy model,

(e-1a)

$$\xi \perp (U_0, U_1, U_C) \mid X, Z$$

and
(e-1b)
 $\Pr(A = 1 \mid X, Z, \xi)$ depends on ξ .

• Does not impose exogeneity on X, Z.

Intro	As IV 0000●000	ID	Bias	Compliance	Dynamics	Dropout/Subst.

Randomization as an instrumental variable

In LATE-like notation, define A(z, e) to be the value of A when we set Z = z and $\xi = e$.

Assumption (e-1) is:

and

(e-1b)' Pr $(A = 1 | X, Z, \xi)$ depends on ξ .

Intro	As IV 00000●00	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Rand	omization	as an	instrum	ental variabl	e	

• Second type of randomization that randomizes conditional on revealed preference about *D*.

Randomization of Type 2:

Eligibility may be a function of D as well (conditionally on some or all components of X, Z, Q or unconditionally). It is common to deny entry into programs among people who applied and were accepted into the program (D = 1) so the probability of eligibility is $Pr(\xi = 1 | X, Z, Q, D = 1)$. This assumes invariance to randomization.

For this type of randomization, it is assumed that

(e-2a)

$$\xi \perp (U_0, U_1) \mid X, Z, Q, D = 1$$
 (IV)
and
(e-2b)
 $\Pr(A = 1 \mid X, Z, D = 1, \xi = 1) = 1;$
 $\Pr(A = 1 \mid X, Z, D = 1, \xi = 0) = 0.$ (rank)

• Full compliance.

Intro	As IV 0000000●	ID	Bias	Compliance	Dynamics	Dropout/Subst.
Rand	omization	as an	instrume	ental variabl	е	

Alternatively, we may write:

(e-2b)'

$$Pr (A = 1 | X, Z, D = 1, \xi = 1) = 1;$$

$$Pr (A = 1 | X, Z, D = 1, \xi = 0) = 0.$$
 (rank)

• Full compliance.

Intro	As IV	ID ●0000000	Bias	Compliance	Dynamics	Dropout/Subst.
10/1						

What does randomization identify?

- Under (e-1) or equivalently (e-1)' (Randomization Type 1).
- Agents made eligible for the program self-select as usual.
- For those made ineligible we observe y₀:

$$\begin{aligned} &F_0 \left(y_0 \mid X \right) \\ &= F_0 \left(y_0 \mid X, D = 0 \right) \Pr \left(D = 0 \mid X \right) \\ &+ F_0 \left(y_0 \mid X, D = 1 \right) \Pr (D = 1 \mid X). \end{aligned}$$

- Know $F_0(y_0 \mid X, D = 0)$ and $Pr(D = 1 \mid X)$ from the eligible population.
- Can identify $F_0(y_0 | X, D = 1)$.

Intro	As IV	ID ○●○○○○○○	Bias	Compliance	Dynamics	Dropout/Subst.
What	does rar	ndomizat	ion ide	ntifv?		

- Can identify the TT, $E(Y_1 Y_0 \mid X, D = 1)$.
- Cannot identify:
 - ATE (= $E(Y_1 Y_0 \mid X))$
 - $F_{0,1}(y_0, y_1 \mid X)$
 - $F_{0,1}(y_0, y_1 \mid X, D = 1)$

Intro	As IV	ID ○○●○○○○○	Bias	Compliance	Dynamics	Dropout/Subst.
What	: does rar	ndomizati	ion ide	ntify?		

 If ξ is a valid instrument for A, we can form the Wald estimand:

$$IV_{(e-1)}$$
(3.1)
= $\frac{E(Y \mid \xi = 1, Z, X) - E(Y \mid \xi = D, Z, X)}{Pr(A = 1 \mid \xi = 1, Z, X) - Pr(A = 1 \mid \xi = 0, Z, X)}$

• Assuming full compliance,

$$\Pr(A = 1 \mid \xi = 0, Z, X) = 0.$$

Intro	As IV	ID 000●0000	Bias	Compliance	Dynamics	Dropout/Subst.
What	does rar	ndomizati	ion ide	ntify?		

Therefore,

$$E(Y | \xi = 0, Z, X)$$

= $E(Y_0 | Z, X)$
= $E(Y_0 | D = 1, X, Z) \Pr(D = 1 | X, Z)$
+ $E(Y_0 | D = 0, X, Z) \Pr(D = 0 | X, Z).$

Intro	As IV	ID 0000●000	Bias	Compliance	Dynamics	Dropout/Subst.
What	does rar	ndomizati	on ide	ntify?		

$$E(Y | \xi = 1, Z, X)$$

= $E(Y_1 | D = 1, Z, X) Pr(D = 1 | Z, X)$
+ $E(Y_0 | D = 0, Z, X) Pr(D = 0 | Z, X)$

$$\mathsf{IV}_{(e-1)} = E(Y_1 - Y_0 \mid D = 1, Z, X).$$

 Randomization does not identify the other mean treatment effects (LATE and ATE) unless the common coefficient model governs the data or (Y₁ - Y₀).

Intro	As IV	ID 00000●0	Bias	Compliance	Dynamics	Dropout/Subst.
What	does rar	ndomizat	tion ide	ntify?		

• Since
$$F(y | X) = E(\mathbf{1}(Y \le y) | X)$$
, $IV_{(e-1)}$ also identifies $F_0(y_0 | X, D = 1)$.

Intro	AS IV	000000	Blas	Compliance	Dynamics	Dropout/Subst.
What	t does rai	ndomizat	tion ide	ntifv?		

- Second type of eligibility randomization proceeds conditionally on D = 1.
- Do not identify choice probabilities ($\Pr(D = 1 \mid X, Z)$).

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
		0000000				

What does randomization identify?

Under assumption (e-2) or (e-2)': $IV_{(e-2)} = \frac{E(Y \mid D = 1, \xi = 1, X, Z) - E(Y \mid D = 1, \xi = 0, X, Z)}{Pr(A = 1 \mid D = 1, \xi = 1, X, Z) - Pr(A = 1, D = 1, \xi = 0, X, Z)}.$

$$\begin{array}{rcl} \Pr(A = 1 \mid D = 1, \xi = 1, X, Z) &=& 1, \text{ and} \\ \Pr(A = 1 \mid D = 1, \xi = 0, X, Z) &=& 0, \\ E(Y \mid A = 0, D = 1, \xi = 0, X, Z) &=& E(Y_0 \mid D = 1, X, Z), \text{ and} \\ E(Y \mid A = 1, D = 1, \xi = 1, X, Z) &=& E(Y_1 \mid D = 1, X, Z). \end{array}$$

Thus,

$$IV_{(e-2)} = E(Y_1 - Y_0 | D = 1, X, Z).$$

Intro	As IV	ID	Bias ●00000	Compliance	Dynamics	Dropout/Subst.
Rande	omizatio	ı bias				

- Randomization may affect the program being evaluated and change the behavior of participants.
- Can provide "internal validity" on the altered program.
- Has no external validity in this case.

Intro	As IV	ID	Bias ⊙●○○○○	Compliance D	ynamics	Dropout/Subst.
Percenta participa	nge (Iting	of local J in the e	TPA agencie xperiment	es citing specific	conceri	ns about
	Cor	ncern		Percentage Centers Citing	e of Train the Conc	ing ern
	1.	Ethical a a. R b. C	nd public relati andom assignn Denial of service	ons implications of: nent in social progra	ams 6 5	1.8
	2.	Potential grou recr	negative effect p on achievem uitment goals	t of creation of a co ent of client	ontrol 4	7.8
	3.	Potential stan	negative impa dards	ct on performance	2	5.4
	4.	Implemei prov	ntation of the s iders do intake	tudy when service	2	1.1
	Sar	nple size			2	228

Intro	As IV	ID	Bias oo●ooo	Compliance	Dynamics	Dropout/Subst.		
Percentage of local JTPA agencies citing specific concerns about participating in the experiment								
	0							
				Percentag	e of Trainin	7		
	Concern		Centers Citing the			1		
	_	<u></u>				_		
	5.	Objections of	service pr	oviders to the stu	dy 17.	D		
	6.	Potential staf	f administ	f administrative burden 16.2				
	7.	Possible lack	of support by elected officials 15.8			3		
	8. Legality of random ass			gnment and possil	ble 14.	5		

Procedures for providing controls with referrals

grievances

to other services Special recruitment problems for

out-of-school youth

9.

10.

Sample size

14.0

10.5

228

Intro	As IV	ID	Bias ○○○●○○	Compliance	Dynamics	Dropout/Subst.
Percen partici	itage of le pating in	ocal JTF the exp	PA agencie eriment	es citing spe	cific concerr	ns about

Notes: Concerns noted by fewer than 5 percent of the training centers are not listed. Percentages may add up to more than 100.0 because training centers could raise more than one concern. Source: Based on responses of 228 local JTPA agencies contacted about possible participation in the National JTPA Study. From Doolittle and Trager (1990).

Intro	As IV	ID	Bias ○○○○●○	Compliance	Dynamics	Dropout/Subst.
Rande	omizatior	ı bias				

- The parameter $ATE(X) = E(Y_1 Y_0 | X)$ is the same in the ongoing program as in the population generated by the randomized trial.
- However, treatment parameters conditional on choices such as TT(X) = E (Y₁ - Y₀ | X, D = 1), TUT(X) = E (Y₁ - Y₀ | X, D = 0) are not.
- Analysis applies with full force to LATE.

Intro	As IV	ID	Bias ○○○○○●	Compliance	Dynamics	Dropout/Subst.
Rande	omizatio	ı bias				

- In a model with essential heterogeneity treatment parameters defined conditional on choices are not invariant to the choice of randomization.
- Can still answer P-1, but for the modified program.

Intro	As IV	ID	Bias	Compliance ●○	Dynamics	Dropout/Subst.
Complia	ance					

- The problem of noncompliance.
- Persons assigned to a treatment may not accept it.
- Let $\xi = 1$ if a person is assigned to treatment.
- $\xi = 0$ otherwise.
- Compliance is said to be perfect when $\xi = 1 \Rightarrow A = 1$ and $\xi = 0 \Rightarrow A = 0$.

Intro	As IV	ID	Bias	Compliance ○●	Dynamics	Dropout/Subst.
Comp	liance					

 Noncompliance is a problem if the goal of the social experiment is to estimate ATE(X) = E (Y₁ - Y₀ | X) without using econometric methods to adjust the experimental data.

- Stylized multiple stage program.
- In stage "0", the agent (possibly in conjunction with program officials) decides to participate or not to participate in the program.
- Let $D_0 = 1$ denote that the agent does not choose to participate.
- $D_j = 1, j > 0$, means that the agent is participating through stage *j*.

Let {D_j(z)}_{z∈Z} be the set of potential treatment choices for choice j associated with setting Z = z.

• For each
$$Z = z$$
, $\sum_{j=0}^{J} D_j(z) = 1$.

 Array the collections of choice indicators evaluated at each Z = z into a vector

$$D(z) = \left(\left\{ D_1(z) \right\}_{z \in \mathcal{Z}}, \dots, \left\{ D_J(z) \right\}_{z \in \mathcal{Z}} \right).$$

$$Y_j = \mu_j \left(X, U_j
ight)$$
, $j = 0, \ldots, J$.

 Y₀ is the no treatment state, and the Y_j, j ≥ 1, correspond to outcomes associated with dropping out at various stages of the program.

Intro	As IV	ID	Bias	Compliance	Dynamics oo●oooooooc	Dropout/Subst.

• In the absence of randomization, the observed Y is

$$Y = \sum_{j=0}^{J} D_j Y_j.$$

• $\tilde{Y} = (Y_0, \ldots, Y_J)$, the vector of potential outcomes.

- Let ξ_j = 1 denote whether the person is eligible to move beyond stage j.
- $\xi_j = 0$ means the person is randomized out of the program after completing stage *j*.
- A randomization at stage j with ξ_j = 1 means the person is allowed to continue on to stage j + 1, although the agent may still choose not to.
- We set $\xi_J \equiv 1$ to simplify the notation.
- $\xi_j = 1$ only if $\xi_\ell = 1, \ \ell = 0, \dots, j-1.$
- Array the ξ_j into a vector ξ and denote its support by $\tilde{\xi}$.

- A person who does not choose to participate at stage *j* cannot be forced to do so.
- For a person who would choose k (D_k = 1) in a nonexperimental environment, Y_k is observed if Π^k_{ℓ=0} ξ_ℓ = 1.
- Otherwise, if $\xi_k = 0$ but, say, $\prod_{\ell=0}^{k'} \xi_\ell = 1$ and $\prod_{\ell=0}^{k'+1} \xi_\ell = 0$ for k' < k, we observe $Y_{k'}$ for the agent.

• From an experiment with randomization administered at different stages, we observe

$$Y = \sum_{j=0}^{J} D_j \left(\sum_{k=0}^{j} \left(\prod_{\ell=0}^{k-1} \xi_\ell
ight) (1-\xi_k) Y_k
ight).$$

- To understand this formula, consider a program with three stages (J = 3) after the initial participation stage.
- For a person who would like to complete the program (D₃ = 1), but is stopped by randomization after stage 2, we observe Y₂ instead of Y₃.

Intro	As IV	ID	Bias	Compliance	Dynamics ○○○○○○●○○○○	Dropout/Subst.

- Let A_k be the indicator that we observe the agent with a stage k outcome.
- Happens if a person would have chosen to stop at stage k $(D_k = 1)$.
- Express A_k as

$$A_k = D_k \prod_{\ell=0}^{k-1} \xi_\ell + \sum_{j \ge k} D_j \left(\prod_{\ell=0}^{k-1} \xi_\ell \right) (1 - \xi_k), \ k = 0, \dots, J.$$

- If a person who chooses $D_k = 1$ survives all stages of randomization through k 1, we observe Y_k for that person.
- For persons who would choose $D_j = 1, j > k$, but get randomized out at k, we also observe Y_k .

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.

- Let $A_i(z, e_i)$ be the value of A_i when Z = z and $\xi_i = e_i$.
- Array the A_i , $i = 1, \ldots, J$, into a vector

$$A(z, e) = (A_1(z, e_1), A_2(z, e_2), \dots, A_J(z, e_J)).$$

• $Y = (Y_0, \ldots, Y_J)$.

• IV conditions for ξ are satisfied under the following sequential randomization assumptions.

(e-3a)

$$\begin{aligned} \xi_i \perp \left(\tilde{Y}, \{A(z, e)\}_{(z, e) \in \mathbb{Z} \times \tilde{\xi}} \right) \mid X, Z, D_\ell = 1 \text{ for } \ell < i, \\ \prod_{\ell=0}^{i-1} \xi_\ell = 1, \text{ for } i = 0, \dots, J, \end{aligned}$$

and

(e-3b) $\Pr(A_i = 1 \mid X, Z, D_{\ell} = 1 \text{ for } \ell < i, \prod_{\ell=0}^{i-1} \xi_{\ell} = 1)$ depends on ξ_i , for i = 1, ..., J.

- To fix ideas, consider a randomization of eligibility ξ₀, setting ξ₁ = · · · = ξ_J = 1.
- For those declared eligible,

$$E(Y \mid \xi_0 = 1) = \sum_{j=0}^{J} E(Y_j \mid D_j = 1) \Pr(D_j = 1). \quad (6.1)$$

• For those declared ineligible,

$$E(Y \mid \xi_0 = 0) = \sum_{j=0}^{J} E(Y_0 \mid D_j = 1) \Pr(D_j = 1).$$
 (6.2)

- From observed choice behavior we can identify each of the components of (6.1).
- We observe Pr (D_j = 1) from observed choices of treatment, and we observe E (Y_j | D_j = 1) from observed outcomes for each treatment choice.
- The individual components of (6.2) apart from the probabilities cannot, without further assumptions, be identified by the experiment.

Intro	As IV	ID	Bias	Compliance	Dynamics ○○○○○○○○○○○●○○	Dropout/Subst.

$$E(Y \mid \xi_0 = 1) - E(Y \mid \xi_0 = 0)$$

$$= \sum_{j=1}^{J} E(Y_j - Y_0 \mid D_j = 1) \operatorname{Pr}(D_j = 1)$$
(6.3)

 For J > 1, this simple experimental estimator does not identify the effect of full participation in the program for those who participate (E (Y_J - Y₀ | D_J = 1)) unless partial participation has the same mean effect as full participation for persons who drop out at the early stages.

- More generally, suppose we randomize persons out after completing stage k ([∏^{k-1}_{ℓ=0} ξ_ℓ] (1 − ξ_k) = 1).
- For another group establish full eligibility at all stages $(\prod_{\ell=0}^J \xi_\ell = 1)$, we obtain

$$E\left[Y\left|\prod_{\ell=0}^{J}\xi_{\ell}=1\right]-E\left[Y\left|\left(\prod_{\ell=0}^{k-1}\xi_{\ell}\right)\left(1-\xi_{k}\right)=1\right]\right.$$
$$=\sum_{j=k}^{J}E\left(Y_{j}-Y_{k}\mid D_{j}=1\right)\mathsf{Pr}\left(D_{j}=1\right).$$

Hence, since we know E (Y_k | D_k = 1) and Pr (D_k = 1) we can identify only

$$\sum_{j=k+1}^{J} E(Y_k \mid D_j = 1) \Pr(D_j = 1). \quad (6.4)$$

Observe that a randomization of eligibility that prevents people from going to stage J − 1 but not to stage J
 ([∏^{J-2}_{ℓ=0} ξ_ℓ] (1 − ξ_{J-1}) = 1) identifies
 E(Y_J − Y_{J-1} | D_J = 1):

$$E(Y \mid \xi_0 = 1, \dots, \xi_{J-2} = 1, \xi_{J-1} = 0)$$

= $\left[\sum_{j=0}^{J-1} E(Y_j \mid D_j = 1) \operatorname{Pr}(D_j = 1)\right]$
+ $E(Y_{J-1} \mid D_J = 1) \operatorname{Pr}(D_J = 1)$

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.

• Thus we identify

$$\left\{ \begin{array}{l} E(Y \mid \xi_0 = 1, \dots, \xi_J = 1) \\ -E(Y \mid \xi_0 = 1, \dots, \xi_{J-1} = 1, \xi_J = 0) \end{array} \right\} \\ = E(Y_J - Y_{J-1} \mid D_J = 1) \Pr(D_J = 1), \end{array}$$

and hence $E(Y_J - Y_{J-1} | D_J = 1)$.

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
		C 1				

$$E(Y \mid \xi_0 = 1, \dots, \xi_{\ell-1} = 1, \xi_\ell = 0)$$

all components known from observational data

$$= \sum_{j=0}^{\ell} E(Y_j \mid D_j = 1) \operatorname{Pr}(D_j = 1)$$

$$+ \sum_{j=\ell+1}^{J} E(Y_\ell \mid D_j = 1) \operatorname{Pr}(D_j = 1)$$
sum and probability weights known,
but not individual $E(Y_\ell \mid D_i = 1)$

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
					00000000000000000	000000

Parameters and combinations of parameters that can be identified by different randomizations

Choice Proba (known	bilities)			Outcome		
		Y_0	Y_1	 Y_{j}	 Y_{J-1}	Y_J
$\Pr(D_0=1)$	D_0	$E(Y_0 \mid D_0 = 1)$	$E(Y_1 \mid D_0 = 1)$	 $E(Y_j D_0 = 1)$	 $E(Y_{J-1} D_0 = 1)$	$E(Y_J \mid D_0 = 1)$
$\Pr(D_1=1)$	D_1	$E(Y_0 \mid D_1 = 1)$	$E(Y_1 \mid D_1 = 1)$	 $E(Y_j \mid D_1 = 1)$	 $E(Y_{J-1} D_1 = 1)$	$E(Y_J \mid D_1 = 1)$
$\Pr(D_2 = 1)$	D_2	$E(Y_0 \mid D_2 = 1)$	$E(Y_1 D_2 = 1)$	 $E(Y_j D_2 = 1)$	 $E(Y_{J-1} D_2 = 1)$	$E(Y_J D_2 = 1)$
(c : h	÷	÷	÷	:	÷
$\Pr(D_j = 1)$	i D _j	$E(Y_0 \mid D_j = 1)$	$E(Y_1 \mid D_j = 1)$	 $E(Y_j \mid D_j = 1)$	 $E(Y_{J-1} D_j = 1)$	$E(Y_J \mid D_j = 1)$
	e :	÷	÷	÷	:	÷
$\Pr(D_{J-1} = 1)$	D_{J-1}	$E(Y_0 D_{J-1} = 1)$	$E(Y_1 D_{J-1} = 1)$	 $E(Y_j D_{J-1} = 1)$	 $E(Y_{J-1} D_{J-1} = 1)$	$E(Y_J \mid D_{J-1} = 1)$
$\Pr(D_J = 1)$	D_J	$E(Y_0 \mid D_J = 1)$	$E(Y_1 \mid D_J = 1)$	 $E(Y_j \mid D_J = 1)$	 $E(Y_{J-1} \mid D_J = 1)$	$E(Y_J \mid D_J = 1)$
Randomiza	ition	$\xi_0 = 0$	$\xi_1 = 0$	 $\xi_j = 0$	 $\xi_{J-1} = 0$	$\xi_J = 0$
New Ident Combinatio Paramete	ified ns of ers	$\begin{split} \sum_{\ell=1}^J \left\{ E(Y_0 \mid D_\ell = 1) \right. \\ & \times \Pr(D_\ell = 1) \right\} \end{split}$	$\sum_{\ell=2}^{J} \left\{ E(Y_1 \mid D_\ell = 1) \right.$ $\times \Pr(D_\ell = 1) \right\}$	 $\sum_{\ell=j+1}^{J} \{ E(Y_j \mid D_\ell = 1) \\ \times \Pr(D_\ell = 1) \}$	 $E(Y_{J-1} \mid D_J = 1)$	

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.

 $\bullet\,$ Randomization at stage ℓ is an IV.

$$Y = \sum_{j=0}^J A_j Y_j.$$

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst.
					0000000000	•••••

$$IV_{\xi_{\ell}} = \frac{E[Y \mid \xi_{\ell} = 0] - E[Y \mid \xi_{\ell} = 1]}{\Pr(A_{\ell} = 1 \mid \xi_{\ell} = 0) - \Pr(A_{\ell} = 1 \mid \xi_{\ell} = 1)}$$
$$= \frac{\sum_{j=\ell+1}^{J} E[Y_{\ell} - Y_{j} \mid D_{j} = 1] \Pr(D_{j} = 1)}{\sum_{j=\ell+1}^{J} \Pr(D_{j} = 1)}, \ \ell = 0, \dots, J - 1.$$

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst. ●○○

Dropout and Substitution Bias

Study	Authors/time period	Target group(s)	Fraction of treatments receiving services	Fraction of controls receiving services
1. NSW	Hollister, et al. (1984) (9 months after RA)	Long-term AFDC women Ex-addicts 17-20 year old high school dropouts	0.95 NA NA	0.11 0.03 0.04
2. SWIM	Friedlander and Hamilton (1993) (Time period not reported)	AFDC women: applicants and recipients a. Job search assistance b. Work experience c. Classroom training/OJT d. Any activity AFDC-U unemployed fathers a. Job search assistance b. Work experience c. Classroom training/OJT	0.54 0.21 0.39 0.69 0.60 0.21 0.34	0.01 0.01 0.21 0.30 0.01 0.01 0.22

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst. ○●○
			-			

Dropout	and Su	bstitutio	on Bias
---------	--------	-----------	---------

Study	Authors/time period	Target group(s)	Fraction of treatments receiving services	Fraction of controls receiving services
3. JOBSTART	Cave, et al. (1993) (12 months after RA)	Youth high school dropouts Classroom training/OJT	0.90	0.26
4. Project	Kemple, et al. (1995) (24 months after RA)	AFDC women: applicants and recipients a. Job search assistance b. Classroom training/OJT c. Any activity	0.43 0.42 0.64	0.19 0.31 0.40

Note: RA = random assignment

Intro	As IV	ID	Bias	Compliance	Dynamics	Dropout/Subst. ○○●

Dropout and Substitution Bias

Study	Authors/time period	Target group(s)	Fraction of treatments receiving services	Fraction of controls receiving services
5. New Chance	Quint, et al. (1994)	Teenage single mothers		
	(18 months after RA)	Any education services	0.82	0.48
		Any training services	0.26	0.15
		Any education or training	0.87	0.55
6. National JTPA Study	Heckman and Smith (1998)	Self-reported from survey da	ata	
	(18 months after RA)	Adult males	0.38	0.24
	· · · · · · · · · · · · · · · · · · ·	Adult females	0.51	0.33
		Male youth	0.50	0.32
		Female youth	0.81	0.42
		Combined Administrative S	urvey Data	
		Adult males	0.74	0.25
		Adult females	0.78	0.34
		Male youth	0.81	0.34
		Female youth	0.81	0.42