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This paper develops the method of matching as an econometric evaluation estimator. A 
rigorous distribution theory for kernel-based matching is presented. The method of matching is 
extended to more general conditions than the ones assumed in the statistical literature on the topic. 
We focus on the method of propensity score matching and show that it is not necessarily better, 
in the sense of reducing the variance of the resulting estimator, to use the propensity score method 
even if propensity score is known. We extend the statistical literature on the propensity score by 
considering the case when it is estimated both parametrically and nonparametrically. We examine 
the benefits of separability and exclusion restrictions in improving the efficiency of the estimator. 
Our methods also apply to the econometric selection bias estimator. 

1. INTRODUCTION 

Matching is a widely-used method of evaluation. It is based on the intuitively attractive idea 
of contrasting the outcomes of programme participants (denoted Yl) with the outcomes of 
"comparable" nonparticipants (denoted Yo). Differences in the outcomes between the two 
groups are attributed to the programme. 

Let Zo and Zl denote the set of indices for nonparticipants and participants, respec- 
tively. The following framework describes conventional matching methods as well as the 
smoothed versions of these methods analysed in this paper. To estimate a treatment effect 
for each treated person ieZ1, outcome Yli is compared to an average of the outcomes Yoj 
for matched persons j € Z o  in the untreated sample. Matches are constructed on the basis 
of observed characteristics X in R ~ .Typically, when the observed characteristics of an 
untreated person are closer to those of the treated person i€Z1, using a specific distance 
measure, the untreated person gets a higher weight in constructing the match. The estima- 
ted gain for each person i in the treated sample is 

where WNo,Nl(i, j )  is usually a positive valued weight function, defined so that for each 
je l l ,  zj,IoWNo,Nl(i, j )  = 1, and No and N1 are the number of individuals in Zo and I , ,  
respectively. The choice of a weighting function reflects the choice of a particular distance 
measure used in the matching method, and the weights are based on distances in the X 
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space. For example, for each ieZ, the nearest-neighbour method selects one individual 
jeZo as the match whose Xj is the "closest" value to Xi, in some metric. The kernel methods 
developed in this paper construct matches using all individuals in the comparison sample 
and downweighting "distant" observations. 

The widely-used evaluation parameter on which we focus in this paper is the mean 
effect of treatment on the treated for persons with characteristics X 

E(Y1- YOID= 1, X), (p-1) 

where D = 1 denotes programme participation. Heckman (1997) and Heckman and Smith 
(1998) discuss conditions under which this parameter answers economically interesting 
questions. For a particular domain X for X, this parameter is estimated by 

xi,,,WNO,NI(~)[  W~o,~ l ( i , j )  (2)Yli- xjGlo Yoj], 

where different values of wNo,Nl(i) may be used to select different domains X or to account 
for heteroskedasticity in the treated sample. Different matching methods are based on 
different weighting functions {wNo,Nl(i)) and { WNo,Nl(i,j )  ). 

The method of matching is intuitively appealing and is often used by applied statistici- 
ans, but not by economists. This is so for four reasons. First, it is difficult to determine 
if a particular comparison group is truly comparable to participants (i.e. would have 
experienced the same outcomes as participants had they participated in the programme). 
An ideal social experiment creates a valid comparison group. But matching on the 
measured characteristics available in a typical nonexperimental study is not guaranteed 
to produce such a comparison group. The published literature presents conditional inde- 
pendence assumptions under which the matched group is comparable, but these are far 
stronger than the mean-independence conditions typically invoked by economists. More- 
over, the assumptions are inconsistent with many economic models of programme partici- 
pation in which agents select into the programme on the basis of unmeasured components 
of outcomes unobserved by the econometrician. Even if conditional independence is 
achieved for one set of X variables, it is not guaranteed to be achieved for other sets of 
X variables including those that include the original variables as subsets. Second, if a valid 
comparison group can be found, the distribution theory for the matching estimator remains 
to be established for continuously distributed match variables x.' 

Third, most of the current econometric literature is based on separability between 
observables and unobservables and on exclusion restrictions that isolate different variables 
that determine outcomes and programme participation. Separability permits the definition 
of parameters that do not depend on unobservables. Exclusion restrictions arise naturally 
in economic models, especially in dynamic models where the date of enrollment into the 
programme differs from the dates when consequences of the programme are measured. 
The available literature on matching in statistics does not present a framework that 
incorporates either type of a priori restriction. 

Fourth, matching is a data-hungry method. With a large number of conditioning 
variables, it is easy to have many cells without matches. This makes the method impractical 
or dependent on the use of arbitrary sorting schemes to select hierarchies of matching 
variables. (See, e.g. Westat (1980, 1982, 1984).) In an important paper, Rosenbaum and 
Rubin (1983) partially solve this problem. They establish that if matching on X is valid, 
so is matching solely on the probability of selection into the programme Pr (D = 1 IX) = 

1. When the match variables are discrete, the matching estimator for each cell is a mean and consistency 
and asymptotic normality of the matching estimator are easily established. 
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P(X). Thus a multidimensional matching problem can be recast as a one-dimensional 
problem and a practical solution to the curse of dimensionality for matching is possible.2 

Several limitations hamper the practical application of their theoretical result. Their 
theorem assumes that the probability of selection is known and is not estimated. It is also 
based on strong conditional independence assumptions that are difficult to verify in any 
applictikion and are unconventional in econometrics. They produce no distribution theory 
for their estimator. 

In this paper we first develop an econometric framework for matching that allows us 
to incorporate additive separability and exclusion restrictions. We then provide a sampling 
theory for matching from a nonparametric vantage point. Our distribution theory is 
derived under weaker conditions than the ones currently maintained in the statistical 
literature on matching. We show that the fundamental identification condition of the 
matching method for estimating (P-1) is 

E(YoID=l, X)=E(YoID=O, X), 

whenever both sides of this expression are well defined. In order for both sides to be well 
defined simultaneously for all X it is usually assumed that O< P(X) <1 so that 
Supp (XI D = 1)=Supp (XI D =0). As Heckrnan, Ichimura, Smith, Todd (1998), Heckman, 
Ichimura, Smith and Todd (1996b) and Heckman, Ichimura and Todd (1997) point out, 
this condition is not appropriate for important applications of the method. In order to 
meaningfully implement matching it is necessary to condition on the support common to 
both participant and comparison groups S, where 

and to estimate the region of common support. Equality of the supports need not hold 
a priori although most formal discussions of matching assumes that it does. Heckman, 
Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd (1997) report the 
empirical relevance of this point for evaluating job training programmes. Invoking 
assumptions that justify the application of nonparametric kernel regression methods to 
estimate programme outcome equations, maintaining weaker mean independence 
assumptions compared to the conditional independence assumptions used in the literature, 
and conditioning on S, we produce an asymptotic distribution theory for matching estima- 
tors when regressors are either continuous, discrete or both. This theory is general enough 
to make the Rosenbaum-Rubin theorem operational in the commonly-encountered case 
where P(X) is estimated either parametrically or nonparametrically. 

With a rigorous distribution theory in hand, we address a variety of important ques- 
tions that arise in applying the method of matching: (1) We ask, if one knew the propensity 
score, P(X), would one want to use it instead of matching on X? (2) What are the effects 
on asymptotic bias and variance if we use an estimated value of P ?  We address this 
question both for the case of parametric and nonparametric P(X). Finally, we ask (3) 
what are the benefits, if any, of econometric separability and exclusion restrictions on the 
bias and variance of matching estimators? 

The structure of this paper is as follows. Section 2 states the evaluation problem and 
the parameters identified by the analysis of this paper. Section 3 discusses how matching 
solves the evaluation problem. We discuss the propensity score methodology of Rosen- 
baum and Rubin (1983). We emphasize the importance of the common support condition 

2. They term P ( X )  the propensity score. For the relationship between propensity score methods and 
selection models, see Heckman and Robb (1986) or Heckman, Ichimura, Smith and Todd (1998). 
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assumed in the literature and develop an approach that does not require it. Section 4 
contrasts the assumptions used in matching with the separability assumptions and exclu- 
sion restrictions conventionally used in econometrics. A major goal of this paper is to 
unify the matching literature with the econometrics literature. Section 5 investigates a 
central issue in the use of propensity scores. Even if the propensity score is known, is it 
better, in terms of reducing the variance of the resulting matching estimator, to condition 
on X or P(X)? There is no unambiguous answer to this question. Section 6 presents a 
basic theorem that provides the distribution theory for kernel matching estimators based 
on estimated propensity scores. In Section 7, these results are then applied to investigate 
the three stated questions. Section 8 summarizes the paper. 

2. THE EVALUATION PROBLEM AND THE PARAMETERS OF INTEREST 

Each person can be in one of two possible states, 0 and 1, with associated outcomes 
(Yo, Yl), corresponding to receiving no treatment or treatment respectively. For example, 
"treatment" may represent participation in the social programme, such as the job training 
programme evaluated in our companion paper where we apply the methods developed in 
this paper. (Heckman, Ichimura and Todd (1997).) Let D =  1 if a person is treated; D =  
0 otherwise. The gain from treatment is A= Yl - Yo. We do not know A for anyone 
because we observe only Y= D YI + (1 -D) Yo, i.e. either Yo or YI . 

This fundamental missing data problem cannot be solved at the level of any individual. 
Therefore, the evaluation problem is typically reformulated at the population level. Focus- 
ing on mean impacts for persons with characteristics X, a commonly-used parameter of 
interest for evaluating the mean impact of participation in social programmes is (P-1). 
It is the average gross gain from participation in the programme for participants with 
characteristics X. If the full social cost per participant is subtracted from (P-1) and the 
no treatment outcome for all persons closely approximates the no programme outcome, 
then the net gain informs us of whether the programme raises total social output compared 
to the no programme state for the participants with characteristics x . ~  

The mean E(Yl ID= 1, X )  can be identified from data on programme participants. 
Assumptions must be invoked to identify the counterfactual mean E(Yo 1 D =  1, X),  the 
no-treatment outcome of programme participants. In the absence of data from an ideal 
social experiment, the outcome of self-selected nonparticipants E(YolD=O, X )  is often 
used to approximate E(YolD= 1, X) .  The selection bias that arises from making this 
approximation is 

Matching on X, or regression adjustment of Yo using X, is based on the assumption that 
B(X) =0 so conditioning on X eliminates the bias. 

Economists have exploited the idea of conditioning on observables using parametric or 
nonparametric regression analysis (Barnow, Cain and Goldberger (1980), Barros (1986), 
Heckman and Robb (1985, 1986)). Statisticians more often use matching methods, pairing 
treated persons with untreated persons of the same X characteristics (Cochrane and Rubin 
(1973)). 

The literature on programme evaluation gives two distinct responses to the problem 
of estimating (P-1) with continuous conditioning variables. The first borrows from the 

3. See Heckman (1997) or Heckman and Smith (1998) for a precise statement of when this parameter 
answers an interesting economic evaluation question. 
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kernel regression literature. It uses a smoothing procedure that borrows strength from 
adjacent values of a particular value of X =x and produces uniformly consistent estimators 
of (P-1) at all points of the support for the distributions of X given D = 1 or D =0. (See 
Heckman, Ichimura, Smith and Todd (1996~) or Heckman, Ichimura and Todd (1997).) 
Parametric assumptions about E(YolD= 1, X)  play the same role as smoothing 
assumptions, and in addition allow analysts to extrapolate out of the sample for X. Unless 
the class of functions to which (P-1) may belong is restricted to be smaller than the finite- 
order continuously-differentiable class of functions, the convergence rate of an estimator 
of (P-1) is governed by the number of continuous variables included in X (Stone (1982)). 

The second response to the problem of constructing counterfactuals abandons estima- 
tion of (P-1) at any point of X and instead estimates an average of (P-1) over an interval 
of X values. Commonly-used intervals include Supp (XI D = 1), or subintervals of the 
support corresponding to different groups of interest. The advantage of this approach is 
that the averaged parameter can be estimated with rate N-'12, where N is sample size, 
regardless of the number of continuous variables in X when the underlying functions are 
smooth enough. Averaging the estimators over intervals of X produces a consistent estima- 
tor of 

with a well-defined N-'12 distribution theory where S is a subset of Supp (XI D = 1). There 
is considerable interest in estimating impacts for groups so (P-2) is the parameter of 
interest in conducting an evaluation. In practice both pointwise and setwise parameters 
may be of interest. Historically, economists have focused on estimating (P-1) and statistici- 
ans have focused on estimating (P-2), usually defined over broad intervals of X values, 
including Supp (XI D = 1). In this paper, we invoke conditions sufficiently strong to consist- 
ently estimate both (P-1) and (P-2). 

3. HOW MATCHING SOLVES THE EVALUATION PROBLEM 

Using the notation of Dawid (1979) let 

denote the statistical independence of (Yo, Yl) and D conditional on X. An equivalent 
formulation of this condition is 

Pr(D=lIYo,  Yl ,X)=Pr (D=l IX) .  

This is a non-causality condition that excludes the dependence between potential 
outcomes and participation that is central to econometric models of self selection. (See 
Heckman and Honore (1990).) Rosenbaum and Rubin (1983), henceforth denoted RR, 
establish that, when (A-1) and 

O<P(X)<l ,  (A-2) 

are satisfied, (Yo, Yl) IID I P(X), where P(X) =Pr (D = 1 IX). Conditioning on P(X) bal- 
ances the distribution of Yo and Yl with respect to D. The requirement (A-2) guarantees 
that matches can be made for all values of X. RR called condition (A-1) an "ignorability" 
condition for D, and they call (A-1) and (A-2) together a "strong ignorability" condition. 

When the strong ignorability condition holds, one can generate marginal distributions 
of the counterfactuals 
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but one cannot estimate the joint distribution of (Yo, Yl), F(yo, y1 ID, X), without making 
further assumptions about the structure of outcome and programme participation 
equations.4 

If P(X) =O or P(X) = 1 for some values of X, then one cannot use matching condi- 
tional on those X values to estimate a treatment effect. Persons with such X characteristics 
either always receive treatment or never receive treatment, so matches from both D =  1 
and D=O distributions cannot be performed. Ironically, missing data give rise to the 
problem of causal inference, but missing data, i.e. the unobservables producing variation 
in D conditional on X, are also required to solve the problem of causal inference. The 
model predicting programme participation should not be too good so that P(X) = 1 or 0 
for any X. Randomness, as embodied in condition (A-2), guarantees that persons with 
the same characteristics can be observed in both states. This condition says that for any 
measurable set A, Pr (XE A ID = 1)>0 if and only if Pr (X EA ID =0) >0, so the comparison 
of conditional means is well defined.' A major finding in Heckman, Ichimura, Smith, Todd 
(1996a, b, 1998) is that in their sample these conditions are not satisfied, so matching is 
only justified over the subset Supp (XI D = 1) nSupp (XI D =0). 

Note that under assumption (A-1) 

so E( Yo ID = 1, XES)  can be recovered from E( Yo ID =0, X) by integrating over X using 
the distribution of X given D = 1, restricted to S. Note that, in principle, both E( Yo IX, D = 

0) and the distribution of X given D = 1 can be recovered from random samples of partici- 
pants and nonparticipants. 

It is important to recognize that unless the expectations are taken on the common 
support of S, the second equality does not necessarily follow. While E( Yo ID =0, X)  is 
always measurable with respect to the distribution of X given D =0, (p (X I D =0)), it may 
not be measurable with respect to the distribution of X given D = 1, (p (X I D = 1)). Invoking 
assumption (A-2) or conditioning on the common support S solves the problem because 
p(X ID =0) and p(X ID = 1), restricted to S, are mutually absolutely continuous with 
respect to each other. In general, assumption (A-2) may not be appropriate in many 
empirical applications. (See Heckman, Ichimura, and Todd (1997) or Heckman, Ichimura, 
Smith and Todd (1996a, b, 1998).) 

The sample counterpart to the population requirement that estimation should be over 
a common support arises ?hen the set S is not known. In this case, we need to estimate 
S. Since the estimated set, S, and Sinevitably differ, we need to make sure that asymptoti- 
cally the points at which we evaluate the conditional mean estimator of E(Yo ID =0, X) 
are in S. We use the "trimming" method developed in a companion paper (Heckman, 
Ichimura, Smith, Todd (1996~)) to deal with the problem of determining the points in S. 
Instead of imposing (A-2), we investigate regions S, where we can reasonably expect to 
learn about E( Y, - Yo ID = 1, S).  

Conditions (A-1) and (A-2) which are commonly invoked to justify matching, are 
stronger than what is required to recover E( YI - YO1 D = 1, X)  which is the parameter of 

4. Heckman, Smith and Clements (1997) and Heckman and Smith (1998) analyse a variety of such 
assumptions. 

5. Thus, the implications of 0 <Pr ( D= 1 I X )  < 1 is that conditional measures of X given D =O and that 
given D= 1 are absolutely continuous with respect to each other. These dominating measure conditions are 
standard in the matching literature. 
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interest in this paper. We can get by with a weaker condition since our objective is 
construction of the counterfactual E( Yo I X, D = 1) 

which implies that Pr (Yo<tID=l,  X)=Pr  (Yo<tID=O, X) for XES. 
In this case, the distribution of Yo given X for participants can be identified using 

data only on nonparticipants provided that XE S. From these distributions, one can recover 
the required counterfactual mean E(YolD= 1, X)  for XES. Note that condition (A-3) 
does not rule out the dependence of D and Yl or on A = Yl - Yo given X. 

For identification of the mean treatment impact parameter (P-1), an even weaker 
mean independence condition suffices 

E(YoID=l, X)=E(YoID=O,X) f o r X ~ S .  (A- 1') 

Under this assumption, we can identify E(YoI D = 1, X)  for XES, the region of common 
~ u p p o r t . ~Mean independence conditions are routinely invoked in the econometrics 
literature.' 

Under conditions (A-1) and (A-2), conceptually different parameters such as the 
mean effect of treatment on the treated, the mean effect of treatment on the untreated, or 
the mean effect of randomly assigning persons to treatment, all conditional on X, are the 
same. Under assumptions (A-3) or (A-1'), they are distinctg 

Under these weaker conditions, we demonstrate below that it is not necessary to make 
assumptions about specific functional forms of outcome equations or distributions of 
unobservables that have made the empirical selection bias literature so controversial. What 
is controversial about these conditions is the assumption that the conditioning variables 
available to the analyst are sufficiently rich to justify application of matching. To justify 
the assumption, analysts implicitly make conjectures about what information goes into 
the decision sets of agents, and how unobserved (by the econometrician) relevant informa- 
tion is related to observables. (A-l) rules out dependence of D on Yo and Y, and so is 
inconsistent with the Roy model of self selection. See Heckman (1997) or Heckman and 
Smith (1998) for further discussion. 

4. SEPARABILITY AND EXCLUSION RESTRICTIONS 

In many applications in economics, it is instructive to partition X into two not-necessarily 
mutually exclusive sets of variables, (T, Z),  where the T variables determine outcomes 

and the Z variables determine programme participation 

6. By symmetric reasoning, if we postulate the condition Y l li D IX and (A-2), then Pr ( D =  I I Y ,,X )  = 
Pr ( D= 1 IX) ,  so selection could occur on Yoor A, and we can recover Pr (Y l< t I D =0 ,  X ) .  Since Pr ( Y o< t I D = 
0 ,X )  can be consistently estimated, we can recover E ( Y l  - Yo ID= 0 ,  X ) .  

7. We can further identify E( Y l  - Yo ID =0 )  if we assume E( Y ,  ID = 1 ,  X )  =E( Y ,  ID =0 ,  X )  for X in S. 
8. See, for example, Barnow, Cain and Goldberger (1980) or Heckman and Robb (1985, 1986). 
9. See Heckman (1990, 1997) for a discussion of the three parameters. See also Heckman and Smith 

(1998). 
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Thus in a panel data setting Yl and Yo may be outcomes measured in periods after 
programme participation decisions are made, so that Z and T may contain distinct vari- 
ables, although they may have some variables in common. Different variables may deter- 
mine participation and outcomes, as in the labour supply and wage model of Heckman 
(1974). 

Additively-separable models are widely used in econometric research. A major advan- 
tage of such models is that any bias arising from observing Yo or Yl by conditioning on 
D is confined to the "error term" provided that one also conditions on T, e.g. E(Yo 1 D = 

l ,X)=go(T)+E(UoID=l ,Z)  and E(YIID=l ,X)=gl(T)+E(UIID=l ,Z) .  Another 
major advantage of such models is that they permit an operational definition of the effect 
of a change in T holding U constant. Such effects are derived from the go and gl  functions. 

The Rosenbaum-Rubin Theorem (1983) does not inform us about how to exploit 
additive separability or exclusion restrictions. The evidence reported in Heckman, 
Ichimura, Smith and Todd (1996a), reveals that the no-training earnings of persons who 
chose to participate in a training programme, Yo, can be represented in the following way 

where Z and T contain some distinct regressors. This representation reduces the dimension 
of the matching or nonparametric regression if the dimension of Z is two or larger. 
Currently-available matching methods do not provide a way to exploit such information 
about the additive separability of the model or to exploit the information that Z and T 
do not share all of their elements in common. 

This paper extends the insights of Rosenbaum and Rubin (1983) to the widely-used 
model of programme participation and outcomes given by equations (3a), (3b) and (4). 
Thus, instead of (A-1) or (A-3), we consider the case where 

Invoking the exclusion restrictions P(X) =P(Z) and using an argument analogous to 
Rosenbaum and Rubin (1983), we obtain 

E{DI Uo, P(Z)}=E{E(DI Uo,X)I Uo, P(Z)} 

=E{P(Z) I Uo, P(Z)} =P(Z)  =E{DIP(Z)}, 

so that 

Under condition (A-4a) it is not necessarily true that (A-1) or (A-3) are valid but it is 
obviously true that 

In order to identify the mean treatment effect on the treated, it is enough to assume that 

instead of (A-4a) or (A-4b). 
Observe that (A-4a), (A-4b), and (A-4b') do not imply that E(Uo lP(Z)) = O  or that 

E(U1I P(Z)) =0. They only imply that the distributions of the unobservables are the same 
in populations of D =  1 and D=0, once one conditions on P(Z). Yo and Yl must be 
adjusted to eliminate the effects of T on outcomes. Only the residuals can be used to 
exploit the RR conditions. Thus P(Z) is not, in general, a valid instrumental variable. 
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In order to place these results in the context of classical econometric selection models, 
consider the following index model setup 

=0 otherwise. 

If Z and v are independent, then P(Z) =F, (v(Z)), where Fv ( . ) is the distribution 
function of v. In this case identification condition (A-4b') implies 

or when Fv is strictly increasing, 

If, in addition, v (Z)  is independent of (Uo, v), and E(Uo) =0, condition (*) implies 

for any yl(Z), which in turn implies E(Uo I v =s)=0 for any s when v (Z)  traces out the 
entire real line. Hence under these conditions our identification condition implies there is 
no selection on unobservables as defined by Heckman and Robb (1985, 1986). However, 
v (Z)  may not be statistically independent of (Uo, v). Thus under the conditions assumed 
in the conventional selection model, the identification condition (A-4b') may or may not 
imply selection on unobservables depending on whether y (Z)  is independent of (Uo, v) 
or not. 

5. ESTIMATING THE MEAN EFFECT OF TREATMENT: SHOULD ONE 
USE THE PROPENSITY SCORE OR NOT? 

Under (A-1') with S =  Supp (XID= 1) and random sampling across individuals, if one 
knew E( Yo ID =0, X =x), a consistent estimator of (P-2) is 

where Z1 is the set of i indices corresponding to observations for which Di = 1. If we assume 

E(YoID= 1, P(X))=E(YoID=O, P(X)) for X ~ S u p p  (P(X)ID= l), (A-1") 

which is an implication of (A-I), and E(Yo 1 D =0, P(X) = p )  is known, the estimator 

is consistent for E(A I D = I). 
We compare the efficiency of the two estimators, Ap and Ax.We show that neither 

is necessarily more efficient than the other. Neither estimator is feasible because both 
assume the conditional mean function and P(X) are known whereas in practice they need 
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to be estimated. However, the analysis of this case is of interest because the basic intuition 
from the simple theorem established below continues to hold when the conditional mean 
function and P(X) are estimated. 

Theorem 1. Assume: 

(i) (A-1') and (A-1") hold for S =  Supp (XI D = 1); 
(ii) { Yli, are independent and identically distributed; 

and 
(iii) o < E ( Y ~ ) .E ( Y : ) < ~ .  

Then Ax and Ap are both consistent estimators of (P-2) with asymptotic distributions 
that are normal with mean 0 and asymptotic variances Vx and Vp, respectively, where 

and 

Vp=E[Var (YIID=l,  P(X))ID=l]+Var [E(Yl- YoID=l, P(X))ID=l]. 

The theorem directly follows from the central limit theorem for iid sampling with 
finite second moment and for the sake of brevity its proof is deleted. 

Observe that 

because X is in general a better predictor than P(X) but 

Var [E(Yl- YoID=l, X)ID= 112Var [El(Yl- Yo)ID=l, P(X))ID=l], 

because vector X provides a finer conditioning variable than P(X). In general, there are 
both costs and benefits of conditioning on a random vector X rather than P(X). Using 
this observation, we can construct examples both where Vx 5 VP and where Vx 2 Vp. 

Consider first the special case where the treatment effect is constant, that is 
E(Yl - Yo1 D = 1, X)  is constant. An iterated expectation argument implies that 
E( Yl - Yo ID = 1, P(X)) is also constant. Thus, the first inequality, Vx 5 Vp holds in this 
case. On the other hand, if Yl =m(P(X)) + U for some measurable function m( . ) and U 
and X are independent, then 

which is non-negative because vector X provides a finer conditioning variable than P(X). 
So in this case Vx2 Vp. 

When the treatment effect is constant, as in the conventional econometric evaluation 
models, there is only an advantage to conditioning on X rather than on P(X) and there 
is no cost.I0 When the outcome YI depends on X only through P(X), there is no advantage 
to conditioning on X over conditioning on P(X). 

Thus far we have assumed that P(X) is known. In the next section, we investigate 
the more realistic situation where it is necessary to estimate both P(X) and the conditional 

10. Heckman (1992), Heckman and Smith (1998) and Heckman, Smith and Clements (1997) discuss the 
central role of the homogeneous response assumption in conventional econometric models of program evaluation. 
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means. In this more realistic case, the trade-off between the two terms in Vx and Vp 
persists." 

When we need to estimate P(X) or E(Yo I D =0, X), the dimensionality of the X is a 
major drawback to the practical application of the matching method or to the use of 
conventional nonparametric regression. Both are data-hungry statistical procedures. For 
high dimensional X variables, neither method is feasible in samples of the size typically 
available to social scientists. Sample sizes per cell become small for matching methods 
with discrete X's. Rates of convergence slow down in high-dimensional nonparametric 
methods. In a parametric regression setting, one may evade this problem by assuming 
functional forms for E(Uol X) (see e.g. Barnow, Cain and Goldberger (1980) and the 
discussion in Heckman and Robb (1985, 1986)), but this approach discards a major advan- 
tage of the matching method because it forces the investigator to make arbitrary 
assumptions about functional forms of estimating equations. 

Conditioning on the propensity score avoids the dimensionality problem by estimating 
the mean function conditional on a one-dimensional propensity score P(X). However, in 
practice one must estimate the propensity score. If it is estimated nonparametrically, we 
again encounter the curse of dimensionality. The asymptotic distribution theorem below 
shows that the bias and the asymptotic variance of the estimator of the propensity score 
affects the asymptotic distribution of the averaged matching estimator more the larger the 
effect of a change in the propensity score on the conditional means of outcomes. 

6. ASYMPTOTIC DISTRIBUTION THEORY FOR KERNEL-BASED 
MATCHING ESTIMATORS 

We present an asymptotic theory for our estimator of treatment effect (P-2) using either 
identifying assumption (A-1') or (A-4b'). The proof justifies the use of estimated P values 
under general conditions about the distribution of X. 

We develop a general asymptotic distribution theory for kernel-regression-based and 
local-polynomial-regression-based matching estimators of (P-2). Let T and Z be not neces- 
sarily mutually exclusive subvectors of X, as before. When a function depends on a random 
variable, we use corresponding lower case letters to denote its argument, for example, 
g(t, p) =E( Yo I D = 1, T=  t, P(Z) =p) and P(z) =Pr (D = 1I Z =z). Although not explicit 
in the notation, it is important to remember that g(t, p) refers to the conditional expectation 
conditional on D = 1 as well as T= t and P(Z) =p. We consider estimators of g(t, P(z)) 
where P(z) must be estimated. Thus we consider an estimator $(t, P(z)), where P(z) is an 
estimator of P(z). The general class of estimators of (P-2) that we analyse are of the form 

where I(A) = 1 if A holds and =0 otherwise and is an estimator of S, the region of 
overlapping support, where S=Supp {XI D = 1} nSupp {X ( D =0). 

To establish the properties of matching estimators of the form based on different 
estimators of P(z) and g(t, P(z)), we use a class of estimators which we call asymptotically 

11. If we knew E ( Y ,  ID= 1, P ( X )= p )  as well, the estimator 

NF'xi,,, [ E ( Y I  ID= 1, P(X)=P(X, ) ) -E(YoID=O,  P ( X ) = P ( X t ) ) I  

would be more efficient than A p .  In practical applications, we do not know either E ( Y ,  ID= 1, P ( x ) = p )  or 
E( Yo1 D =0 ,  P ( X )  = p )  so this point is only a theoretical curiosum and is not investigated further. 
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linear estimators with trimming. We analyse their properties by proving a s_eries of lemmas 
and corollaries leading up to Theorem 2. With regard to the estimators P(z)  and f(t, p), 
we only assume that they can be written as an average of some function of the data plus 
residual terms with appropriate convergence properties that are specified below. We start 
by defining the class of asymptotically linear estimators with trimming. 

Dejinition 1. An estimator 6(x) of 8(x) is an asymptotically linear estimator with 
trimming I(XE$) if and only if there is a function ~ , E Y , ,  defined ov5r some subset of a 
finite-dimensional Euclidean space, and stochastic terms b(x) and R(x) such that for 
sample size n : 

(i) [6(x)- ~(x)]I(xE$)=n-' I:=, ;y, (Xi, Y,;x) +;(XI 
(ii) E{y,(Xi, Y,;  X)IX=x)=O; 

(iii) plim,,, n-y2 C:=, ;(xi) =b < co ; 
(iv) n-'I2 I:=,R(Xi) =op( 1). 

An estimator p of p is called asymptotically linear if 

-P =n-' C:= y(Z;) +~ ~ ( n - " ~ ) ,  

holds.12 Definition 1 is analogous to the conventional definition, but extends it in five ways 
to accommodate nonparametric estimators. First, since the parameter 8(x) that we esti- 
mate is a function evaluated at a point, we need a notation to indicate the point x at 
which we estimate it. Conditions (i)-(iv) are expressed in terms of functions of x. Second, 
for nonparametric estimation, asymptotic linearity only holds over the support of X-the 
region where the density is bounded away from zero. To define the3ppropriate conditions 
for this restricted region, we introduce a trimming function I(xeS) that selects observa- 
tions only if they lie in S and discards them otherwise. 

Third, nonparametric estimators depend on smoothing parameters and usually have 
bias functions that converge to zero for particular sequences of smoothing parameters. 
We introduce a subscript n to the y-function and consider it to be an element of a class 
of functions Y,, instead of a fixed function, in order to accommodate smoothing param- 
eters. For example, in the context of kernel estimators, if we consider a smoothing param- 
eter of the form a(x) . h,, different choices of h, generate an entire class of functions Y, 
indexed by a function a ( . )  fo_r any given kernel.I3 We refer to the function y, as a score 
function. The stochastic term_b(x) is the bias term arising from estimation. For parametric 
cases, it often happens that b(x) =0. 

Fourth, we change the notion of the residual term being "small" from ~ , ( n - ' / ~ )  to 
the weaker condition (iv). We will demonstrate that this weaker condition is satisfied by 
some nonparametric estimators when the stronger condition ~ , (n - ' /~ )  is not. Condition 
(iii) is required to restrict the behaviour of the bias term. The bias term has to be reduced 
to a rate o(n-'I2) in order to properly centre expression (i) asymptotically. For the case 
of d-dimensional nonparametric model with p-times continuously differentiable functions, 
Stone (1982) proves that the optimal uniform rate of convergence of the nonparametric 
regression function with respect to mean square error is (n/log n)-P/(2p+4. His result implies 
that some undersmoothing, compared to this optimal rate, is required to achieve the 
desired rate of convergence in the bias term alone. Note that the higher the dimension of 
the estimand, the more adjustment in smoothing parameters to reduce bias is required. 

12. See Newey and McFadden (1994) p. 2142. 
13. See Ichimura (1996). 
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This is the price that one must pay to safeguard against possible misspecifications of g(t, p) 
or P(z).  It is straightforward to show that parametric estimators of a regression function 
are asymptotically linear under some mild regularity conditions. In the Appendix we 
establish that the local polynomial regression estimator of a regression function is also 
asymptotically linear. 

A_ typical estimator of a parametric r5gression function m(x; P) takes the form 
~ ( x ;p), where m is a known function and p is an asymptotically linear estimator, with 
P -P =n-' C:= yl(Xi, K )  + op(n-'I2). In this case, by a Taylor expansion, 

where p lies on a line segment between p and b. When E{yl(Xi, Yi)} =O and 
E{yl(Xi, Y,) yl(Xi, &)'I < co, under iid sampling, for example, n-'I2 I:=,yl(Xi, Yi) = 

0, (1) and plim,, ,P =P so that plim,,, 1 dm(x, p)/dp -dm(x, p)/dp 1 =op (1) if 
dm(x, p)/dp is Hijlder continuous at p.I4 

Under these regularity conditions 

The bias term of the parametric estimator m(x, p )  is &x) =0, under the conditions we 
have specified. The residual term satisfies the stronger condition that is maintained in the 
traditional definition of asymptotic linearity. 

(a) Asymptotic linearity of the kernel regression estimator 

We now establish that the more general kernel regression estimator for nonparametric 
functions is also asymptotically linear. Corollary 1 stated below is a consequence of a 
more general theorem proved in the Appendix for local polynomial regression models 
used in Heckman, Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd 
(1997). We present a specialized result here to simplify notation and focus on main ideas. 
To establish this result we first need to invoke the following assumptions. 

Assumption 1. Sampling of {Xi, K }  is i.i.d., Xi takes values in R~ and Y, in R, and 
Var (I.;:)< m. 

When a function is p-times continuously differentiable and its p-th derivative satisfies 
Holder's condition, we call the function p-smooth. Let m(x) =E{ Yi I Xi=x}. 

Assumption 2. m(x) is p-smooth, where p >d. 

14. A function is Holder continuous at X =xo with constant O <  a 5 1  if I rp(x, 0)- rp(xo,0))5C. Ilx -xoIla 
for some C>O for all x and 0 in the domain of the function cp(. , . ). Usually Holder continuity is defined for 
a function with no second argument 0. We assume that usual Holder continuity holds uniformly over 0 whenever 
there is an additional argument. 
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We also allow for stochastic bandwidths: 

Assumption 3. Bandwidth sequence a, satisfies plim,,, an/h, = a. >0 for some 
deterministic sequence {h,)  that satisfies nhf/log n+co and nh;j + c <  co for some c 2  0. 

This assumption implies 2p> d but a stronger condition is already imposed in Assump- 
tion 2.15 

Assumption 4. Kernel function K ( .  ) is symmetric, supported on a compact set, and 
is Lipschitz continuous. 

The assumption of compact support can be replaced by a stronger assumption on the 
distribution of Xi so that all relevant moments exist. Since we can always choose K ( . ) ,  
but we are usually not free to pick the distribution of Xi, we invcke compactness. 

In this paper we consider trimming functions based on Sand Sthat have th_e following 
s_tructure. Let fx ( x )  be the Lebesgue density of Xi, S =  { X E  R d ;  fX ( x )2go), and S =  { X E R ~ ;  

fx ( x )2go), where supxEs Ifx ( x )  -fx ( x )  I converges almost surely to zero, and fx ( x )  is p-
smooth. We also require that f x ( x )  has a continuous Lejesgue densityff in a neighbour- 
hood of go withff(qo) >0. We refer to these sets S and S as p-nice on S. The smoothness 
of f x ( x )  simplifies the analysis and hence helps to establish the equicontinuity results we 
utilize. 

Assumption 5 .  Trimming is p-nice on S. 

In order to control the bias of the kernel regression estimator, we need to make 
additional assumptions. Certain moments of the kernel function need to be 0, the under- 
lying Lebesgue density of Xi, fx (x) ,  needs to be smooth, and the point at which the 
function is estimated needs to be an interior point of the support of Xi. It is demonstrated 
in the Appendix that these assumptions are not necessary for P t h  order local polynomial 
regression estimator. 

Assumption 6 .  Kernel function K (  .) has moments of order 1 through p - 1 that are 
equal to zero. 

Assumption 7, fx ( x )  is p-smooth. 

Assumption 8. A point at which m ( . )  is being estimated is an interior point of the 
support of Xi. 

The following characterization of the bias is a consequence of Theorem 3 that is 
proved in the Appendix. 

Corollary 1. Under Assumptions 1-8, if K(u1, . . . ,ud)=k(u l ). ' . k(ud) where k( .) 
is a one dimensional kernel, the kernel regression estimator rito(x) of m(x)  is asymptotically 

15. Assumption 3 implies h, +0 and log n . h i p - d +  0. These two imply 2p>d.  Also notice that the assump- 
tion implies h, +0. 
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linear with trimming, where, writing E ~ =  Y,- E{Y, I Xi), and 

Our use of an independent product form for the kernel function simplifies the expression 
for the bias function. For a more general expression without this assumption see the 
Appendix. Corollary 1 differs from previous analyses in the way we characterize the 
residual term. 

(b) Extensions to the case of local polynomial regression 

In the Appendix, we consider the more general case in which the local polynomial regres- 
sion estimator for $(t, p) is asymptotically linear with trimming with a uniformly ccnsistent 
derivative. The latter property is useful because, as the next lemma shows, if both PLz) and 
g(t, p) are asymptotically linear, and if a$(t, p)/ap is uniformly consistent, then $(t, P(z)) is 
also asymptotically linear under some additional conditions. We also verify in the Appen- 
dix that these additional conditions are satisfied for the local polynomial regression 
estimators. 

Let p,(z) be a function thakis defined by a Taylor's expansion of $(t, &z)) in the 
neighbourhood of P(z), i.e. g(t, P(z)) =g(t, P(z)) +a$(t, p,(z))/ap . [&z) -P(z)]. 

Lemma 1. Suppose that : 

(i) Both &z) and $(t,p) are asymptotically linear with trimming where 

(ii) 	 a$(t, p)/ap and p(z) are uniformly consistent and converge to ag(t, p)/ap and 
P(z), respectively and ag(t, p)/ap is continuous; 

(iii) plim,, 	,n-'I2 I:=,ig( ~ i ,P(Zi)) =bg and 

plim,+,n-'I2 I:=,&(Ti, P(zi))/ap . bp (Ti, P(Zi)) =b, ; 


(iv) plim,,, n-'I2 I;=, -	 =0;[ a m ; . ,  p,(zi))/ap ag(z., p(zi)>/apl . &( z i >  
(v) plimn,, nP3I2EL, z=, -[&?(Ti, PT,( Z I ) ) / ~ P  &(Ti, P (z i ) ) / a~I  

. y,(D,, 2,; Zi)=o.  

then $(t, &z)) is also asymptotically linear where 

+ag(t, P(z))/ap . ynp(Dj, Zj ;211 +;(XI + i ( x ) ,  

and plim,,, n 1 I 2I;=, =;(xi) bg+bgp. 
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An important property of this expression which we exploit below is that the effect of 
the kernel function yl, (D,, Z, ;z) always enters multiplicatively with ag(t, P(z))/ap. Thus 
both the bias and variance of P(z) depend on the slope to g with respect to p. Condition 
(ii) excludes nearest-neighbour type matching estimators with a fixed number of neigh- 
bours. With conditions (ii)-(v), the proof of this lemma is just an application of Slutsky's 
theorem and hence the proof is omitted. 

In order to apply the theorem, however, we need to ve~ify the conditions. We sketch 
the main arguments for the case of parametric estimator P(z) of P(z) here and present 
proofs and discussion of the nonparametric case in the Appendix. 

Under the regularity conditions just presented, the bias function for a parametric 
i ( z )  is zero. Hence condition (iii) holds if $(t, p) is asymptotically linear and its _derivative 
is uniformly consistent for the true derivative. Condition (iv) also holds since I Rp (Z,) I = 

op (n-'I2) and the derivative of g(t, p) is uniformly consistent. Condition (v) can be verified 
by exploiting the particular form of score function obtained earlier. Observing that 
wp(Dj, z j ;  Zi)= k l ( z i )  . wp2(Dj, zj) ,  we obtain 

nP3l2I:=,I;=,[@(Ti, FT,(Zi))/ap-ag(Ti, P(Zi))/apI ' ylp (Dj, Zj ;Zi) 

so condition (v) follows from an application of the central limit theorem and the uniform 
consistency of the derivative of $(t, p). 

For the case of nonparametric estimators, yl, does not factor and the double summa- 
tion does not factor as it does in the case of parametric estimation. For this more general 
case, we apply the equicontinuity results obtained by Ichimura (1995) for general U-
statistics to verify the condition. We verify all the conditions for the local polynomial 
regression estimators in the Appendix. Since the derivative of $(t, p) needs to be defined 
we assume 

Lemma 1 implies that the asymptotic distribution theory of A can be obtained for 
those estimators based on asymptotically linear estimators with trimming for the general 
nonparametric (in P and g) case. Once this result is established, it can_be used with lemma 
1 to analyze the properties of two stage estimators of the form $(t, P(z)). 

(c) Theorem 2: The asymptotic distribution of the matching estimator under general 
conditions 

Theorem 2 enables us to produce the asymptotic distribution theory of a variety of estima- 
tors A of the treatment effect under different identifying assumptions. It also produces the 
asymptotic distribution theory for matching estimators based on different estimators of 
g(t,p) and P(z). In Sections 3 and 4, we presented various matching estimators for the 
mean effect of treatment on the treated invoking different identifying assumptions. An 
alternative to matching is the conventional index-sufficient selection estimators that can 
be used to construct estimators of E (YoID = 1,X), as described in our companion paper 
Heckman, Ichimura and Todd (1997) and in Heckman, Ichimura, Smith and Todd 
(1996a, 1998). Our analysis is sufficiently general to cover the distribution theory for that 
case as well provided an exclusion restriction or a distributional assumption is invoked. 



277 HECKMAN ET AL. MATCHING AS AN ESTIMATOR 

Denote the conditional expectation or variance given that X is in S by Es ( .  ) or 
Vars(.), respectively. Let the number of observations in sets Zo and Zl be No and N1, 
respectively, where N= No + N1 and that 0 < lim,,, N1/No= 8< CO. 

Theorem 2. Under the following conditions : 
(i) 	 {Yoi, Xi)iEh and {Yli, Xi)iEI, are independent and within each group they are i.i.d. 

and Yoi for iEZo and Yli for i€Z1 each has a finite second moment; 
(ii) The estimator f(x) of g(x) = E{ Yo, 1 Di= 1, Xi = x) is asymptotically linear with 

trimming, where 

and the score functions vdNoNI(Yd, X; X) for d=O and 1, the bias term &(x), and 
the trimming function satisfy : 

(ii-a) E { ~ ~ N ~ N ~ ( Y ~ ~ , X ~ ; X ) ( D ~ = ~ , X , D = ~ ) ) = Oford=Oand 1, and 
Var { v d ~ ~ ~ ~ (  =Ydi, Xi ; 6))o(N) for each i€Zo uZl ; 

(ii-b) plimNl+oo N;~" CiErlb(Xi)= b; 
(ii-c) plimN,+, Var {E[v0NONI( I YOi, Di= 0, Xi, D = 11 ID = 1) = Vo< coYOi, Xi ; X) 

plimN1+, Var { E [ ~ I N ~ N ~ ( Y I ~ ,  X ; ;X) I Yli, Di= 1, X;, D =  11 ID= 1) = VI< CO, 
and 
lim,, ,,E{[Yli -g(Xi)]Z(Xi~S) . 

E [ ~ I N ~ N ~ ( Y I ~ ,Xi; X)  ( Yli, Di=l,  Xi, D=1] ID= ~ ) = C O V ~  ; 
(ii-d) S an$ $ are p-nice on S, where p > d, where d is the number of regressors in X 

and f (x) is a kernel density estimator that uses a kernel function that satisfies 
Assumption 6 .  

Then under (A-1') the asymptotic distribution of 

is normal with mean (b/Pr (XE SI D = 1)) and asymptotic variance 

Proof. See the Appendix. 1 1  

Theorem 2 shows that the asymptotic variance consists of five components. The first 
two terms are the same as those previously presented in Theorem 1. The latter three terms 
are the contributions to variance that arise from estimating g(x) = E{Y;.(Di= 1, Xi=.}. 
The third and the fourth terms arise from using observations for which D = 1 to estimate 
g(x). If we use just observations for which D=O to estimate g(x), as in the case of the 
simple matching estimator, then these two terms do not appear and we only acquire the 
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fifth term.I6 We consider the more general case with all five terms. If No is much larger 
than N1, then the sampling variation contribution of the D =0 observations is small as 8 
is small. 

Condition (i) covers both random and choice-based sampling and enables us to avoid 
degeneracies and to apply a central limit theorem. Condition (ii) elaborates the asymptotic 
linearity condition for the estimator of g(x). We assume p-nice trimming. The additional 
condition on the trimming function is required to reduce the bias that arises in estimating 
the support. 

Note that there is no need for g(x) to be smooth. A smoothness condition on g(x) 
is used solely to establish asymptotic linearity of the estimator of g(x). Also note that the 
sampling theory above is obtained under mean independence 

Strong ignorability conditions given by (A-1), (A-2) or (A-3), while conventional in the 
matching literature, are not needed but they obviously imply these equalities. 

Theorem 2 can be combined with the egrlier results to obtain an asymptotic distribu- 
tion theory for estimators that use g(t, P(z)). One only needs to replace functions 
WON~N,(YO~, ,Xi; X) and the bias term by those obtained in Lemma 1. Xi; X) and WIN~N,(Y~, 

7. ANSWERS TO THE THREE QUESTIONS OF SECTION 1 AND MORE 

GENERAL QUESTIONS CONCERNING THE VALUE OF 


A PRIORI INFORMATION 


Armed with these results, we now investigate the three questions posed in the Section 1. 

(1) Is it better to match on P(X) or X ifyou know P(X)? 

Matching on X, Ax involves d-dimensional nonparametric regression function estimation 
whereas matching on P(X), Ap only involves one dimensional nonparametric regression 
function estimation. Thus from the perspective of bias, matching on P(X) is better in the 
sense that it allows fl-consistent estimation of (P-2) for a wider class of models than is 
possible if matching is performed directly on X. This is because estimation of higher- 
dimensional functions requires that the underlying functions be smoother for bias terms 
to converge to zero. If we specify parametric regression models, the distinction does not 
arise if the model is correctly specified. 

When we restrict consideration to models that permit fl-consistent estimation either 
by matching on P(X) or on X, the asymptotic variance of A, is not necessarily smaller 
than that of Ax. To see this, consider the case where we use a kernel regression for the 
D=O observations i.e. those with ieZo. In this case the score function 
~lNoNl(Yli,Xi; x)=O and 

where gi= Yoi-E{ Yoi I Xi, Di =0) and we write fx (x ID =0) for the Lebesgue density of Xi 
given Di= 0. (We use analogous expressions to denote various Lebesgue densities.) Clearly 
VI and Covl are zero in this case. Using the score function we can calculate Vo when we 
match on X. Denoting this variance by Vox, 

16. An earlier version of the paper assumed that only observations for which D=O are used to estimate 
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Vex= lim Var {E[WON~N,(YO~,Xi ,  X )  I Yoi, Di=O,Xi, D= l]ID= 1 )
No-m 

Now observe that conditioning on Xi and Yoi, .si is given, so that we may write the last 
expression as 

Now 

can be written in the following way, making the change of variable ( X i-X ) / a N o=w : 

K(w)I([Xi-aN0w]€S) f(xi-aNowID=1) 
dw. 

f  (Xi -aN0w ID =0 )  

Taking limits as No+co,and using assumptions 3, 4 and 7 ,  so we can take limits inside 
the integral 

since aNo+0 and j K ( w ) d w / j ~ ( u ) d u= 1 .  Thus, since we sample the Xi  for which Di =0 ,  

Var (Yoi lXi ,  Di=O) ~ ; ( x ~ ] D ~ =1 )
VOX=Es Pr {XieSIDi=O).  

Hence the asymptotic variance of Ax is, writing A= Pr { X e S I  D =O)/Pr ( X E S I  D = I ) ,  

P ~ ( X E S I D = ~ ) - ~ { V ~ ~ ~ [ E ~ ( Y ~ - Y O I X , D = ~ ) I D = ~ ] + E S [ V ~ ~ S ( Y ~ I X , D = ~ ) I D = ~ ]  


+A8Es [Var (YoIX ,  D = O )  ~ ~ ( x I D =~ ) / ~ ; ( x I D = o ) I D = o ] ) .  

Similarly for A P ,  VOP is 

~r ( x E s I D = ~ ) - ~ { v ~ ~ ~ [ E ~ ( Y ~ -YoIP(X),  D = l ) I D = l ]  

+Es [Vars (Y l  IP(X) ,  D= l ) I D =  11 

+A0Es [Var (YOI P ( X ) ,  D =0 )  


x~ ; ( P ( X ) [ D = 
~ ) / ~ ; ( P ( X ) I D = O ) I D = O ] } .  

The first two terms for both variance expressions are the same as those that appear in Vx 
and V p in Theorem 1 .  To see that one variance is not necessarily smaller than the other, 
consider the case where fx(X I D = 1 )  =f x (X  ID =0 )  and 8 = 1. Clearly in this case 
f,( P ( X )  ID = 1 )  =f,( P ( X )  ID =0) .  Propensity score matching has smaller variance if and 



280 REVIEW OF ECONOMIC STUDIES 

only if 

Since the inequality does not necessarily hold, the propensity score matching estimator in 
itself does not necessarily improve upon the variance of the regular matching e~timator. '"~ '~ 

(2) 	What are the efSects on asymptotic bias and variance if we use an estimated value of P? 

When P(x) is estimated nonparametrically, the smaller bias that arises from matching on 
the propensity score no longer holds true if estimation of P(x) is a d-dimensional non- 
parmetric estimation problem where d >  1. In addition, estimation of P(x) increases the 
asymptotic variance. Lemma 1 .informs us that the score, when we use estimated P(z) 
but no other conditioning variables, is 

for Z E & ,  d =  0, 1, where W~N,,N,~are the scores for estimating g(p) and ylNp is the score for 
estimating P(z). By assumption (ii-a) they are not correlated with dg(P(z))/dp. 
ryNp (Dl, ZJ ;z), and hence the variance of the sum of the scores is the sum of the variances 
of each score. So the variance increases by the variance contribution of the score 
dg(P(z))/dp . WNP (DJ, ZJ ;Z) when we use estimated, rather than known, P(z). Even with 
the additional term, however, matching on X does not necessarily dominate matching on 
P(X) because the additional term may be arbitrarily close to zero when dg(P(z))/dp is 
close to zero. 

(3) 	 What are the benefits, if any, of econometric separability and exclusion restrictions on 
the bias and variance of matching estimators? 

We first consider exclusion restrictions in the estimation of P(x). Again we derive the 
asymptotic variance formulae explicitly using a kernel regression estimator. Using Corol- 
lary 1, the score function for estimating P(x) is 

where uj= Dj- E{Dj IXi). Hence the variance contribution of estimation of P(z) without 
imposing exclusion restrictions is 

Vz= lim Var {E[dg(P(Z))/dp 
N- 03 

Analogously, we define the variance contribution of estimating P(z) imposing exclusion 
restrictions by VZZ. Observe that when Z is a subset of the variables in X, and when there 

17. For example E ~ ( Y I J X , D = I ) = E ~ ( Y ~ I X , D = I )  	 can hold. or E ~ ( Y I I X , D = I ) = - E ~ ( Y ~ I X , D = I )  
18. In a later analysis, Hahn (1996) considers a special case of the models considered in this paper and 

shows in a model with no exclusion restrictions that when P is not known, the estimated propensity score 
estimator is efficient and that knowledge of P improves efficiency. 
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are exclusion restrictions so P ( X )=P ( Z ) then one can show that V 2 Z 5  VZY.  Thus, exclu- 
sion restrictions in estimating P ( X ) reduce the asymptotic variance of the matching estima- 
tor-an intuitively obvious result. 

To show this first note that in this case Var ( DI X ) =Var ( D12).Thus 

a [ a g ( p ( 2 ) ) / a p l 2  fz) [ E p ( ~ ~ z 9lz)2-l]}~ E S{var ( D I . [ ' " ( z I D = ~ ) ] ,  ~ X ( X I Z )~ = l )  

Since the other variance terms are the same, imposing the exclusion restriction helps to 
reduce the asymptotic variance by reducing the estimation error due to estimating the 
propensity score. The same is true when we estimate the propensity score by a parametric 
method. It is straightforward to show that, holding all other things constant, the lower 
the dimension of 2,the less the variance in the matching estimator. Exclusion restrictions 
in T also reduce the asymptotic variance of the matching estimator. 

By the same argument, it follows that E { [f $(xI D = 1 ) / f i ( X I D =O ) ]  - 1 ID =0 )20. 
This implies that under homoskedasticity for Y o , the case f  ( X  I D = 1 )  =f  ( X  I D =0 ) yields 
the smallest variance. 

We next examine the consequences of imposing an additive separability restriction 
on the asymptotic distribution. We find that imposing additive separability does not neces- 
sarily lead to a gain in efficiency. This is so, even when the additively separable variables 
are independent. We describe this using the estimators studied by Tjostheim and Auestad 
(1994) and Linton and Nielsen (1995).19 

They consider estimation of g l ( X 1 ) ,g2(X2)in 

where x = ( x l,x2).There are no overlapping variables among X I  and X2. In our context, 
E( YIX =x )  =g( t )  +K(P(z ) )and E( YIX =x )  is the parameter of interest. In order to focus 
on the effect of imposing additive separability, we assume P(z)  to be known so that we 
write P for P ( 2 ) .  

Their estimation method first estimates E{ YI T =  t,  P  = p )  =g( t )  +K ( p )  non-para-
metrically, say by { YI T =  t,  P  = p ) ,  and then integrates l? { YI T =  t ,  P  = p )  over p using 
an estimated marginal distribution of P. Denote the estimator by g(t) .Then under additive 
separability, g( t )  consistently estimates g( t )+E { K ( P ) ) . Analogously one can integrate 
l? {YI T =  t,  P = p )  -g ( t )  over t using an estimated marginal distribution of T to obtain a 
consistent estimator of K ( p )-E { K ( P ) } .We add the estimators to obtain the estimator 
of E ( Y I X = x )  that imposes additive separability. The contribution of estimation of the 
regression function to asymptotic variance when T and P are independent and additive 

19. The derivative of E{Yl T= t , P = p )  with respect to p only depends on p if it is additively separable. 
Fan, Hardle and Mammen (1996) exploits this property in their estimation. Using this estimator does not lead 
to an improvement in efficiency, either. 
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separability is imposed, is Pr ( X E S I D =I ) - '  times 

When additive separability is not used, it is Pr ( X E S I D= I ) - '  times 

Note that the first expression is not necessarily smaller, since f ( P I D = 1 )  .f (TI D  = 1) can 
be small without both f ( P I D = 1 )  and f (TI D  = 1 )  being simultaneously small.21 

Imposing additive separability per se does not necessarily improve efficiency. This is 
in contrast to the case of exclusion restrictions where imposing them always improved 
efficiency. Whether there exists a method that improves efficiency by exploiting additive 
separability is not known to us. 

Note that when f ( P I D = 1 )  =f ( P I D =0 ) and f (TID = 1)=f (TI D  =0 ) both hold, the 
variance for the additively separable case and for the general case coincide. Under homo- 
skedasticity of Yo, the most efficient case arises when the distributions of ( T ,  P ( Z ) )  given 
D = 1 and ( T ,  P ( Z ) )  given D =0 coincide. In the additively separable case, only the mar- 
ginal distributions of P ( Z ) and T respectively have to coincide, but the basic result is the 
same." 

Note that nearest neighbour matching "automatically" imposes the restriction of 
balancing the distributions of the data whereas kernel matching does not. While our 
theorem does not justify the method of nearest neighbour matching, within a kernel 
matching framework we may be able to reweight the kernel to enforce the restrictions that 
the two distributions be the same. That is an open question which we will answer in our 
future research. Note that we clearly need to reweight so that the homoskedasticity condi- 
tion holds. 

8. SUMMARY AND CONCLUSION 

This paper examines matching as an econometric method for evaluating social pro- 
grammes. Matching is based on the assumption that conditioning on observables eliminates 
selective differences between programme participants and nonparticipants that are not 
correctly attributed to the programme being evaluated. 

We present a framework to justify matching methods that allows analysts to exploit 
exclusion restrictions and assumptions about additive separability. We then develop a 
sampling theory for kernel-based matching methods that allows the matching variables to 
be generated regressors produced from either parametric or nonparametric estimation 
methods. We show that the matching method based on the propensity score does not 

20. The derivation is straightforward but tedious. Use the asymptotic linear representation of the kernel 
regression estimator and then obtain the asymptotic linear expression using it. 

21. Let a(P)= f (PID= I)/f(P(D=O) and b(T) =f(TID= I)/ f(T(D=O) and define an interval H(T)= 
[[I -b(T)]/[l +b(T)], 11 when b(T) <1. If whenever b(T) > 1, a(P) > 1 and whenever b(T) <1, ~ ( P ) E  H(T)  
holds, imposing additive separability improves efficiency. On the other hand, if whenever b(T) > 1, a(P) <1 and 
whenever b(T) < 1, a(P) lies outside the interval H(T), then imposing additive separability using the available 
methods worsens efficiency even if the true model is additive. 

22. The expression above implies that the same can be said for the estimator that is constructed without 
imposing additive separability. However that result is an artifact of assuming independence of P (Z)  and T. 
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necessarily reduce the asymptotic bias or the variance of estimators of M ( S )  compared 
to traditional matching methods. 

The advantage of using the propensity score is simplicity in estimation. When we use 
the method of matching based on propensity scores, we can estimate treatment effects in 
two stages. First we build a model that describes the programme participation decision. 
Then we construct a model that describes outcomes. In this regard, matching mimics 
features of the conventional econometric approach to selection bias. (Heckman and Robb 
(1986) or Heckman, Ichimura, Smith and Todd (1998).) 

A useful extension of our analysis would consider the small sample properties of 
alternative estimators. In samples of the usual size in economics, cells will be small if 
matching is made on a high-dimensional X. This problem is less likely to arise when 
matching is on a single variable like P. This small sample virtue of propensity score 
matching is not captured by our large sample theory. Intuitively, it appears that the less 
data hungry propensity score method would be more efficient than a high dimensional 
matching method. 

Our sampling theory demonstrates the value of having the conditional distribution 
of the regressors the same for D =0 and D = 1. This point is to be distinguished from the 
requirement of a common support that is needed to justify the matching estimator. 
Whether a weighting scheme can be developed to improve the asymptotic variance remains 
to be investigated. 

APPENDIX 

In this Appendix we prove Corollary 1 by proving a more general result, Theorem 3 stated below, verify the 
conditions of Lemma 13, for the case of a local polynomial regression estimator, and prove Theorem 2. We first 
establish the property that local polynomial regression estimators are asymptotically linear with trimming. 

A. 1 .  Theorem 3 

Theorem 3 will show that local polynomial regression estimators are asymptotically linear with trimming. Lemma 
1 follows as a corollary. 

The local polynomial regression estimator of a function and its derivatives is based on an idea of approxim- 
ating the function at a point by a Taylor's series expansion and then estimating the coefficients using data in a 
neighbourhood of the point. In order to present the results, therefore, we first develop a compact notation to write 
a multivariate Taylor series expansion. Let x =  ( x l  , . . . ,x d ) and q =  ( q ,  , . . . ,q d ) eR~ where qJ ( j =  1, . . . ,d )  are 
nonnegative integers. Also let xq=xT1.. .x?/(q,! . . . q d ! ) .Note that we include ( q , !. . . q d ! )in the definition. This 
enables us to study the derivative of xq without introducing new notation; for example, 8xq/8xl = x q  where q= 
( 4 ,- 1, . . . ,q d ) , if q12 1 and 0 otherwise. When the sum of the elements of q is s ,  xq corresponds to a Taylor 
series polynomial associated with the term 8 m ( x ) / ( 8 x 1 1. . . 8 x 9 ) .  In order to consider all polynomials that 
correspond to s-th order derivatives we next define a vector whose elements are themselves distinct vectors of 
nonnegative integers whose elements sum to s. We denote this row vector by Q ( s ) = ( ( q l , .. . ,q d ) ) , , + . .+,,=,; 
that is Q(s) is a row vector of length ( s + d -  l ) ! / [ s ! ( d -  l ) ! ]  whose typical element is a row vector ( q ,,. . . ,q,) ,  
which has arguments that sum to s. For concreteness we assume that { ( q , ,. . . ,q d ) } are ordered according to 
the magnitude of xJd=,1 O d - I q j  from largest to smallest. We define a row vector xQ'"'= (x(qL,.. . ,qd)),, +... + , ,=,. This 
row vector corresponds to the polynomial terms of degree s. Let xQp= (xQ's ' ) , , jo , l , , , , , p i .  This row vector represents 
the whole polynomial up to degree p from lowest to the highest. 

Also let m'"'(x) for s z  l denote a row vector whose typical element is 8 m ( x ) / ( d x l L . .. 8 x y )  where 
ql+ . . . + q d = s  and the elements are ordered in the same way { ( q ,, . . . ,qd)} are ordered. We also write rn'O'(x)= 

m ( x ) .Let P,*(xo)= (m'O'(xo),. . . ,mb'(xo))'.In this notation, Taylor's expansion of m ( x ) at xo to orderp without 
the remainder term can now be written as ( x - ~ ~ ) ~ ~ P p * ( x ~ ) .  

We now define the local polynomial regression estimator with a global smoothing parameter ah,, where 
a e [ a o-6, a .  + 61 for some a .  >O and a o >  6 >O. We denote d = [ a o -  6 ,  a .  + 6 1. Let Kh(s)= ( a h , ) - d ~ ( s / ( a h , ) )  
and KhO(s)= K(s / (aoh , ) ) ,and let P = ( P b ,. . . ,Pb)',where is conformable withm")(xo),for t = 0 , . . . , p .  
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Also let Y= ( Y l, . . . , Y,)', W ( x o )  = diag (Kh ( X I  -XO),. . . ,Kh (Xn -xO)),and 

Then the local polynomial regression estimator is defined as the solution to 

min C:= I (X i -XO) ,[Yc -  (X, -x~)~pPl 'Kh 
P 

or, more compactly 

fiP(xo)= arg min ( Y - X ,  (xo)P)'  W(xo)(  Y - X ,  (xO)P) .  
P 

Clearly the estimator equals [Xb ( xo )  W(xO)Xp ( x0 ) ] - ' x ;  (x,) W(xo )  Y when the inverse exists. When p = 0, the 
estimator is the kernel regression estimator and whenp = 1 the estimator is the local linear regression estimator.23 

Let H =  diag (l,(ah,)-'ld, .:. , (ah,)-Pzb+d-I ) ! / b ! ( d - where I ,  denotes a row vector of size s with 1 in 
all arguments. Then P, ( xo )= ( ~ - ] - H ' X ~ ( X ~ )  n-I H ' X ; ( X ~ )  H [M,, X ) I ~ ~ W (xo )  Y ,  where Mp,(xo)= W(xO)Xp(xo)H. 

Note that by Taylor's expansion of order B p  at = + r,(X,, xo),  wherexo,m(X , )  ( X ,  - ~ ~ ) ~ p p * ( x ~ )  
( X ,  ~ ~ ) ~ @ ) [ m ~ ) ( 2 ~ )rp ( X i ,  x0) = - -mV'(xo)]and 2, lies on a line between X,  and xo.  Write 

m = ( m ( X l ) ,. . . ,m(X,))', r, ( X O )= (rp ( X I  ,XO),. . . ,rD ( X n ,  XO)) ' ,  and E = , . . . , E,)' 

Let Mp,(xo)be the square matrix of size [(q+d-  l ) ! / q !  ( d -  I ) ! ]  denoting the expectation of ~ , , , ( x ~ ) ,  
where the s-th row, t-th column "block" of M,,(xO) matrix is, for O s s ,  t s p ,  

Let lim,,, Mp,(xo)= Mc. f (x,,)~+:. Note that M, only_depends o_n K ( .) when xOis an interior point of the 
support of X.Also write I,=I { X , E S )and I,=I { X , E S ) ,  I, =I { x O ~ S }  We prove the following and I, = I  { x O € S ) .  
theorem. 

Theorem 3. Suppose Assumptions 1-4 hold. If M, is non-singular, then the local polynomial regression 
estimator of order p,mp ( x ) ,  satisfies 

[&( X O )-m(xO)]&= n-I I;= K$ (xi-xO)lO+ b^(xo)+ k ( x O ) ,  

where b^(xo) = o(h{), n-'I2 x:=,I?(x,) =o,(l), and 

K;i*h (X , -XO)  = ( l , 0 , . . . , 0 )  . [Mp,(xo)l-l . [ ( ( ~ , - x o ) / ( a o h , ) ) ~ ~ ] ' ~ h o ( ~ i - x o ) .  

Furthermore, suppose that Assumptions 5-7 hold. Then the local polynomial regression estimator of order 
0 s p  <p,h,( x ) ,  satisjies 

[h,( X O )  - = E,  K ~ * ~  xO)IO + I?(xO),m(xo)lio n-I C;= ( (XI- + b^(xO) 

where 

and n-'12 C:=, I?(x,) = o,(l). 

Fan (1993),Ruppert and Wand (1994),and Masry (1995)prove pointwise or uniform convergence prop- 
erty of the estimator. As for any other nonparametric estimator the convergence rate in this sense is slower than 
n-'I2-rate. We prove that the averaged pointwise residuals converges to zero faster than n-'I2-rate. 

We only specify that M, is nonsingular because one can find different conditions on K(.)to guarantee it. 
For example, assuming that K ( u l ,. . . , ud)=k ( u l ). . . k(ud) ,if s2"k(s)ds> 0, then M, is nonsingular. 

23. Ruppert and Wand (1994) develop multivariate version of the local linear estimator. Masry (1995) 
develops multivariate general order local polynomial regression. 
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To prove the theorem, note first that Y=m + E =X, (xo)Pi (xO) +r, (XI, x0) + E. We wish to consider the 
situation where the order of polynomial terms included, p, is less than the underlying smoothness of the regression 
function, p. For this purpose let X, (xo) =[X, (x,), x, (xo)] and partition Prf conformably: Prf(xo)= 

[P,* (xo)', Drf (xO)']', thus note that 

[bp (XO) -Pf (x0)170 wMpn( x o ) l - ' n ' ~ ' ~ I .  W(xo)E . TO ('4-3)= (XO) 

+H [M,, (xo)]-'n-'H'Xb (xo) w(xo)& (xo)pi  (xo) . jo (B-3) 

Note that if we use a p-th order polynomial when m(x) is p-th order continuously differentiable, that is p=p,  
the second term (B-3) is zero. 

Denote the first element of b(xo) by tGp(xo). We establish asymptotic linearity of tGP(xO) and uniform 
consistency of its derivative. Lemma 2 shows that the first term (A-3) determines the asymptotic distribution, 
Lemma 7 shows that the second term (B-3) determines the bias term, and the right hand side of 8 shows that 
the third term (C-3) is of sufficiently small order to be negligible. Together, these lemmas prove the theorem. 

Lemma 2 (Term (A-3)). Under the assumptions of Theorem 3, the right-hand side of 

(A-3) =el . [M, , (X~) ] -~~- 'H 'X~  . Io+ kI(xO), (xO) W(X~)E  

where e l = ( l ,  0 , .  . . , 0 )  and n-1'2~:=l kI(xi )=oP(l ) .  

Proof. We first define neighbourhoods of functions el . [~ , , (x)] - ' , f~(x) ,  I (xeS) ,  and point a o .  We 
denote them by I-,, A?,$,and d,respectively, where 

for some small E~ >0, 2= {f (x) ;supxes I f  (x) -fX(x) I $ E,} for some small E, >0, 

Y = { I ( X E ~ ) ;  s"={x; f(x)2qo} for somef(x)EA?(x)), 

and d = [ao- 6,, a. +6,], where 0 <6, <a. .24 

Using the neighbourhoods we next define a class of functions QI, as follows: 

where it is indexed by a row vector-valued function y, (x) e r n ,  a ed,which is also implicit in Kh ( .), and an 
indicator function 4 ~ 9 .  Let yd(X,) =el  . [M,,(X~)]-', ?,(XI) =e l  . [M,,(x,)]-I, 

and 

where _we denote KhO (XI -X,) = (ao hJdK((Xi- Xj)/(aoh,)) and kh(x, -xj)  = (&ha)-*K((x,- x,)/(&h,,)). Then 
since R1(xo) =&(E,,  X,, xo) - g n O ( ~ i r  Xi, x0), the result follows if two conditions are met: (1) equicontinuity of 
the process C:=, C:=, gn(ci,  Xi, Xj) over 91,in a neighbourhood of gno(.sir Xi, X,) and (2) that, with probability 
approaching 1, &(E;, Xi, XI) lies within the neighbourhood over which we establish equicontinuity. We use the 
9'-norm to examine (1). We verify both of these two conditions in turn. 

We verify the equicontinuity condition (1) using a lemma in Ichimura (1995).*' We first define some 
notation in order to state his lemma. For r =  1 and 2, let X rdenote the r-fold product space of $c R* and 
define a class of functions 9,defined over 3'.For any yl,eY,, write w,,~, as a short hand for either yl,(x,) 
or yl, (xi,, xi,), where il # i2. We define U, yl, =C.' Iyln,i,, where 1,'I denotes the summation over all permutations 
of r elements of {xl , . . . ,x,} for r = 1 or 2. Then U, yl, is called a U-process over yl,,eY,. For r = 2  we assume 
that yl,(Xi, XI)= yl,(X,, X,). Note that a normalizing constant is included as a part of Y ,~ .  A U-process is 

24. Note that a calculation using change of variables and the Lebesgue dominated convergence theorem 
shows that on S, [M,,(x)]-' converges to a nonsingular matrix which only depends of K(.)  times [I/f(x)lP+'. 
Hence, on S, each element of [M,,(x)]-' is uniformly bounded. Thus use of the sup-norm is justified. 

25. The result extends Nolan and Pollard (1987), Pollard (1990), Arcones and Cine (1993). and Sherman 
(1994) by considering U-statistics of general order r 2 1 under inid sampling, allowing d to depend on n.When 
3 depends on n, we need to assume condition (ii) in the lemma below as noted by Pollard (1990) when r =  I .  
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called degenerate if all conditional expectations given other elements are zero. When r =  1, this condition is 
defined so that E(yl,) =0. 

We assume that Y,cdp2(8'), where Y2(8 ' )  denotes the Y2-space defined over X' using the product 
measure of 8 ,  8'.We denote the covering number using dp2-norm, II.112, by Nz(E, 8 ,  

Lemma 3 (Equicontinuity). Let {X,}y=l be an iid sequence of random variables generated by 8.For a 
degenerate U-process { U,, yl,) over a separable class offunctions Y, cdp2(8') suppose the following assumptions 
hold (let I I  yl, 112 = [Xi, E{ wn,;,} ; 

(i) There 	 exists an F,E~P~(B') such that for any yl,~Y,, 1 yl,l <F, such that lim sup,,, 
c;,E{F;,;, ) < ; 

(ii) For each E>O, lim,,, xi E{F~,,, l{F,,;,> E) )  =O; 
(iii) There exists ;1(E) and E YOsuch that for each E 1 0  less than 2, 

and Ji[log ;l( ~ ) ] " ~ d x< w. Then for any E > 0,there exists 6 > 0 such that 

lim Pr { sup / U, (yl~, - yl2,) I > E}= 0. 
n-, l l v ~ , - v ~ l l ~ S S  

Following the literature we call a function Fn,i,an envelope function of 9, if for any y l , ~ 9 , ,  yl,,i,~Fn,i,holds. 
In order to apply the lemma to the process I:=,C:=, gn(&;, Xi, X,) over Q1, in a neighbourhood of 

gnO(~irXi, XI), we first split the processinto two parts; the process Xi,g,,(~i, Xi, X,)=Ci,g;(~i, Xi, E,, X,), where 

and the process I:=,gn(&;, Xi, Xi). Note that g , , (~ , ,  Xi, X,)=n-3'2, yn(Xi). e', . 8;. (ahJdK(0) . I; is a order 
one process and has mean zero, hence it is a degenerate process. On the other hand g ; (~ i ,  XI, E,, X,) is a order 
two process and not degenerate, although it has mean zero and is symmetric. Instead of studying 
g:(~,, Xi, &,,XI) we study a sum of degenerate U-processes following Hoeffding (1961).~' Write Zi= 
( ~ i , X i ) ,  4,(Zi)=E{g:(Zi, z ) IZ, )=E {g:(z, Z,)IZi), and 

Then 

where &(Z,, 4)and 2 .  (n- 1) . 4,(Zi) are degenerate U-processes. Hence we study the three degenerate U- 
processes: 2: (z,, Z,), 2 . (n - 1) . (Z,), and g,, (E,, X,, Xi), by verifying the three conditions stated in the 
equicontinuity lemma. 

We start by verifying conditions (i) and (ii). An envelope function for g ,O(~, ,  Z,) can be constructed by 
the sum of envelope functions for g , , (~ , ,  X,, Xi) and g , ( ~ , ,  Xi, X,). Similarly an envelope function for 
g : ( ~ , ,  Z,) can be constructed by the sum of envelope functions for g:(zi, Z,) and 2 .  4,(Zi). Thus we only 
need to construct envelope functions that satisfy conditions (i) and (ii) for g , ( ~ ; ,  Xi, Xi), gn(&,, XI, XI), and 
2 . n . 4,(Zi). 

Let I ) = l {fx (X,) 2_qo - for some qo > 2cf> 0. Since SUPXES I f (x) -fX (x) I2 ~ ~ )  Ssf, I ) 2 5.holds for any 
1 ~ 9 .Also for any neighbourhood of [M,,(x)]-' defined by the sup-norm, there exists a C > 0  such that 
IIMpn(x)]-' 1 S C  SO that I ~ , ( E , ,  Xi, Xi) I ~ n - ~ " .C. I sil . [(ao- 6 , )h , ] -d~(~)  . I )  and the second moment of 
the right hand side times n is uniformly bounded over n since the second moment of is finite and nht-t w. 
Hence condition (i) holds. Condition (ii) holds by an application of Lebesgue dominated convergence theorem 
since nht + w. 

26. For each E>O, the covering number N,(E, 8 , 9 )  is the smallest value of m for which there exist 
functions g, , . . . ,g, (not necessarily in 9 )  such that min, [E{l f-gjlr) '''1 5E for each f in 9 .  If such m does 
not exist then set the number to be w. When the sup-norm is used to measure the distance in calculating the 
covering number, we write N,(E, g). 

27. See also Serfling (1980). 
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Note that any element of [ [ ( X , - X , ) / ( ~ ~ , ) ] ~ ~ ] ' K ~ ( X ~ - ~ , )bounded by C I .  [(ao-6,)h,]-d is 
I { IIXi- X, 1 1  <Cz . h, } for some Cl and C2. Thus 

Therefore, analogous to the previous derivation, conditions (i) and (ii) hold for g,(&,, Xi, XI). 
Note further that since the density of x is bounded on S by some constant, say, C3>0, I Xi)I $I#J,(E~, 

n-3/Z. I  &,I. C .  CI . C3 and hence 2 .  n . I#J,(E~, I . C .  CI . C3 that satis- I Xi)I has an envelope function n-'l22. 
fies the two conditions. 

To verify condition (iii), first note the following. Write Jh(Xi-X,) = [[(X,-Xj)/(ah,)]Qp]'~h (Xi -X,) and 
JhO(Xi-X,) = Using this notation [ [ (x~-x , ) / (~o~ , ) ]~~] 'K~o(x~-x , ) .  

For g, ( E ~ ,  XI, Xi) the right hand side is bounded by some C >  0, 

Since nht+ m, the Zz-covering number for the class of functions denoted by g,(&,, X,, Xi) for g n ~ Q l ,  can be 
bounded above by the product of the covering numbers of T,,d,and 9.Since it is the log of the covering 
number that needs to be integrable, if each of three spaces satisfy condition (iii), then this class will also. Clearly 
d satisfies condition (iii). To see that T, and 4 do also, we use the following result by Kolmogorov and 
Tihomirov (1961).28 First they define a class of functions for which the upper bound of the covering number is 
obtained. 

Dejinition 2. A function in Y(K) has smoothness q>  0, where q = p  + a with integer p and 0 < a $1, if 
for any XEK and x + h ~ K ,  we have 

where Bk(h, x) is a homogenous form of degree k in h and IRv(h, x)l $Cllhllq, where Cis  a constant. 

Let Y $ ( c ) = { ~ E Y ( K ) :  IRv(h, x)I $Cllhllq}. 
If a function defined on K is p-times continuously differentiable and the p-th derivative satisfies Holder 

continuity with the exponent 0 < a  $1, then a Taylor expansion shows that the function belongs to Yf (C) for 
some C, where q = p  + a .  

Lemma 4 (K-T). For every set A cY ~ ( c ) ,  where K c  R ~ ,  we have, for 0 <d, q < m, 

for some constant L(d, q, C, K) > 0. 

Hence, because d/q < 1, condition (iii) holds for T, and 4.Analogously we can verify condition (iii) for 
the remaining U-processes. Hence all three processes are equicontinuous. 

The remaining task is to verify that & ( E , ,  X,, X,) lies in the neighbourhood of g,O(&,, X,, X,) over which 
we showed equicontinuity. By the inequality in Lemma 3 (L-3), this follows from Assumptions 3 and 5, and by 
verifying that almost surely 

where lim,,, infXes det (M,, (x)) > o . ' ~  The latter follows directly from the nonsingularity of matrix M,, and the 
trimming rule. Hence the following lemma completes the proof. 

28. See pp. 308-314. Kolmogorov and Tihomirov present their result using the concept of packing number 
instead of covering number. 

29. Recall from the discussion of Theorem 3 that &,(x) depends on the parameter a. 
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Lemma 5. Under the assumptions of Theorem 3, almost surely, 

Proof. Note that any element of the matrix difference MP,( x )-Mp,(x) has the form 


n-' C:=][(ahn)-dG((~i -xo) / (ah , ) )  I,
-E{(ahn)-dG((~i-xo)/(ahn))J 


where in the notation introduced in Section A.l  the kernel function G(s )=sq .  srK(s) for some vectors q and r 
whose elements are integers and they sum to p or less, where q and r depend on the element of M being 
examined. To construct a proof, we use the following lemma of Pollard (1984).~O 

Lemma 6 (Pollard). For each n, let Y ,  be a separable class offunctions whose covering numbers satisfy 

sup N I ( & ,8,Y , , ) < A E - ~  for O<E< 1 
9. 


with constants A and W not depending on n. Let { 5 , ) be a non-increasing sequence ofpositive numbersfor which 
lim,,, n i t  5,2/logn = m. I f  I yll5 1 and (E{y12) )'I2 5 [,for each yl in Y , ,  then, almost surely, 

sup In-' C:=, [ ~ ( x i ) - ~ { ~ ( ~ t ) ) l l / ( i ~ 5 n ) + 0 .  
Y" 

To use this lemma, we need to calculate N I ( & ,8,Y,).Let CI2 s u p s s ~G(s ) ,  C2 is a Lipschit2 constant for 
G, and C3 is a number greater than the radius of a set that includes the support of G. In our application, recall 
from our proof of Theorem 3 that d=[ao-  S,, ao+ S,], where O<6, <a,, so that 

E {  la;dG((x-xol)/(alhn))-a;dG((x-xoz)/(a2h.))I ) 

1 1  a;d- . E{ I G ( ( x - x o l ) / ( a ~  h,))l) + a y d .  E{ I G ( ( x - x o l ) / ( a l  h,))-G((x-xo2)/(azh,))I  ) 

51 a;d- a;dl . C I  

+(a0 -6 . ) -~ .  [C2. (1 -a d a d  . [ ( a ~ +Sa)/(ao-Sa)l  . C3) . E+ Cz .  11x01 -xozII/(ao-Sa)l. 

The upper bound of the right hand side does not depend on 8.Moreover, the right hand side can be made less 
than E . C for some C >  0 by choosing I a I -a zI 5 E and I xol-xo2I 5 E. Since S and d are both bounded subsets 
of a finite dimensional Euclidean space, the uniform covering number condition holds. To complete the proof 
of Lemma 5, note that we are free to choose 5, = 1 and in= C . h:12 in our application of the lemma. 1 1  

Next we examine the second term (B-3). 

Lemma 7 (Term (3-3)). Under the assumptions of Theorem 3 

(B-3)=b^(xo)+~ ~ ( x ~ ) ,  

where 

& X O )  = ( a d ,Y el . [Mp  (xo)l-' x 

n-I" I:= &(Xi)  =op(1), and k2(xo)  is defined as the dflerence between Term (B-3) and b, (xo).  

Proof. Note that 


(B-3) =el . [MP,( x o ) ] - ' n - ' ~ ' X ~  ( X O )  . i~
( X O )  w ( x o ) , ~ ~ ( x o ) ~ ~  

=el . [MP,(xo)]-'~ ~ = , + ,n-I C:= I ~ ~ ) ~ ~ " ) m ~ " ) ( x o ) ~ h[ [ ( ~ ~ - x ~ ) / ( a h , ) l ~ ~ l ~ ( ~ ~ - (Xi-x0) . TO 

=el . [MPpn x:=p+( X O ) I - I  I ,-I x:=l[ [ [ ( ~ i - x o ) / ( ~ ~ ~ ) l ~ ~ l ~ ( ~ ~ - ~ o ) ~ ~ ~ ~ ~ h ( ~ ~ - x o )  

-E {[[(x, X O ) ~ ' " K ~  (L-7A)-x0)/(ah,)lQp]'(Xi- (Xi -  xo) Ixo) ]m'"'(x0) . jo 

+el . [k,(xo)]-'C:=,+, )?{[[(Xi- xo ) / (ahn ) lQp] ' (~ , -  (Xi-  x0) I X O } ~ ( ~ ' ( X O )X ~ ) ~ ( " ) K ~  . 70. (L-7B) 

30. His lemma only requires that 9,is a permissible class of functions. In our applications 9,is always 
separable. His Example 38, pp. 35-36, gives a similar result. We provide a proof here for completeness and for 
later reference. 
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Define terp (L-7A) as kzl(xo). We apply the same method as in Lemma 2 to show that 
n- l / 2  " I , = 1  Rzl (Xj)=op(l). Instead of QI,, define the class of functions Q2, as follows: 

where it is indexed by a row vector-valued function y , (x)~T, ,  a € & ,  which is also implicit in Kh(.) ,  and an 
indicator function &EX. Let 

gno (X;, x,) = K 3 l 2. y,o(Xj) . I,,. [[(x, -x,)/(~o~.)]~P] '(x,-  x~)~(~)~(~)(x,)K,,(x,-x~) 

and 

To prove that term (L-7B) equals b^(xo) +o(h{) we use the assumption that all the moments of K(. ) of order 
p +  1 and higher up to p have mean zero, that xo is an interior point of the support of x that is more than 
(ao+ 6)h, C interior to the closest edge of the support, where C is the radius of the support of K(.) ,  and the 
assumption that the density of x is p-times continuously differentiable and its p-th derivative satisfies a Holder 
condition. Using a change of variable calculation and the Lebesgue dominated convergence theorem, and Lemma 
5 the result follows. 11 

Note that this term converges to zero with the specified rate only if xo is an interior point. Thus for kernel 
regression estimators for higher dimensions, we need to introduce a special trimming method to guarantee this. 
Use of higher order local polynomial regression alleviates the problem for higher dimensional problems, but at 
the price of requiring more data locally. 

Lemma 8 (Term (C-3)). Under the assumptions of Theorem 3, 

Proof. Recall that the third term equals el . [ M ~ , ( X ~ ) ] - ' ~ - ~ H ' X ~ ( X ~ )  . io.  Note that ~ ( x ~ ) r , ( x ~ )  

where the inequality follows from the Holder condition on mG)(xo) and the compact support condition on K(.) ,  
and the last equality follows from the same reasoning used to prove Lemma 5. The conclusion follows from 
Lemma 5 and the assumption of nonsingularity of M,(xo). 1 1  

Lemmas 2-8 verify Theorem 3. Corollary 1 in the text follows as a special case for p=0.  

A.3. Verifying the assumptions of Lemma 1 

Five assumptions_in Lemma 1 are as follows: 
(i) Both P(z) and g(t,p) are asymptotically linear with trimming where 

(ii) ag(t,p)/ap and P(z) converge uniformly to ag(t,p)/ap and P(z), respectively, and that ag(t,p)/ap is 
continuous for all t_and p ;  

(iii) plim,,, n-'12 I:=,b, (Ti, X,) =b, and plim,,, n-'IZ I:=,ag(Ti, P(Z,))/ap . ip(T,, P(Z,)) =bZp; 

(iv) ~lim,+,n-'/~ C:=, [ag(T,, Pr,(z,))/ap -ag(T,, p(z,))/apl.  k p ( z i )  =o ;  
(v) plim,-, n-'12 I:=, [ag(T,, PT,(zZ))/ap-ag(T,, P (Z~) ) I~PI  I:=, . ylnp(DJr z,; z,)=o. 

We verify these assumptions for the local polynomial regression estimator. Condition (i) is just a conse- 
quence of Theorem 3. We next show that the derivative of the local polynomial regression estimator converges 
uniformly to the derivative of the limit of the local polynomial regression estimator. 
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Theorem 4. I f  Assumptions 1-4, and 8 hold, then @(t, p) /ap is uniformly consistent for ag(t, p) /ap.  

Proof For convenience we +op the subscripts p, j7,and the argument xo of XP(xO), j p ( x O ) ,  p: ( x O ) ,and 
W(xo)here so that X =X p  (xO) ,  p =pp (.xO),P * =p: (xO) ,and_W =  W(xo).  Also denote the derivative with respect 
to the first argument of xo by V . Note that X ' W Y = X ' W X P .  Hence by the chain rule, 

v j = (XI w x ) - l { v ( x l w )  Y - [ v ( x l  W X ) ] ~ }  

= (x' w x ) - ' { V ( X I W )  - [V(X '  W x ) ] ( x ' w x ) - ' X ' w }  Y 

=(x'wx)-'{V(XIW)-[vx'WX)](X'WX)-'x'w}(xP*+~+
8). 


Since 

we obtain 

v j = - ( X I  w x , - l ( x l  w v x , p *  

+ ( x ' w x ) - ' { ~ ( X ' W )  - [v (x 'wx)] (x 'wx) - ' x 'w}~  

+ (x1wx)-'{~(X' W)- [ ~ ( x 'W X ) ] ( X '  w x ) - ' x '  W }&. 

Note that for s L  1, 

V ( x-X0)QtS)= ( V ( x-~~)(91 , . . .~9d) )~~+ +qd=s  

= ( ( X - X ~ ) ( ~ ~ '  2,9d)l(ql - + 9 d = 5 - ~  

= [ ( ( x  x0)(9~~...,9")ql. . + qd=s- 1 ,0, . . . ,01,- + 

where the second equality follows from our convention on the order of the elements. 
Thus 

X =  (I ( x - ~ 0 ) ~ " '  ( x - ~ o ) Q ' ~ '  . . . ( x - ~ o ) ~ ( ~ ) )  

V X = - ( 0  1 0 . . . 0 ( ~ - x o ) ~ ( ' )  . . . 0 . . . 0 . . . 0) .0 ( . ~ - x ~ ) ~ ' ~ - ' )  

Note that each column of V X  is either a column of X or the column with all elements being 0.  Hence there 
exists a matrix J such that V X =  -XJ, where J is a matrix that selects appropriate column of X or the zero 
column. Without being more specific about the exact form of J we can see that 
- (x'wx)-'(x' W V X ) ~ *=JP*, and also that 

(x' wx)-'{~(X' W)- [v(x' W X ) ] ( X '  w x ) - ' x '  W }  


= ( x l w x ) - ' { ( v x ' )  W + X 1 ( V W )  


- ( V X ' )  W X ( X 1  w x ) - ' x l  w - X ' ( V  w)x(x'wx)-'x'w-x'w(vx)(x'wx)-'xxW }  

= ( x ' w x ) - I { - J 'X 'W+X' (V  W )  

+J~X'W-x~(vw)x(x'wx)-'x~w+x~wx~(x~wx)-'x~w) 
= (x '  WX)- ' {x ' (v  W )  - [x'(v w)x] (x '  WX)- 'x '  W }+ 

Next, to simplify the last expression, we use some specific properties of matrix J. The key properties of J we 
use are that all elements of the first column are 0 and that the first element of the second column of J is 1 .  That 
is, the first column of AJ is always the 0-vector, regardless of A and the second column of AJ is the first column 
of A. Since the first column is chosen by J exactly once, the preceding observations also imply that the first row 
of J is e2 , where e2= (0, 1,0, . . . , 0 )  if p 21 and 0,  if p =0. Therefore 
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where el . Jp* =Vm(x). That the remaining two terms converge uniformly to zero can be shown analogously as 
in Lemma 5. /I 

Condition (iii) of Lemma 1 clearly holds under an i.i.d. assumption given the bias function defined in 
Theorem 3. In order to verify condition (iv) of the lemma recall the definition of the residual terms and use the 
same equicontinuity argument as in the proof of Theorem 3. 

Finally condition (v) can be verified by invoking the equicontinuity lemma. This is where the additional 
smoothness condition is required. 

Armed with these results, we finally turn to the proof of key Theorem 2. 

A.3. Proof of Theorem 2 

Note first that, writing ~ = I ( x ~ E $ ,  

We first consider the numerator and then turn to the denominator of the expression. Note that the numerator 
of the right-hand side of (T-1) is the sum of three terms (TR-I)-(TR-3): writing g, (x) =Es (Yl ID= 1, X=x) ,  

Terms (TR-1) and (TR-2) are analogous to terms we examined in Theorem 1. Term (TR-3) is the additional 
term that arises from estimating g(x). However, the first two terms from Theorem 1 have to be modified to 
allow for the trimming function introduced to control the impact of the estimation error of &x). 

Central limit theorems do not apply directly to the sums in (TR-1) and (TR-2) because the trimming 
function depends on all data and this creates correlation across all i. Instead, writing Ii=I(X,€S), we show that 
these terms can be written as 

and 

respectively. One can use the equicontinuity lemma and our assumption of p-nice trimming to show the result 
for term (TR-1). The same method does not apply for term (TR-2), however. This is because when we take an 
indicator function from 4, where x #  I,, then 

It is necessary to recenter this expression to adjust for the bias that arises from using 5. 
In order to achieve this we observe that, writing As(Xi) = [gl(X,) -g(X,)] -Es (YI - YO ID= l), 

+N , A X )  [6(xi)]-l k-fw[j(xi)-f  (xi)l~{?(xi) > f  (xi)] ( .,xi, 1 

where $(Xi) = I ](xi) -f(X,)I, R-(s)= 1 if -1js <0 and 0 otherwise, and k+(s) = 1 if 0 S s <  1 and 0 otherwise. 
Since f(Xi)= CjeI0K((XJ-Xi)/an), the latter two terms can be expressed as double sums. We then 
apply an equicontinuity argument to the expressions 
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and 

and control the bias by p-smoothness off (X,). 
Finally, term (TR-3) can be written as the sum of three terms 

N; ' /~N- '  Ci,I,~,,Io I N N ( O ~ ~ ~ ) (TR-3-1)~ ~ ' ~0 V O ~ ~ ~ ~ ~ I N ~ N ~ ( ~ O / , X / ; ~ ~ ) ~~ ~ ~ ~ ~ 

N T " ~ZieIlig(xi), (TR-3-2) 

and 

N;"~ LEI, (TR-3-3)kg(xi) .  

Terms (TR-3-2) and (TR3-3) are op(l)  by the definition of asymptotic linearity of g(X,). Term (TR-3-1) is a 
U-statistic and a central limit theorem can be obtained for it using the lemmas of Hoeffding (1948) and Powell, 
Stock, and Stoker (1989) and a two-sample extension of the projection lemma as in Serfling (1980). We first 
present the Hoeffding, Powell, Stock, and Stoker result. 

Lemma 9 (H-P-S-S). Suppose {Z, }:= is i.i.d., U, yl, = (n . (n - I))-' Xi, yl, (Z,, Z,), where yl, (Z,, ZJ) = 

~ ~ ( z j , Z i )  E{v,(Z,,Z~)}=O, and kyln=n- 'C:=,2 ,p , (Z, ) ,  where p , ( Z i ) = E { y l , ( Z i , Z , ) I Z , } .  I fand 
E{ yl.(Z,, 4)')=o(n), then nE[(U, yl,- 6,ylJ21=o(l) .  

We also make use of the results of Serfling (1980). 

Lemma 10 (Serfling). Suppose {ZO,~}~,~,  and {ZI,,},,I, are independent and within each group they are i.i.d., 
~ a o , n , w , , n l = ( n ~. nl1-I CjEllylno,nl(ZO,, ZIJ),  and E{ yl,,,, (Zoi, ZI,)} =O,and 

cao,nl CjsI1Plno,nl (ZI,), where for k=O, 1, pkno,n, (Zoi, Zli) lzki}. '+'no,nl=nol C,,r,~ono.nl (Zoi)+n;I (Zk,) = E { Y ~ ~ , ~ ,  
I f  0 <limn,, q/no = q < w, where n=  no +nl  and =o(no) +o(nl), E{yl,,,,, (Zoi, z ~ , ) ~ }  then 
nE[(Un,.n, W"0,"l -U",,", yl"o,"l)21 =o(l) .  

In order to apply the lemmas to term (TR-3-I), note that it can be written as 

N ; ~ / ~  CJEIl,j+i (YIJ, Xj; XI) (TR-3-la)CIEIl VIN,N, 

+ N ; ~ / ~ C ~ ~ ~  (TR-3-1 b) V I I N ~ N ~ ( Y I ~ ~ X , ; X , )  

+ N ; ' / ~  N;' CiErI (YO/, x,; x i ) .  (TR-3-lc)I,,,'YON~N, 

Term (TR-3-la) can be rewritten as N Cis,, C,,,, ,,+i yl?NoNl( YI,, X, ;X, ; Y1, X, ;X,) where 

VI?N~NI(YIJ~X/;X~;Y l i r ~ i ~ ~ j ) = [ ~ ~ ~ O N I ( ~ l j ~ ~ j ~ ~ ~ ) + ~ I N O N I ( ~ l i ~ ~ i ; X j ) ] / ~ ~  


Thus by Lemma 9 and assumption (ii-a), term (TR-3-la) is asymptotically equivalent to 

N;"~ ClsrlE { V I I N ~ N ~  (Yli, x i ;  XJ) 1 Ylir Xi}. 

By assumption (ii-a), term (TR-3-lb) is o,(l). By Lemma 10 and assumption (ii-a), term (TR-3-lc) is asymptoti- 
cally equivalent to 

N l / 2  - 1  
I No YoJ,XJ}.~ J E , o E { ~ ~ ~ O ~ I ( Y ~ , , X J ; X ~ ) I  


Hence putting these three results together, term (TR-3-1) is asymptotically equivalent to 

Collecting all these results, we have established the asymptotic normality of the numerator. 
We next examine the denominator of (T-1). Note that N;' CIEIlI,=N;' CIEIlIi+NT1CiEIl(7,-Ii). The 

first term on the right-hand side converges in probability to E(I) by the law of large numbers. To see that the 
second term is op(l), note that N;' IC,,,,(I,-Ii)I SN;' CrErIIIi-IiI.The Markov inequality implies for any 
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E >  0, Pr { N ; '  xi,,, 17,-I,I> E} sE{I Fi- I~ I} /E .Hence assumption (ii-d) implies that the second term is o,(l). 
This result, in conjunction with our result for the denominator, proves Theorem 2. 1 1  
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