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We use white males age 22 to 36 from National Longitudinal Survey of the Youth - 1979 (NLSY/1979)

and National Longitudinal Sample of the Young Men - 1966 (NLS/1966)1. In the original NLSY/1979 sample

there are 3379 white males. We impose the following sample restrictions in this order. From the original

population, we drop the 1153 individuals who are in an oversample of poor people, who are in the military

sample, or who die in the survey period. We discard 212 individuals because parental education is missing.

We restrict the NLSY/1979 sample to white males with a high school or college degree. We define high school

graduates as individuals who have a high school degree or have completed 12 grades and do not report

ever attending college. We define participation in college as having a college degree or having completed

at least 16 years in school. These rules produce a sample of 1,360 individuals.

Tuition at age 17 is average tuition in colleges in the county of residence at 17. If there is no college in

the county, average tuition in the state is used instead. For details on the construction of this variable see

Cameron and Heckman (2001).

In 1980, NLSY/1979 respondents were administered a battery of ten achievement tests referred to as

the Armed Forces Vocational Aptitude Battery (ASVAB) (see Cawley, Conneely, Heckman, and Vytlacil,

1997, for a complete description of these tests). The math and verbal components of the ASVAB can be

aggregated into the Armed Forces Qualification Test (AFQT) scores.2 Many studies have used the overall

AFQT score as a regressor, arguing that this is a measure of scholastic ability. We argue that AFQT is an

imperfect proxy for scholastic ability because of measurement error. Accounting for measurement error in

test scores has a substantial effect on our estimates. We also avoid a potential aggregation bias by using the

cognitive components of the ASVAB as a separate measure of ability. In our empirical work, we use five

components of the ASVAB test battery: arithmetic reasoning, word knowledge, paragraph comprehension,

math knowledge and coding speed.

We use annual labor earnings in our analysis. We extract this variable from the NLSY/1979 reported

annual earnings from wages and salary. Earnings (in thousands of dollars) are discounted to 2000 using the

Consumer Price Index reported by the Bureau of Labor Statistics. Missing values for this variable occur for

two reasons: first, because respondents do not report earnings for wages/salary; and second, because the

NLSY becomes a biannual survey after 1994 and this prevents us from observing respondents when they

reach certain ages. For example, because the NLSY/1979 was not conducted in 1995, we do not observe

individuals born in 1964 when they are 31 years old.

In the original NLS/1966 sample there are 3734 white males who are born between 1942 and 1952. We

drop 316 individuals who die or are dropped from the sample in the survey period. We also drop 627

1For a description of the NLSY/1979 see Miller (2004). For a description of the NLS/1966 see the questionaries and codebook
supplement available at http://www.nlsinfo.org/ordering/display db.php3

2Implemented in 1950, the AFQT score is used by the army to screen applicants.
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individuals missing information on parental education. We only keep the white males who are high-school

or college graduates, according to the definition given for NLSY/1979. This results in a sample size of 1872

individuals from NLS/66 .

The construction of variables in both data sets is comparable except for the construction of region of

residence at age 14 (reported in NLSY/1979, but not in NLS/1966) and the tests of aptitude. To generate

Southern residence at age 14 for the NLS sample, we proceed as follows. First, everyone who is born in 1952

and lives in the South in 1966 is assigned South14 = 1 (others are assigned the value 0). These are the only

people we can establish residence in the South region at age 14 without making any assumptions. Second,

we look at the location of the last high school that the respondents attended. Third, we look for people who

live in the South in 1966 and report that they were born in the same Census division as they live in 1966.

We assign South14 = 1 if South1966 = 1 and the person was born in the same division that he now lives. If a

person does not live in the South in 1966 and was born in the same division that he lives then he is assigned

South14 = 0. The assumption is made that a person who lives in the same division as she was born in did

not grow up in a different region of the country. Fourth, for all remaining respondents we assign the value

South14 = 0 (respectively South14 = 1) if South1966 = 0 (respectively South1966 = 1) and the year of birth

is 1948 or later. Summary statistics for both samples are presented in Tables I-1 and I-2.

In the NLS/1966 there are many different achievement tests. We use the two most commonly reported

ones: the OTIS/BETA/GAMMA and the California Test of Mental Maturity (CTMM). One problem in the

NLS/1966 sample is that there are no respondents for whom we observe scores on two (or more) achievement

tests. That is, for each respondent we observe at most one test score. Test scores are standardized on a

common scale. We supplement the information from these test scores by using other proxies for cognitive

achievement. These are the tests on ”Knowledge of the World of Work”. There are three different tests.

The first is a question regarding occupation: the respondent is asked about the duties of a given profession,

say draftsman. For this specific example, there are three possible answers: (a) makes scale drawings of

products or equipment for engineering or manufacturing purposes, (b) mixes and serves drinks in a bar

or tavern, (c) pushes or pulls a cart in a factory or warehouse. The second test asks the respondent to

provide the level of education associated with each occupation in the first test. The third test is an earnings

comparison test. Specifically, it asks the respondent who he/she believes makes more in a year, given two

distinct occupations. In Table I-3 we show that even after controlling for parental education, number of

siblings, family income in 1966, urban residence at age 14, Southern residence at age 14, and dummies for

year of birth, the ”Knowledge of the World of Work” test scores are correlated with the cognitive test scores.

The correlation with OTIS/BETA/GAMMA and CTMM is stronger for the occupation and education tests

than for the earnings-comparison test.
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Web Data Appendix Table I-1
Summary Statistics – NLSY/79

Earnings in Ten Thousand Dollars CPI-adjusted (base year 2000)
Variable

Observations Mean Standard Error Observations Mean Standard Error
Mother's Education 873 3.8522 1.2087 487 5.1417 1.5324
Father's Education 873 3.8958 1.5112 487 5.7207 1.8526
Family Income in 1979 873 1.9871 1.0928 487 2.6511 1.5744
Number of Siblings 873 3.1123 1.9527 487 2.4682 1.6785
South Residence at age 14 873 0.2314 0.4220 487 0.2423 0.4289
Urban Residence at age 14 873 0.6850 0.4648 487 0.8029 0.3982
Local Tuition at 4-year college2 873 0.2207 0.0851 487 0.2075 0.0772
Enrolled at School at ASVAB Test Date 845 0.4414 0.4969 481 0.9252 0.2634
Age at ASVAB Test Date 873 19.4479 2.1957 487 19.3265 2.2375
Highest Grade Completed at ASVAB Test Date 845 11.0686 1.2534 481 12.0395 2.1939
ASVAB - Arithmetic Reasoning3 822 0.3557 0.8994 472 1.3030 0.7218
ASVAB - Word Knowledge3 822 0.2894 0.7704 472 0.9775 0.4106
ASVAB - Paragraph Composition3 822 0.1663 0.8438 472 0.8867 0.4275
ASVAB - Coding Speed3 822 0.0037 0.8187 472 0.6195 0.7469
ASVAB - Math Knowledge3 822 0.0625 0.8197 472 1.4034 0.7034
1The sample consists of white males born between 1957 and 1964 who are high school or college graduates
2In ten thousand dollars. The tuition figures are inflation-adjusted using the CPI. The base year is 2000. 
3Not available for PSID respondents. 

Web Data Appendix Table 1
Summary Statistics - NLSY/79

High School Sample College Sample
Earnings in Ten Thousand Dollars CPI-adjusted (base year 2000)

10



Web Data Appendix Table I-2
Summary Statistics – Pooled NLS/1966 and PSID1

Variable
Observations Mean Standard Error Observations Mean Standard Error

Mother's Education 1089 3.2617 1.1681 783 4.4074 1.5988
Father's Education 1089 3.0248 1.3781 783 4.5045 1.8962
Family Income in 1966 1089 6.9275 1.8853 783 8.1507 1.7534
Number of Siblings 1089 3.0781 2.1715 783 2.3078 1.7609
South Residence at age 14 1085 0.3005 0.4587 781 0.2676 0.4430
Urban Residence at age 14 1089 0.6630 0.4729 783 0.7995 0.4006
Local Tuition at 4-year college2 1089 0.1592 0.0189 783 0.1578 0.0192
Otis/Beta/Gamma Test3 226 -0.4235 0.7907 167 0.7500 0.7525
California Test of Mental Maturity3 164 -0.3170 0.8868 98 0.6843 0.7958
Work Knowledge, Occupations3 1070 0.0766 0.8111 776 0.6366 0.7632
Work Knowledge, Education3 1075 0.0815 0.8365 778 0.5993 0.7556
Work Knowledge, Earnings Comparison3 1082 0.0058 0.9422 781 0.3833 0.9342

2In ten thousand dollars. The tuition figures are inflation-adjusted using the CPI. The base year is 2000. 
3Not available for PSID respondents. 

College

Web Data Appendix Table 2
Summary Statistics - Pooled NLS/1966 and PSID1

1The sample consists of white males born between 1942 and 1952 who are high school or college graduates

High School
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Web Data Appendix Table I-3
Raw Correlation of Test Scores from NLS/19661

Otis/Beta/Gamma 
Test

California Test of 
Mental Maturity

Work Knowledge, 
Occupations

Work Knowledge, 
Education and 

Occupation

Work Knowledge, 
Earnings 

Comparison
Otis/Beta/Gamma Test 1.0000 N/A2 0.4064 0.4149 0.0752
California Test of Mental Maturity N/A2 1.0000 0.2719 0.2586 0.0848
Work Knowledge, Occupations 0.4064 0.2719 1.0000 0.9358 0.4244
Work Knowledge, Education 0.4149 0.2586 0.9358 1.0000 0.0782
Work Knowledge, Earnings Comparison 0.0752 0.0848 0.4244 0.0782 1.0000
1We control for mother's and father's education, family income in 1966, south residency at age 14, urban residency at age 14, and birth dummies.
2Individuals report either Otis/Beta/Gamma or the California Test of Mental Maturity, but not both.

Web Data Appendix Table 3
Raw Correlation of Test Scores from NLS/19661
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Web Supplement II

Properties of the Model
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Web Data Appendix Table II-1
Normalizations on Factor Loadings

NLSY/79 and NLS/66

Age
Loading on 

Factor 1
Loading on 

Factor 2
Loading on 

Factor 3
Loading on 

Factor 1
Loading on 

Factor 2
Loading on 

Factor 3
22 1.00 0.00 0.00
23 0.00 0.00
24 1.00
25
26
27
28
29
30
31
32
33
34
35
36

1The empty cells correspond to factor loadings that are estimated, not normalized. 

Web Supplement Appendix Table 1A
Normalizations on Factor Loadings

High School Earnings Equations College Earnings Equations
NLSY/79 and NLS/66
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Web Data Appendix Table II-2
χ2 Goodness of Fit Test∗

Period χ2 statistic Critical Value χ2 statistic Critical Value χ2 statistic Critical Value χ2 statistic Critical Value
22 20.1081 28.8693 11.3674 15.5073 57.6139 37.6525 17.0958 16.9190
23 31.2115 31.4104 18.6951 21.0261 47.3941 38.8851 36.2178 21.0261
24 45.3552 35.1725 29.9623 26.2962 39.5717 40.1133 71.0567 22.3620
25 29.8860 33.9244 19.8444 26.2962 33.4427 38.8851 50.3284 24.9958
26 25.9980 31.4104 17.9291 26.2962 39.9348 41.3371 24.4273 24.9958
27 47.5875 31.4104 22.8861 26.2962 30.9588 41.3371 23.2935 24.9958
28 19.7162 27.5871 16.2158 23.6848 28.1225 40.1133 23.2251 24.9958
29 33.3359 26.2962 60.8435 23.6848 23.7535 40.1133 24.5953 24.9958
30 21.4356 26.2962 24.7761 23.6848 33.6092 37.6525 12.6124 22.3620
31 20.6412 22.3620 32.1826 21.0261 19.7494 37.6525 18.7615 21.0261
32 18.7421 19.6751 16.7482 16.9190 12.2899 31.4104 11.9100 19.6751
33 14.6120 18.3070 15.9341 16.9190 22.5333 31.4104 14.3782 18.3070
34 9.1826 12.5916 12.0096 14.0671 22.1509 27.5871 11.6416 16.9190
35 8.2744 9.4877 4.3654 9.4877 14.3759 27.5871 32.9993 15.5073
36 3.2788 7.8147 0.7022 7.8147 12.2162 22.3620 6.1417 12.5916

College

Web Suplement Appendix Table 2

* 95% Confidence, equiprobable bins with aprox. 25 people per bin. A χ2 statistic lower than the critical value indicates a "good" fit.

χ2 Goodness of Fit Test*

High School College
selaM etihW - 9791/YSLNselaM etihW - 66/YSLN

High School
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Web Data Appendix Figure II-1.1
Densities of earnings at age 22 Overall Sample NLSY/79

Let Y denote earnings at age 22 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.2
Densities of earnings at age 23 Overall Sample NLSY/79

Let Y denote earnings at age 23 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.3
Densities of earnings at age 24 Overall Sample NLSY/79

Let Y denote earnings at age 24 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.4
Densities of earnings at age 25 Overall Sample NLSY/79

Let Y denote earnings at age 25 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.5
Densities of earnings at age 26 Overall Sample NLSY/79

Let Y denote earnings at age 26 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.6
Densities of earnings at age 27 Overall Sample NLSY/79

Let Y denote earnings at age 27 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.7
Densities of earnings at age 28 Overall Sample NLSY/79

Let Y denote earnings at age 28 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.8
Densities of earnings at age 29 Overall Sample NLSY/79

Let Y denote earnings at age 29 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.9
Densities of earnings at age 30 Overall Sample NLSY/79

Let Y denote earnings at age 30 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.10
Densities of earnings at age 31 Overall Sample NLSY/79

Let Y denote earnings at age 31 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.11
Densities of earnings at age 32 Overall Sample NLSY/79

Let Y denote earnings at age 32 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.12
Densities of earnings at age 33 Overall Sample NLSY/79

Let Y denote earnings at age 33 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.13
Densities of earnings at age 34 Overall Sample NLSY/79

Let Y denote earnings at age 34 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.14
Densities of earnings at age 35 Overall Sample NLSY/79

Let Y denote earnings at age 35 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.15
Densities of earnings at age 36 Overall Sample NLSY/79

Let Y denote earnings at age 36 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.16
Densities of earnings at age 22 Overall Sample NLS/66

Let Y denote earnings at age 22 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.17
Densities of earnings at age 23 Overall Sample NLS/66

Let Y denote earnings at age 23 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Web Supplement Appendix Figure 1.17
Densities of earnings at age 23 Overall Sample NLS/66

Ten Thousand Dollars

 

 
Fitted
Actual

32



Web Data Appendix Figure II-1.18
Densities of earnings at age 24 Overall Sample NLS/66

Let Y denote earnings at age 24 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.19
Densities of earnings at age 25 Overall Sample NLS/66

Let Y denote earnings at age 25 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.20
Densities of earnings at age 26 Overall Sample NLS/66

Let Y denote earnings at age 26 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.21
Densities of earnings at age 27 Overall Sample NLS/66

Let Y denote earnings at age 27 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.22
Densities of earnings at age 28 Overall Sample NLS/66

Let Y denote earnings at age 28 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.23
Densities of earnings at age 29 Overall Sample NLS/66

Let Y denote earnings at age 29 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Web Supplement Appendix Figure 1.23
Densities of earnings at age 29 Overall Sample NLS/66

Ten Thousand Dollars

 

 
Fitted
Actual

38



Web Data Appendix Figure II-1.24
Densities of earnings at age 30 Overall Sample NLS/66

Let Y denote earnings at age 30 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.25
Densities of earnings at age 31 Overall Sample NLS/66

Let Y denote earnings at age 31 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.26
Densities of earnings at age 32 Overall Sample NLS/66

Let Y denote earnings at age 32 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.27
Densities of earnings at age 33 Overall Sample NLS/66

Let Y denote earnings at age 33 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.28
Densities of earnings at age 34 Overall Sample NLS/66

Let Y denote earnings at age 34 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.29
Densities of earnings at age 35 Overall Sample NLS/66

Let Y denote earnings at age 35 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-1.30
Densities of earnings at age 36 Overall Sample NLS/66

Let Y denote earnings at age 36 in the overall sample.
Here we plot the density functions f(y) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 36 Overall Sample NLS/66

Ten Thousand Dollars

 

 
Fitted
Actual

45



Web Data Appendix Figure II-2.1
Densities of earnings at age 22 High School Sample NLSY/79

Let Y0 denote earnings at age 22.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y0 denote earnings at age 22.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.2
Densities of earnings at age 23 High School Sample NLSY/79

Let Y0 denote earnings at age 23.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 23 High School Sample NLSY/79
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Let Y0 denote earnings at age 23.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.3
Densities of earnings at age 24 High School Sample NLSY/79

Let Y0 denote earnings at age 24.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 24 High School Sample NLSY/79
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Let Y0 denote earnings at age 24.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.4
Densities of earnings at age 25 High School Sample NLSY/79

Let Y0 denote earnings at age 25.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 25 High School Sample NLSY/79
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Let Y0 denote earnings at age 25.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.5
Densities of earnings at age 26 High School Sample NLSY/79

Let Y0 denote earnings at age 26.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 26 High School Sample NLSY/79
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Let Y0 denote earnings at age 26.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.6
Densities of earnings at age 27 High School Sample NLSY/79

Let Y0 denote earnings at age 27.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y0 denote earnings at age 27.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.7
Densities of earnings at age 28 High School Sample NLSY/79

Let Y0 denote earnings at age 28.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 28 High School Sample NLSY/79
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Let Y0 denote earnings at age 28.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.8
Densities of earnings at age 29 High School Sample NLSY/79

Let Y0 denote earnings at age 29.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Supplement Appendix Figure 2.8
Densities of earnings at age 29 High School Sample NLSY/79
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Let Y0 denote earnings at age 29.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

53



Web Data Appendix Figure II-2.9
Densities of earnings at age 30 High School Sample NLSY/79

Let Y0 denote earnings at age 30.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Supplement Appendix Figure 2.9
Densities of earnings at age 30 High School Sample NLSY/79
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Let Y0 denote earnings at age 30.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.10
Densities of earnings at age 31 High School Sample NLSY/79

Let Y0 denote earnings at age 31.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 31 High School Sample NLSY/79

Ten Thousand Dollars

 

 
Fitted
Actual

Let Y0 denote earnings at age 31.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.11
Densities of earnings at age 32 High School Sample NLSY/79

Let Y0 denote earnings at age 32.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 32 High School Sample NLSY/79
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Let Y0 denote earnings at age 32.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.12
Densities of earnings at age 33 High School Sample NLSY/79

Let Y0 denote earnings at age 33.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 33 High School Sample NLSY/79
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Let Y0 denote earnings at age 33.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.13
Densities of earnings at age 34 High School Sample NLSY/79

Let Y0 denote earnings at age 34.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 34 High School Sample NLSY/79
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Let Y0 denote earnings at age 34.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.14
Densities of earnings at age 35 High School Sample NLSY/79

Let Y0 denote earnings at age 35.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 35 High School Sample NLSY/79
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Let Y0 denote earnings at age 35.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.15
Densities of earnings at age 36 High School Sample NLSY/79

Let Y0 denote earnings at age 36.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 36 High School Sample NLSY/79
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Let Y0 denote earnings at age 36.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.16
Densities of earnings at age 22 High School Sample NLS/66

Let Y0 denote earnings at age 22.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 22 High School Sample NLS/66
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Let Y0 denote earnings at age 22.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.17
Densities of earnings at age 23 High School Sample NLS/66

Let Y0 denote earnings at age 23.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 23 High School Sample NLS/66

Ten Thousand Dollars

 

 
Fitted
Actual

Let Y0 denote earnings at age 23.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.18
Densities of earnings at age 24 High School Sample NLS/66

Let Y0 denote earnings at age 24.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 24 High School Sample NLS/66
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Let Y0 denote earnings at age 24.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.19
Densities of earnings at age 25 High School Sample NLS/66

Let Y0 denote earnings at age 25.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 25 High School Sample NLS/66
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Let Y0 denote earnings at age 25.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

64



Web Data Appendix Figure II-2.20
Densities of earnings at age 26 High School Sample NLS/66

Let Y0 denote earnings at age 26.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 26 High School Sample NLS/66
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Let Y0 denote earnings at age 26.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.21
Densities of earnings at age 27 High School Sample NLS/66

Let Y0 denote earnings at age 27.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 27 High School Sample NLS/66
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Let Y0 denote earnings at age 27.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.22
Densities of earnings at age 28 High School Sample NLS/66

Let Y0 denote earnings at age 28.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 28 High School Sample NLS/66
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Let Y0 denote earnings at age 28.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.23
Densities of earnings at age 29 High School Sample NLS/66

Let Y0 denote earnings at age 29.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 29 High School Sample NLS/66
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Let Y0 denote earnings at age 29.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.24
Densities of earnings at age 30 High School Sample NLS/66

Let Y0 denote earnings at age 30.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 30 High School Sample NLS/66
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Let Y0 denote earnings at age 30.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

69



Web Data Appendix Figure II-2.25
Densities of earnings at age 31 High School Sample NLS/66

Let Y0 denote earnings at age 31.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 31 High School Sample NLS/66
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Let Y0 denote earnings at age 31.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.26
Densities of earnings at age 32 High School Sample NLS/66

Let Y0 denote earnings at age 32.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 32 High School Sample NLS/66
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Let Y0 denote earnings at age 32.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.27
Densities of earnings at age 33 High School Sample NLS/66

Let Y0 denote earnings at age 33.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 33 High School Sample NLS/66
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Let Y0 denote earnings at age 33.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.28
Densities of earnings at age 34 High School Sample NLS/66

Let Y0 denote earnings at age 34.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 34 High School Sample NLS/66
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Let Y0 denote earnings at age 34.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-2.29
Densities of earnings at age 35 High School Sample NLS/66

Let Y0 denote earnings at age 35.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 35 High School Sample NLS/66
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Let Y0 denote earnings at age 35.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

74



Web Data Appendix Figure II-2.30
Densities of earnings at age 36 High School Sample NLS/66

Let Y0 denote earnings at age 36.
Here we plot the density functions f(y0|S=0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 36 High School Sample NLS/66
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Let Y0 denote earnings at age 36.
Here we plot the density functions f(y0 | S = 0) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.1
Densities of earnings at age 22 College Sample NLSY/79

Let Y1 denote earnings at age 22.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 22 College Sample NLSY/79
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Let Y1 denote earnings at age 22.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.2
Densities of earnings at age 23 College Sample NLSY/79

Let Y1 denote earnings at age 23.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 23 College Sample NLSY/79
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Let Y1 denote earnings at age 23.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.3
Densities of earnings at age 24 College Sample NLSY/79

Let Y1 denote earnings at age 24.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 24 College Sample NLSY/79
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Let Y1 denote earnings at age 24.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.4
Densities of earnings at age 25 College Sample NLSY/79

Let Y1 denote earnings at age 25.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Web Supplement Appendix Figure 3.4
Densities of earnings at age 25 College Sample NLSY/79
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Let Y1 denote earnings at age 25.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.5
Densities of earnings at age 26 College Sample NLSY/79

Let Y1 denote earnings at age 26.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 26 College Sample NLSY/79
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Let Y1 denote earnings at age 26.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.6
Densities of earnings at age 27 College Sample NLSY/79

Let Y1 denote earnings at age 27.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 27 College Sample NLSY/79
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Let Y1 denote earnings at age 27.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.7
Densities of earnings at age 28 College Sample NLSY/79

Let Y1 denote earnings at age 28.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 28 College Sample NLSY/79
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Let Y1 denote earnings at age 28.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.8
Densities of earnings at age 29 College Sample NLSY/79

Let Y1 denote earnings at age 29.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 29 College Sample NLSY/79
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Let Y1 denote earnings at age 29.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.9
Densities of earnings at age 30 College Sample NLSY/79

Let Y1 denote earnings at age 30.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 30 College Sample NLSY/79
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Let Y1 denote earnings at age 30.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.10
Densities of earnings at age 31 College Sample NLSY/79

Let Y1 denote earnings at age 31.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 31 College Sample NLSY/79
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Let Y1 denote earnings at age 31.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.11
Densities of earnings at age 32 College Sample NLSY/79

Let Y1 denote earnings at age 32.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 32 College Sample NLSY/79
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Let Y1 denote earnings at age 32.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.12
Densities of earnings at age 33 College Sample NLSY/79

Let Y1 denote earnings at age 33.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Web Supplement Appendix Figure 3.12
Densities of earnings at age 33 College Sample NLSY/79
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Let Y1 denote earnings at age 33.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.13
Densities of earnings at age 34 College Sample NLSY/79

Let Y1 denote earnings at age 34.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y1 denote earnings at age 34.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.14
Densities of earnings at age 35 College Sample NLSY/79

Let Y1 denote earnings at age 35.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y1 denote earnings at age 35.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.15
Densities of earnings at age 36 College Sample NLSY/79

Let Y1 denote earnings at age 36.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 36 College Sample NLSY/79
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Let Y1 denote earnings at age 36.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.16
Densities of earnings at age 22 College Sample NLS/66

Let Y1 denote earnings at age 22.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 22 College Sample NLS/66
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Let Y1 denote earnings at age 22.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.17
Densities of earnings at age 23 College Sample NLS/66

Let Y1 denote earnings at age 23.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 23 College Sample NLS/66
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Let Y1 denote earnings at age 23.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.18
Densities of earnings at age 24 College Sample NLS/66

Let Y1 denote earnings at age 24.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 24 College Sample NLS/66
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Let Y1 denote earnings at age 24.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.19
Densities of earnings at age 25 College Sample NLS/66

Let Y1 denote earnings at age 25.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 25 College Sample NLS/66
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Let Y1 denote earnings at age 25.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.20
Densities of earnings at age 26 College Sample NLS/66

Let Y1 denote earnings at age 26.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 26 College Sample NLS/66
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Let Y1 denote earnings at age 26.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.21
Densities of earnings at age 27 College Sample NLS/66

Let Y1 denote earnings at age 27.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 27 College Sample NLS/66
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Let Y1 denote earnings at age 27.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.22
Densities of earnings at age 28 College Sample NLS/66

Let Y1 denote earnings at age 28.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 28 College Sample NLS/66
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Let Y1 denote earnings at age 28.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.23
Densities of earnings at age 29 College Sample NLS/66

Let Y1 denote earnings at age 29.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 29 College Sample NLS/66
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Let Y1 denote earnings at age 29.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.24
Densities of earnings at age 30 College Sample NLS/66

Let Y1 denote earnings at age 30.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 30 College Sample NLS/66
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Let Y1 denote earnings at age 30.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.25
Densities of earnings at age 31 College Sample NLS/66

Let Y1 denote earnings at age 31.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 31 College Sample NLS/66
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Let Y1 denote earnings at age 31.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.26
Densities of earnings at age 32 College Sample NLS/66

Let Y1 denote earnings at age 32.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y1 denote earnings at age 32.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.27
Densities of earnings at age 33 College Sample NLS/66

Let Y1 denote earnings at age 33.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 33 College Sample NLS/66
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Let Y1 denote earnings at age 33.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.28
Densities of earnings at age 34 College Sample NLS/66

Let Y1 denote earnings at age 34.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 24 College Sample NLS/66
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Let Y1 denote earnings at age 34.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).

103



Web Data Appendix Figure II-3.29
Densities of earnings at age 35 College Sample NLS/66

Let Y1 denote earnings at age 35.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Let Y1 denote earnings at age 35.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-3.30
Densities of earnings at age 36 College Sample NLS/66

Let Y1 denote earnings at age 36.
Here we plot the density functions f(y1|S=1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Densities of earnings at age 36 College Sample NLS/66
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Let Y1 denote earnings at age 36.
Here we plot the density functions f(y1 | S = 1) generated from the data (the solid curve), against that
predicted by the model (the dashed line).
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Web Data Appendix Figure II-4.1
Densities of present value of earnings High School Sample NLSY/79

Present value of earnings from age 22 to 41 for High School Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y0|S=0) (the solid curve), against the counterfactual
density function f(y1|S=0) (the dashed line).  We use kernel density estimation to smooth these functions.
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Densities of present value of earnings High School Sample NLSY/79
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Present value of earnings from age 22 to 36 for High School Graduates discounted using an interest rate of
5%. Here we plot the factual density function f(y0|S = 0) (the solid curve), against the counterfactual density
function f(y1|S = 0) (the dashed line). We use kernel density estimation to smooth these functions.
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Web Data Appendix Figure II-4.2
Densities of present value of earnings College Sample NLSY/79

Present value of earnings from age 22 to 41 for College Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y1|S=1) (the solid curve), against the counterfactual
density function f(y0|S=1) (the dashed line).  We use kernel density estimation to smooth these functions.
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Densities of present value of earnings College Sample NLSY/79
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Present value of earnings from age 22 to 36 for College Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y1|S = 1) (the solid curve), against the counterfactual density
function f(y0|S = 1) (the dashed line). We use kernel density estimation to smooth these functions.
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Web Data Appendix Figure II-4.3
Densities of Returns to College NLSY/79 Sample

Let Y0,Y1 denote the present value of earnings from age 22 to age 41 in the high school and college sectors, respectively.
Define ex post returns to college as the ratio R=(Y1"Y0)/Y0.  Let f(r) denote the density function of
the random variable R.  The solid line is the density of ex post returns to colege for high school
graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without knowing q3 and
e=(e0,t, e1,t, t=0,...T)
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Let Y0,Y1 denote the present value of earnings from age 22 to age 36 in the high school and college sectors,
respectively. Define ex post returns to college as the ratio R = (Y1 − Y0)/Y0. Let f(r) denote the density
function of the random variable R. The solid line is the density of ex post returns to college for high school
graduates, that is f(r|S = 0). The dashed line is the density of ex post returns to college for college graduates,
that is, f(r|S = 1). This assumes that the agent chooses schooling without knowing θ3 and {ε0,t, ε1,t}

T
t=1.
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Web Data Appendix Figure II-4.4
Densities of monetary value of psychic cost, 1979
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Web Data Appendix Figure II-4.5
Densities of present value of earnings High School Sample NLS/66

Present value of earnings from age 22 to 41 for High School Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y0|S=0) (the solid curve), against the counterfactual
density function f(y1|S=0) (the dashed line).  We use kernel density estimation to smooth these functions.
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Densities of present value of earnings High School Sample NLS/66
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Present value of earnings from age 22 to 36 for High School Graduates discounted using an interest rate of
5%. Here we plot the factual density function f(y0|S = 0) (the solid curve), against the counterfactual density
function f(y1|S = 0) (the dashed line). We use kernel density estimation to smooth these functions.
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Web Data Appendix Figure II-4.6
Densities of present value of earnings College Sample NLS/66

Present value of earnings from age 22 to 41 for College Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y1|S=1) (the solid curve), against the counterfactual
density function f(y0|S=1) (the dashed line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 22 to 36 for College Graduates discounted using an interest rate of 5%.
Here we plot the factual density function f(y1|S = 1) (the solid curve), against the counterfactual density
function f(y0|S = 1) (the dashed line). We use kernel density estimation to smooth these functions.
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Web Data Appendix Figure II-4.7
Densities of Returns to College NLS/66 Sample

Let Y0,Y1 denote the present value of earnings from age 22 to age 41 in the high school and college sectors, respectively.
Define ex post returns to college as the ratio R=(Y1"Y0)/Y0.  Let f(r) denote the density function of
the random variable R.  The solid line is the density of ex post returns to colege for high school
graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without knowing q3 and
e=(e0,t, e1,t, t=0,...T)
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Let Y0,Y1 denote the present value of earnings from age 22 to age 36 in the high school and college sectors,
respectively. Define ex post returns to college as the ratio R = (Y1 − Y0)/Y0. Let f(r) denote the density
function of the random variable R. The solid line is the density of ex post returns to college for high school
graduates, that is f(r|S = 0). The dashed line is the density of ex post returns to college for college graduates,
that is, f(r|S = 1). This assumes that the agent chooses schooling without knowing θ3 and {ε0,t, ε1,t}

T
t=1.

112



Web Data Appendix Figure II-4.8
Densities of monetary value of psychic cost, 1966

Web Supplement Appendix Figure 4.8
Densities of monetary value of psychic cost
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Web Data Appendix Figure II-5.1
Densities of Factor 1 by schooling level NLSY/79

Let f(q1) denote the probability density function of factor theta1.  We allow f(theta1) to be a mixture
of normals.  The solid line plots the density of factor 1 conditional on choosing the high school sector,
that is, f(q1|choice=high school).  The dashed line plots the density of factor 1 conditional on choosing
the college sector, that is, f(q1|choice=college).
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Densities of Factor 1 by schooling level NLSY/79
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Let f(θ1) denote the probability density function of factor θ1. We allow f(θ1) to be a mixture of normals. The
solid line plots the density of factor 1 conditional on choosing the high school sector, that is, f(θ1 | S = 0).
The dashed line plots the density of factor 1 conditional on choosing the college sector, that is, f(θ1 | S = 1).
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Web Data Appendix Figure II-5.2
Densities of Factor 2 by schooling level NLSY/79

Let f(q2) denote the probability density function of factor theta2.  We allow f(theta2) to be a mixture
of normals.  The solid line plots the density of factor 2 conditional on choosing the high school sector,
that is, f(theta2|choice=high school).  The dashed line plots the density of factor 2 conditional on choosing
the college sector, that is, f(q2|choice=college).
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Let f(θ2) denote the probability density function of factor θ2. We allow f(θ2) to be a mixture of normals. The
solid line plots the density of factor 2 conditional on choosing the high school sector, that is, f(θ2 | S = 0).
The dashed line plots the density of factor 2 conditional on choosing the college sector, that is, f(θ2 | S = 1).
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Web Data Appendix Figure II-5.3
Densities of Factor 3 by schooling level NLSY/79

Let f(q3) denote the probability density function of factor theta3.  We allow f(theta3) to be a mixture
of normals.  The solid line plots the density of factor 3 conditional on choosing the high school sector,
that is, f(theta3|choice=high school).  The dashed line plots the density of factor 3 conditional on choosing
the college sector, that is, f(q3|choice=college).
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Let f(θ3) denote the probability density function of factor θ3. We allow f(θ3) to be a mixture of normals. The
solid line plots the density of factor 3 conditional on choosing the high school sector, that is, f(θ3 | S = 0).
The dashed line plots the density of factor 3 conditional on choosing the college sector, that is, f(θ3 | S = 1).
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Web Data Appendix Figure II-5.4
Densities of Factor 1 by schooling level NLS/66

Let f(q1) denote the probability density function of factor theta1.  We allow f(theta1) to be a mixture
of normals.  The solid line plots the density of factor 1 conditional on choosing the high school sector,
that is, f(q1|choice=high school).  The dashed line plots the density of factor 1 conditional on choosing
the college sector, that is, f(q1|choice=college).
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Let f(θ1) denote the probability density function of factor θ1. We allow f(θ1) to be a mixture of normals. The
solid line plots the density of factor 1 conditional on choosing the high school sector, that is, f(θ1 | S = 0).
The dashed line plots the density of factor 1 conditional on choosing the college sector, that is, f(θ1 | S = 1).
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Web Data Appendix Figure II-5.5
Densities of Factor 2 by schooling level NLS/66

Let f(q2) denote the probability density function of factor theta2.  We allow f(theta2) to be a mixture
of normals.  The solid line plots the density of factor 2 conditional on choosing the high school sector,
that is, f(theta2|choice=high school).  The dashed line plots the density of factor 2 conditional on choosing
the college sector, that is, f(q2|choice=college).
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Let f(θ2) denote the probability density function of factor θ2. We allow f(θ2) to be a mixture of normals. The
solid line plots the density of factor 2 conditional on choosing the high school sector, that is, f(θ2 | S = 0).
The dashed line plots the density of factor 2 conditional on choosing the college sector, that is, f(θ2 | S = 1).
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Web Data Appendix Figure II-5.6
Densities of Factor 3 by schooling level NLS/66

Let f(q3) denote the probability density function of factor theta3.  We allow f(theta3) to be a mixture
of normals.  The solid line plots the density of factor 3 conditional on choosing the high school sector,
that is, f(theta3|choice=high school).  The dashed line plots the density of factor 3 conditional on choosing
the college sector, that is, f(q3|choice=college).
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Let f(θ3) denote the probability density function of factor θ3. We allow f(θ3) to be a mixture of normals. The
solid line plots the density of factor 3 conditional on choosing the high school sector, that is, f(θ3 | S = 0).
The dashed line plots the density of factor 3 conditional on choosing the college sector, that is, f(θ3 | S = 1).
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Web Supplement III

Identification Analysis of Cunha,
Heckman and Navarro
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III-1 Distinguishing between heterogeneity and uncertainty

In the literature on earnings dynamics (e.g. Lillard and Willis, 1978), it is common to estimate an earnings

equation of the sort

Yi,t = Xi,tβ + Siτ + vi,t, (III-1)

where Yi,t,Xi,t,Si, vi,t denote (for person i at time t) the realized earnings, observable characteristics, educa-

tional attainment, and unobservable characteristics, respectively, from the point of view of the observing

economist. We use bold characters to denote vectors and distinguish them from scalars. The variables

generating outcomes realized at time t may or may not have been known to the agents at the time they

made their schooling decisions.

Often the error term vi,t is decomposed into two or more components. For example, it is common to

specify that

vi,t = φi + εi,t. (III-2)

The term φi is a person-specific effect. The error term εi,t is generally assumed to follow an ARMA
(
p, q

)
process (see, e.g. MaCurdy, 1982) such as εi,t = ρεi,t−1 +mi,t, where mi,t is a mean zero innovation independent

of Xi,t and the other error components. The components Xi,t, φi, and εi,t all contribute to measured ex post

variability across persons. However, the literature is silent about the difference between heterogeneity and

uncertainty, the unforecastable part of earnings as measured from a given age—what Jencks, Smith, Acland,

Bane, Cohen, Gintis, Heyns, and Michelson (1972) call ‘luck.’

An alternative specification of the error process postulates a factor structure for earnings,

υi,t = θiαt + δi,t, (III-3)

where θi is a vector of skills (e.g. ability, initial human capital, motivation, and the like), αt is a vector of skill

prices, and the δi,t are mutually independent mean zero shocks independent of θi. See Hause (1980) and

Heckman and Scheinkman (1987) for analysis of such a model. Any process in the form of equation (III-2)

can be written in terms of (III-3). The latter specification is more directly interpretable as a pricing equation

than (III-2) and is a natural starting point for human capital analyses. It is the one used in this paper.

Depending on the available market arrangements for coping with risk, the predictable components of vi,t

will have a different effect on choices and economic welfare than the unpredictable components, if people

are risk averse and cannot fully insure against uncertainty. Statistical decompositions based on (III-1), (III-2),

and (III-3) or versions of them describe ex post variability but tell us nothing about which components of
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(III-1) or (III-3) are forecastable by agents ex ante. Is φi unknown to the agent? εi,t? Or φi + εi,t? Or mi,t? In

representation (III-3), the entire vector θi, components of the θi, the δi,t, or all of these may or may not be

known to the agent at the time schooling choices are made.

The methodology presented in this paper provides a framework with which it is possible to identify

components of life cycle outcomes that are forecastable and acted on at the time decisions are taken from

ones that are not. The essential idea of the method can be illustrated in the case of educational choice, the

problem we study in our empirical work. In order to choose between high school and college, say at age 19,

agents forecast future earnings (and other returns and costs) for each schooling level. Using information

about educational choices at age 19, together with the ex post realization of earnings and costs that are

observed at later ages, it is possible to estimate and test which components of future earnings and costs are

forecast by the agent at age 19. This can be done provided we know, or can estimate, the earnings of agents

under both schooling choices and provided we specify the market environment under which they operate

as well as their preferences over outcomes. For certain market environments where separation theorems

are valid, so that consumption decisions are made independently of the wealth maximizing decision, it is

not necessary to know agent preferences to decompose realized earnings outcomes in this fashion. Our

method uses choice information to extract ex ante or forecast components of earnings and to distinguish

them from realized earnings. The difference between forecast and realized earnings allows us to identify the

distributions of the components of uncertainty facing agents at the time they make their schooling decisions.

To be more precise, consider a version of the generalized Roy (1951) economy with two sectors.3 Let Si

denote different schooling levels. Si = 0 denotes choice of the high school sector for person i, and Si = 1

denotes choice of the college sector. Each person chooses to be in one or the other sector but cannot be in

both. Let the two potential outcomes be represented by the pair
(
Y0,i,Y1,i

)
, only one of which is observed

by the analyst for any agent. Denote by Ci the direct cost of choosing sector 1, which is associated with

choosing the college sector (e.g. tuition and non-pecuniary costs of attending college expressed in monetary

values).

Y1,i is the ex post present value of earnings in the college sector, discounted over horizon T for a person

choosing at a fixed age, assumed for convenience to be zero,

Y1,i =

T∑
t=0

Y1,i,t

(1 + r)t ,

3See Heckman (1990) and Heckman and Smith (1998) for discussions of the generalized Roy model. In this paper we assume only
two schooling levels for expositional simplicity, although our methods apply more generally.
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and Y0,i is the ex post present value of earnings in the high school sector at age zero,

Y0,i =

T∑
t=0

Y0,i,t

(1 + r)t ,

where r is the one-period risk-free interest rate. Y1,i and Y0,i can be constructed from time series of ex post

potential earnings streams in the two states:
(
Y0,i,0, . . . ,Y0,i,T

)
for high school and

(
Y1,i,0, . . . ,Y1,i,T

)
for college.

A practical problem is that we only observe one or the other of these streams. This partial observability

creates a fundamental identification problem which we address in this paper.

The variables Y1,i,Y0,i, and Ci are ex post realizations of returns and costs, respectively. At the time agents

make their schooling choices, these may be only partially known to the agent, if at all. Let Ii,0 denote the

information set of agent i at the time the schooling choice is made, which is time period t = 0 in our notation.

Under a complete markets assumption with all risks diversifiable (so that there is risk-neutral pricing) or

under a perfect foresight model with unrestricted borrowing or lending but full repayment, the decision

rule governing sectoral choices at decision time ‘0’ is

Si =

 1, if E
(
Y1,i − Y0,i − Ci | Ii,0

)
≥ 0

0, otherwise.4
(III-4)

Under perfect foresight, the postulated information set would include Y1,i,Y0,i, and Ci. In either model of

information, the decision rule is simple: one attends school if the expected gains from schooling are greater

than or equal to the expected costs. Under either set of assumptions, a separation theorem governs choices.

Agents maximize expected wealth independently of how they consume it.

The decision rule is more complicated in the absence of full risk diversifiability and depends on the

curvature of utility functions, the availability of markets to spread risk, and possibilities for storage. (See

Heckman and Navarro (2004), and Navarro (2004) for a more extensive discussion.) In more realistic

economic settings, the components of earnings and costs required to forecast the gain to schooling depend

on higher moments than the mean. In this paper we use a model with a simple market setting to motivate

the identification analysis of a more general environment we analyze elsewhere (Carneiro, Hansen, and

Heckman, 2003)

Suppose that we seek to determineIi,0.This is a difficult task. Typically we can only partially identifyIi,0

and generate a list of candidate variables that belong in the information set. We can usually only estimate

the distributions of the unobservables in Ii,0 (from the standpoint of the econometrician) and not individual

person-specific information sets. To fix ideas, we start the analysis discussing identification of Ii,0 for each
4If there are aggregate sources of risk, full insurance would require a linear utility function.
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person, but in our empirical work we only partially identify person-specific Ii,0 and instead identify the

distributions of the remaining unobserved components.

To motivate the objectives of our analysis we offer the following heuristic discussion. We seek to

decompose the ‘returns coefficient’ in an earnings-schooling model into components that are known at the

time schooling choices are made and components that are not known. For simplicity we assume that, for

person i, returns are the same at all levels of schooling. Write discounted lifetime earnings of person i as

Yi = ρ0 + ρ1,iSi + Ji, (III-5)

where ρ1,i is the person-specific ex post return, Si is years of schooling, and Ji is a mean zero unobservable.

We seek to decompose ρ1,i into two components ρ1,i = ηi + νi, where ηi is a component known to the agent

when he/she makes schooling decisions and νi is revealed after the choice is made. Schooling choices are

assumed to depend on what is known to the agent at the time decisions are made, Si = λ
(
ηi,Zi, τi

)
, where

the Zi are other observed determinants of schooling and τi represents additional factors unobserved by the

analyst but known to the agent. We seek to determine what components of ex post lifetime earnings Yi enter

the schooling choice equation.

If ηi is known, it enters λ. Otherwise it does not. Component νi and any measurement errors in Y1,i or

Y0,i should not be determinants of schooling choices. Neither should future skill prices that are unknown at

the time agents make their decisions. If agents do not use ηi in making their schooling choices, even if they

know it, ηi would not enter the schooling choice equation. Determining the correlation between realized Yi

and schooling choices based on ex ante forecasts enables us to identify components known to agents making

their schooling decisions. Even if we cannot identify ρ1,i, ηi, or νi for each person, under conditions specified

in this paper we can identify their distributions.

Suppose that the model for schooling can be written in linear in parameters form:

Si = λ0 + λ1ηi + λ2νi + λ3Zi + τi, (III-6)

where τi has mean zero and is independent of Zi. Zi is assumed to be independent of ηi and νi. The Zi and

the τi proxy costs and may also be correlated with Ji in (III-5).5 In this framework, the goal of the analysis

is to determine if λ2 = 0, i.e., to determine if agents pick schooling based on ex post shocks to returns and, if

they do, the relative magnitude of the variance of ηi to that of νi.

Application of Zi as an instrument for Si in outcome equation (III-5) does not enable us to decompose

5Card (2001) presents a perfect certainty model that can be written in this form.
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ρ1,i into forecastable and unforecastable components. Only if agents do not use ηi in making their schooling

decisions does the instrumental variable (IV) method recover the population mean of ρ1,i. In that case,

standard random coefficient models can identify the variance of
(
ηi + νi

)
which is assumed to be independent

of Si.6

Notice that even under the most favorable conditions for application of the IV method, we are only able

to recover the ex post mean and total ex post variability of ρ1,i = ηi + νi. We cannot, however, decompose

Var
(
ηi + νi

)
into its components. That is, we are not able to assign the proportion of the variance in the

return that is due to ηi and that due to νi. Since we cannot identify how much of the ex post return to

schooling is unknown to the agent at the time he makes his decision, we cannot solve the stated problem

using just the instrumental variable method.7

Our procedure is not based on the method of instrumental variables. Rather, it exploits certain covari-

ances that arise under different information structures. To see how the method works, simplify the model

down to two schooling levels. Suppose, contrary to what is possible, that the analyst observes Y0,i, Y1,i, and

Ci. Such information would come from an ideal data set in which we could observe two different lifetime

earnings streams for the same person in high school and in college as well as the costs they pay for attending

college. From such information we could construct Y1,i −Y0,i −Ci. If we knew the information set Ii,0 of the

agent, we could also construct E
(
Y1,i − Y0,i − Ci | Ii,0

)
. Under the correct model of expectations, we could

form the residual

VIi,0 =
(
Y1,i − Y0,i − Ci

)
− E

(
Y1,i − Y0,i − Ci | Ii,0

)
,

and from the ex ante college choice decision, we could determine whether Si depends on VIi,0 . It should not if

we have specifiedIi,0 correctly. In terms of the model of equations (III-5) and (III-6), if there are no direct costs

of schooling, E
(
Y1,i − Y0,i | Ii,0

)
= ηi, and VIi,0 = νi. A test for correct specification of candidate information

set Ĩi,0 is a test of whether Si depends on V
Ĩi,0

, where V
Ĩi,0

=
(
Y1,i − Y0,i − Ci

)
− E

(
Y1,i − Y0,i − Ci | Ĩi,0

)
.

More precisely, the information set is valid if Si ⊥⊥ V
Ĩi,0
| Ĩi,0, where X ⊥⊥ Y | Z means X is independent

of Y given Z. In terms of the simple model of (III-5) and (III-6), νi should not enter the schooling choice

equation (λ2 = 0). A test of misspecification of Ĩi,0 is a test of whether the coefficient of V
Ĩi,0

is statistically

significantly different from zero in the schooling choice equation.

More generally, Ĩi,0 is the correct information set if V
Ĩi,0

does not help to predict schooling. We can search

among candidate information sets Ĩi,0 to determine which ones satisfy the requirement that the generated

V
Ĩi,0

does not predict Si and what components of Y1,i − Y0,i − Ci (and Y1,i − Y0,i) are predictable at the age

6One can use the residuals from Yi − ρ̂0 − ρ̂1Si = Ûi to decompose the variance components, where instrumental variables are used
to generate the coefficient estimates. For the instrumental variable method in this case, see Heckman and Vytlacil (1998).

7For further discussion of the IV method applied to separate heterogeneity from uncertainty see Cunha and Heckman (2007).
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for the specified information set.8 For a properly specified Ĩi,0, V
Ĩi,0

should not cause (predict) schooling

choices. The components of V
Ĩi,0

that are unpredictable are called intrinsic components of uncertainty, as

defined in this paper.

Usually, we cannot determine the exact content of Ii,0 known to each agent. If we could, we would

perfectly predict Si given our decision rule. More realistically, we might find variables that proxy Ii,0 or

their distribution. Thus, in the example of equations (III-5) and (III-6) we would seek to determine the

distribution of νi and the allocation of the variance of ρ1,i to ηi and νi rather than trying to estimate ρ1,i, ηi,

or νi for each person. This is the strategy pursued in this paper for a two-choice model of schooling.

Inference

The procedure just described is not practical for general models of educational outcomes. We do not know

all of the information possessed by the agent. We do not observe Y1,i,t and Y0,i,t together for anyone. We

must solve the problem of constructing counterfactuals. This entails solving the selection problem.

One conventional way to solve the selection problem is to invoke a ‘common coefficient’ assumption,

Y1,i,t = ϕt
(
Xi,t

)
+ Y0,i,t, t = 0, . . . ,T,

where ϕt
(
Xi,t

)
is the same for everyone with the same Xi,t. A special case is where ϕt

(
Xi,t

)
= ϕ, a constant.

This specification assumes that for each person i, the earnings in college at age t differ from the earnings

in high school by a constant, or a constant conditional on Xi,t. Under standard assumptions, conventional

econometric methods such as matching, instrumental variables, or control functions recover ϕt
(
Xi,t

)
for

everyone (see Heckman and Robb, 1986, reprinted 2000, for discussions of alternative assumptions).

A common coefficient returns to schooling assumption for all groups with the same values of Xi,t rules

out comparative advantage in the labor market that has been shown to be empirically important (see

Heckman, 2001, and Carneiro, Heckman, and Vytlacil, 2005). The common coefficient assumption can be

tested nonparametrically and is decisively rejected (Heckman, Smith, and Clements, 1997). An alternative

and weaker assumption is that ranks in the distribution of Y1,i,t can be mapped into ranks in the distribution

of Y0,i,t (e.g. the best in the Y1,i,t distribution is the best in the Y0,i,t distribution or the best in one is the worst

in the other). We present evidence against that assumption below.

An alternative approach is to use matching. Given matching variables Qi, we can form counterfactual

8This procedure is a Sims (1972) version of a Wiener-Granger causality test.
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marginal distributions from observed distributions using the matching assumption that

F
(
Y1,i,t | Xi,t,Si = 1,Qi

)
= F

(
Y1,i,t | Xi,t,Si = 0,Qi

)
= F

(
Y1,i,t | Xi,t,Qi

)
, t = 0, . . . ,T.

If the matching assumptions are valid, we can construct counterfactuals for everyone since the first distri-

bution is observed and the second is the distribution of the counterfactual (what persons who do not attend

college would have earned if they had attended college). By a parallel analysis of F
(
Y0,i,t | Xi,t,Si = 0,Qi

)
,

we can construct F
(
Y0,i,t | Xi,t,Si = 1,Qi

)
= F

(
Y0,i,t | Xi,t,Qi

)
for everyone, t = 0, . . . ,T. This is the distribution

of high school outcomes for those who attend college. The marginal distributions acquired from matching

are not enough to construct the distribution of returns Y1,i −Y0,i because they do not identify the covariance

or dependence between Y1,i,t and Y0,i,t, unless it is assumed that the only dependence across the Y1,i,t and

Y0,i,t is due to Qi and/or Xi,t, and the parameters of this dependence can be determined from the marginal

distributions, or else special assumptions about dependence across outcomes are invoked.

Matching makes strong assumptions about the richness of the data available to analysts and does not, in

general, identify joint distributions of counterfactual returns and hence the distribution of the rate of return.

It assumes that the return to the marginal person is the same as the return to the average person conditional

on the matching variables (Heckman and Navarro, 2004).

Either matching or IV solves the selection problem under their assumed identifying conditions. Neither

method provides a way for identifying the information agents act on ex ante when there are important un-

observed (by the econometrician) components. In this paper, we build on Carneiro, Hansen, and Heckman

(2003) and use the factor structure representation (III-3) to construct the missing counterfactual earnings

data.

To understand the essential idea underlying our method, consider the following linear in parameters

model:

Y0,i,t = Xi,tβ0,t + v0,i,t, t = 0, . . . ,T,

Y1,i,t = Xi,tβ1,t + v1,i,t,

Ci = Ziγ + vi,C.

We assume that the life cycle of the agent ends after period T. Linearity of outcomes in terms of parameters

is convenient but not essential to our method.

Suppose that there exists a vector of factors θi =
(
θi,1, θi,2, . . . , θi,L

)
such that θi,k and θi, j are mutually
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independent random variables for k, j = 1, . . . ,L, k , j. Assume we can represent the error term in earnings

at age t for agent i in the following manner:

υ0,i,t = θiα0,t + ε0,i,t,

υ1,i,t = θiα1,t + ε1,i,t,

where α0,t and α1,t are vectors and θi is a vector distributed independently across persons. The ε0,i,t and

ε1,i,t are mutually independent of each other and independent of the θi. We can also decompose the cost

function Ci in a similar fashion:

Ci = Ziγ + θiαC + εi,C.

All of the statistical dependence across potential outcomes and costs is generated by θ, X, and Z. Thus, if we

could match on θi (as well as X and Z), we could use matching to infer the distribution of counterfactuals

and capture all of the dependence across the counterfactual states through the θi. However, in general, not

all of the required elements of θi are observed.

The parameters αC and αs,t for s = 0, 1, and t = 0, . . . ,T are the factor loadings. εi,C is independent of the

θi and the other ε components. In this notation, the choice equation can be written as:

Ii = E


∑T

t=0
(Xi,tβ1,t+θiα1,t+ε1,i,t)−(Xi,tβ0,t+θiα0,t+ε0,i,t)

(1+r)t −(
Ziγ + θiαC + εiC

)
∣∣∣∣∣∣∣∣∣ Ii,0


Si = 1 if Ii ≥ 0; Si = 0 otherwise. (III-7)

The sum inside the parentheses is the discounted earnings of agent i in college minus the discounted earnings

of the agent in high school. The second term is cost. Constructing (III-7) entails making a counterfactual

comparison. Even if the earnings of one schooling level are observed over the lifetime using panel data,

the earnings in the counterfactual state are not. After the schooling choice is made, some components of

the Xi,t, the θi, and the εi,t may be revealed (e.g. unemployment rates, macro shocks) to both the observing

economist and the agent, although different components may be revealed to each and at different times.

Examining alternative information sets, one can determine which ones produce models for outcomes that

fit the data best in terms of producing a model that predicts date t = 0 schooling choices and at the same

time passes our test for misspecification of predicted earnings and costs. Some components of the error

terms may be known or not known at the date schooling choices are made. The unforecastable components

are intrinsic uncertainty as we have defined it.9

9As pointed out to us by Lars Hansen, the term ‘heterogeneity’ is somewhat unfortunate. Under this term, we include trends
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To formally characterize our empirical procedure, it is useful to introduce some additional notation. Let

� denote the Hadamard product (a� b = (a1b1, . . . ,aLbL)) for vectors a and b of length L. Let ∆Xt , t = 0, ...,T,

∆Z, ∆θ, ∆εC , ∆εt , denote coefficient vectors associated with the Xt, t = 0, ...,T, the Z, the θ, the ε1,t − ε0,t, and

the εC, respectively. These coefficients will be estimated to be nonzero in a schooling choice equation if there

is a deviation between the proposed information set and the actual information set used by agents. For a

proposed information set Ĩi,0 which may or may not be the true information set on which agents act we can

define the proposed choice index Ĩi in the following way:

Ĩi =

T∑
t=0

E
(
Xi,t | Ĩi,0

)
(1 + r)t

(
β1,t − β0,t

)
+

T∑
t=0

[
Xi,t − E

(
Xi,t | Ĩi,0

)]
(1 + r)t

(
β1,t − β0,t

)
� ∆Xt (III-8)

+E(θi | Ĩi,0)

 T∑
t=0

(
α1,t − α0,t

)
(1 + r)t − αC


+

[
θi − E

(
θi | Ĩi,0

)] 
 T∑

t=0

(
α1,t − α0,t

)
(1 + r)t − αC

 � ∆θ
 +

T∑
t=0

E
(
ε1,i,t − ε0,i,t | Ĩi,0

)
(1 + r)t

+

T∑
t=0

[
(ε1,i,t − ε0,i,t) − E

(
ε1,i,t − ε0,i,t | Ĩi,0

)]
(1 + r)t ∆εt − E

(
Zi | Ĩi,0

)
γ

−

[
Zi − E

(
Zi | Ĩi,0

)]
γ � ∆Z − E

(
εiC | Ĩi,0

)
−

[
εiC − E

(
εiC | Ĩi,0

)]
∆εC .

To conduct our test, we fit a schooling choice model based on the proposed model (III-8). We estimate the

parameters of the model including the ∆ parameters. This decomposition for Ĩi assumes that agents know

the β, the γ, and the α. If it is not correct, the presence of additional unforecastable components due to

unknown coefficients affects the interpretation of the estimates.

A test of no misspecification of information set Ĩi,0 is a joint test of the hypothesis that ∆Xt = 0, ∆θ = 0,

∆Z = 0, ∆εC = 0, and ∆εt = 0, t = 0, . . . ,T. That is, when Ĩi,0 = Ii,0, then ∆Xt = 0, ∆θ = 0, ∆Z = 0, ∆εC = 0,

∆εt = 0, t = 0, . . . ,T, and the proposed choice index Ĩi = Ii.

In a correctly specified model, the components associated with zero∆ j are the unforecastable elements or

the elements which, even if known to the agent, are not acted on in making schooling choices. To illustrate

the application of our method, assume for simplicity that the Xi,t, the Zi, the εi,C, the β1,t,β0,t, the α1,t,α0,t,

and αC are known to the agent, and the ε j,i,t are unknown and are set at their mean zero values. We can

infer which components of the θi are known and acted on in making schooling decisions if we postulate

that some components of θi are known perfectly at date t = 0 while others are not known at all, and their

forecast values have mean zero given Ii,0.

common across all people (e.g., macrotrends). The real distinction we are making is between components of realized earnings
forecastable by agents at the time they make their schooling choices vs. components that are not forecastable.
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If there is an element of the vector θi, say θi,2 (factor 2), that has nonzero loadings (coefficients) in the

schooling choice equation and a nonzero loading on one or more potential future earnings, then one can

say that at the time the schooling choice is made, the agent knows the unobservable captured by factor 2

that affects future earnings. If θi,2 does not enter the choice equation but explains future earnings, then

θi,2 is unknown (not predictable by the agent) at the age schooling decisions are made. An alternative

interpretation is that the second component of
[∑T

t=0
(α1,t−α0,t)

(1+r)t − αC

]
is zero, i.e., that even if the component

is known, it is not acted on. We can only test for what the agent knows and acts on.

One plausible scenario is that εi,C is known but the future ε1,i,t and ε0,i,t are not, have mean zero, and are

insurable. If there are components of the ε j,i,t that are predictable at age t = 0, they will induce additional

dependence between Si and future earnings beyond the dependence induced by the θi. Under a perfect

foresight assumption we can identify this extra dependence. We develop this point further in section III-2

after we introduce additional helpful notation. Our procedure can be generalized to consider all components

of (III-8). We can test the predictive power of each subset of the overall possible information set at the date

the schooling decision is being made.

The intuition underlying our testing procedure is thus very simple. The components that are forecastable

and acted on in making schooling choices are captured by the components of ex post realizations that

are known by the agents when they make their educational choices. In terms of the simple model of

equations (III-5) and (III-6), by decomposing ρ1,i into ηi and νi so ρ1,i = ηi + νi, we determine how much of

the ex post variability in ρ1,i is due to forecastable ηi and unforecastable νi. The predictable components will

be estimated to have nonzero coefficients in the schooling choice equation. The uncertainty at the date the

decision about college is being made is captured by the factors that the agent does not act on when making

the decision of whether or not to attend college.10

A similar but distinct idea motivates the Flavin (1981) test of the permanent income hypothesis and her

measurement of unforecastable income innovations. She picks a particular information set Ĩi,0 (permanent

income constructed from an assumed ARMA (p, q) time series process for income, where she estimates

the coefficients given a specified order of the AR and MA components) and tests if V
Ĩi,0

(our notation)

predicts consumption. Her test of ‘excess sensitivity’ can be interpreted as a test of the correct specification

of the ARMA process that she assumes generates Ĩi,0 which is unobserved (by the economist), although

she does not state it that way. Blundell and Preston (1998) and Blundell, Pistaferri, and Preston (2004)

extend her analysis but, like her, maintain an a priori specification of the stochastic process generating Ii,0.

Blundell, Pistaferri, and Preston (2004) claim to test for ‘partial insurance.’ In fact their procedure can be

10This test has been extended to a nonlinear setting, allowing for credit constraints, preferences for risk, and the like. See Cunha,
Heckman, and Navarro (2004) and Navarro (2004).
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viewed as a test of their specification of the stochastic process generating the agent’s information set. More

closely related to our work is the analysis of Pistaferri (2001), who uses the distinction between expected

starting wages (to measure expected returns) and realized wages (to measure innovations) in a consumption

analysis.

In the context of our factor structure representation, the contrast between our approach to identifying

components of intrinsic uncertainty and the approach followed in the literature is as follows. The traditional

approach would assume that the θi are known to the agent while the
{
ε0,i,t, ε1,i,t

}T
t=0 are not.11 Our approach

allows us to determine which components of θi and
{
ε0,i,t, ε1,i,t

}T
t=0 are known and acted on at the time

schooling decisions are made.

Assuming that the problems raised by selection on Si are solved by the methods exposited in the next

section and their vector generalizations, we can estimate the distributions of the components of (III-3) and

the coefficients on the factors θi from panel data on earnings. This statistical decomposition does not tell

us which components of (III-3) are known at the time agents make their schooling decisions. If some of

the components of
{
ε0,i,t, ε1,i,t

}T
t=0 are known to the agent at the date schooling decisions are made and enter

(III-8), then additional dependence between Si and future Y1,i − Y0,i due to the
{
ε0,i,t, ε1,i,t

}T
t=0, beyond that

due to θi, would be estimated.

It is helpful to contrast the dependence between Si and future Y0,i,t,Y1,i,t arising from θi and the depen-

dence between Si and the
{
ε0,i,t, ε1,i,t

}T
t=0. Some of the θi in the ex post earnings equation may not appear in the

choice equation. Under other information sets, some additional dependence between Si and
{
ε0,i,t, ε1,i,t

}T
t=0

may arise. The contrast between the sources generating realized earnings outcomes and the sources gener-

ating dependence between Si and realized earnings is the essential idea in this paper. The method can be

generalized to deal with nonlinear preferences and imperfect market environments.12

11The analysis of Hartog and Vijverberg (2002) exemplifies this approach and uses variances of ex post income to proxy ex ante
variability.

12In a model with complete autarky with preferences G, ignoring costs,

Ii =

T∑
t=0

E

 G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
− G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(
1 + ρ

)t

∣∣∣∣∣∣∣ Ĩi,0

 ,
where ρ is the time rate of discount, we can make a similar decomposition but it is more complicated given the nonlinearity in G. For
this model we could do a Sims noncausality test where

V
Ĩi,0

=

T∑
t=0

G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
− G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(
1 + ρ

)t

−

T∑
t=0

E

 G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
− G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(
1 + ρ

)t

∣∣∣∣∣∣∣ Ĩi,0

 .
This requires some specification of G. See Carneiro, Hansen, and Heckman (2003), who assume G(Y) = ln Y and that the equation for
ln Y is linear in parameters. Cunha, Heckman, and Navarro (2004) and Navarro (2004) generalize that framework to a model with
imperfect capital markets where some lending and borrowing is possible.
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III-2 Identifying counterfactual distributions and extracting compo-

nents of unpredictable uncertainty using factor models: a semi-

parametric analysis

To motivate our econometric procedures, it is useful to work with a slightly more abstract notation and

a simpler set up. Omit the individual i subscript to simplify the notation and suppose that there is one

period only (T = 0) so Y1 = Y1,0, Y0 = Y0,0. We relax this assumption later in this section but initially use

this framework to focus on the main econometric ideas motivating our solution of the selection problem.

Assume that (Y0,Y1) have finite means and can be expressed in terms of conditioning variables X. Write

Y0 = µ0 (X) + U0, (III-9a)

Y1 = µ1 (X) + U1, (III-9b)

where E (U0 | X) = E (U1 | X) = 0, E (Y0 | X) = µ0 (X), and E (Y1 | X) = µ1 (X). The ex post gain for an

individual who moves from S = 0 to S = 1 is Y1 − Y0.

Write index I as a net utility,

I = Y1 − Y0 − C, (III-10)

where C is the cost of participation in sector 1. We write C = µC(Z) + UC, where the Z are determinants of

cost. We may write

I = µI(X,Z) + UI. (III-11)

Under perfect certainty,

µI(X,Z) = µ1(X) − µ0(X) − µC(Z) and UI = U1 −U0 −UC.

More generally, we define UI as the error in the choice equation and it may or may not include all future

U1, U0, or UC. Similarly, µI(X,Z) may only be based on expectations of future X and Z at the time schooling

decisions are made. We write

S = 1 if I ≥ 0; S = 0 otherwise. (III-12)

A major advantage of our approach over previous work on estimating components of uncertainty facing

agents is that we control for the econometric consequences of endogeneity in the choice of S and thereby

avoid self-selection biases. The choice equation is also a source of identifying information for extracting
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forecastable components. This paper builds on recent research by Carneiro, Hansen, and Heckman (2003)

that solves the problem of constructing counterfactuals by identifying the joint distribution of (Y0,Y1)

conditional on S (or I) using a factor structure model. These models generalize the LISREL models of Jöreskog

(1977) and the MIMIC models of Jöreskog and Goldberger (1975) to produce counterfactual distributions.

We now exposit the main idea underlying our method, working with a one-factor model to simplify the

exposition. Carneiro, Hansen, and Heckman (2003) develop the general multifactor model we use in our

empirical analysis.

III-2.1 Identifying counterfactual distributions

Identifying the joint distribution of potential outcomes is a difficult problem because we do not observe

both components of (Y0,Y1) for anyone. Thus, one cannot directly form the joint distribution of potential

outcomes (Y0,Y1). Heckman and Honoré (1990) show that if (i) C = 0 for every person, (ii) decision rule (III-

12) applies in an environment of perfect certainty, (iii) there are distinct variables in µ1(X) and µ0(X), (iv)

X is independent of (U1,U0), and other mild regularity restrictions are satisfied, then one can identify the

joint distribution of (Y0,Y1) given X, even without additional Z variables. In this case the agents choose S

solely in terms of the differences in potential outcomes. However, in an environment of uncertainty or if C

varies across people and contains some variables unobserved by the analyst, this method breaks down. We

present a more general analysis without maintaining the perfect certainty assumption.

As shown by Heckman (1990), Heckman and Smith (1998), and Carneiro, Hansen, and Heckman (2003),

under the assumptions that (i) (Z,X) are statistically independent from (U0,U1,UI), (ii)µI (X,Z) is a nontrivial

function of Z given X, (iii) µI (X,Z) has full support, and (iv) the elements of the pairs
(
µ0(X), µI(X,Z)

)
and(

µ1 (X) , µI(X,Z)
)

can be varied independently of each other, then one can identify the joint distributions

of (U0,UI), (U1,UI) up to a scale σ∗I for UI and also µ0 (X) , µ1 (X) , and µI (X,Z) , the last expression up to

scale σI.13 Thus, one can identify the joint distributions of (Y0, I∗) and (Y1, I∗) given X and Z where I∗ = I/σI.

As a by-product we identify the mean functions. One cannot recover the joint distribution of (Y0,Y1) or

(Y0,Y1, I∗) given X and Z without further assumptions. We provide an intuitive motivation for why F (Y0, I∗)

and F(Y1, I∗) are identified in in Appendix 1 of Cunha, Heckman, and Navarro (2005). Once we estimate

these distributions, we perform factor analysis on (Y0, I∗) and (Y1, I∗).

The factor structure approach provides a solution to the problem of constructing counterfactual distri-

butions. We show the essential idea. Suppose that the unobservables follow a one-factor structure (i.e., θ is

13Full support means the support of µI(X,Z) matches (or contains) the support of UI . (See Heckman and Honoré, 1990, and Carneiro,
Hansen, and Heckman, 2003, for more precise formulations of these conditions.) The support of a random variable is the set of values
where it has a positive density.
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a scalar). Carneiro, Hansen, and Heckman (2003) generalize these methods to the multifactor case. We can

extend these methods to nonseparable models using the analysis reported in Heckman, Matzkin, Navarro,

and Urzua (2004), but we do not do so in this paper.

We assume that all of the dependence across (U0,U1,UI∗ ) is generated by a scalar factor θ,

U0 = θα0 + ε0,

U1 = θα1 + ε1,

UI∗ = θαI∗ + εI∗ .

We assume that θ is statistically independent of (ε0, ε1, εI) and satisfies E (θ) = 0 and E
(
θ2

)
= σ2

θ. All the ε’s

are mutually independent with E (ε0) = E (ε1) = E (εI∗ ) = 0, Var (ε0) = σ2
ε0
, Var (ε1) = σ2

ε1
, and Var (εI) = σ2

εI

(the ε terms are called uniquenesses in factor analysis). Because the factor loadings may be different, the

factor may affect outcomes and choices differently and may even have different signs in different equations.

To show how one can recover the joint distribution of (Y0,Y1) using factor models, we break the argument

into two parts. First we show how to recover the factor loadings, factor variance, and the variances of the

uniquenesses. This part is like traditional factor analysis except that some latent variables (e.g. I∗) are only

observed up to scale so their scale must be normalized. Then, we show how to construct joint distributions

of counterfactuals.

III-2.2 Recovering the factor loadings

We consider identification of the model when the analyst has different types of information about the choices

and characteristics of the agent.

The case when there is information on Y0 for I < 0 and Y1 for I > 0 and the decision rule is (III-12)

Under the conditions stated in section III-2.1 and the papers referenced there, after conditioning on X and

controlling for selection, one can identify F (U0,UI∗ ) and F (U1,UI∗ ). From these distributions one can identify

the left hand side of

Cov (U0,UI∗ ) = α0αI∗σ
2
θ

and

Cov (U1,UI∗ ) = α1αI∗σ
2
θ.

The scale of the unobserved I is normalized, a standard condition for discrete choice models. A second
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normalization that we need to impose is σ2
θ = 1. This is required since the factor is not observed and we

must set its scale. That is, since αθ = kαθk for any constant k, we need to set the scale by normalizing the

variance of θ. We could alternatively normalize some α j to one. Finally, we set αI∗ = 1, an assumption we

can relax, as noted below.

Under these conditions, we can identify α1 and α0 from the known covariances above. From the first

covariance, we identify α0. From the second, we identify α1. From the normalization, we know σ2
θ. Since

Cov (U1,U0) = α1α0σ
2
θ,

we can identify the covariance between Y1 and Y0 even though we do not observe the pair (Y1,Y0) for

anyone. We then use the variances Var (U1) ,Var (U0) and the normalization Var (UI∗ ) = 1 to recover the

variance of the uniquenesses σ2
ε0
, σ2
ε1
, σ2
εI∗

.

The fact that we needed to normalize both σ2
θ = 1 and αI∗ = 1 is a consequence of our assumption

that we have only one observation for Y1 and Y0. If we have access to more observations on life cycle

earnings from panel data, as we do in our empirical work, we can use
(
Y0,0, . . .Y0,T,Y1,0, . . . ,Y1,T

)
to relax

one normalization, say σ2
θ = 1, since then we can form, conditional on X and Z, the left hand side of

Cov
(
U1,t′ ,U1,t

)
Cov

(
U1,t′ ,UI∗

) = α1,t

and
Cov

(
U0,t′ ,U0,t

)
Cov

(
U0,t′ ,UI∗

) = α0,t,

and recover σ2
θ from, say, Cov

(
U1,t,UI∗

)
= α1,tσ2

θ. Identification of the variances of the uniquenesses follows

as before.

The central idea motivating our identification strategy is that even though we never observe (Y0,Y1)

as a pair, both Y0 and Y1 are linked to S through the choice equation. From S we can generate I∗, using

standard methods in discrete choice analysis. From this analysis we effectively observe (Y0, I∗) and (Y1, I∗).

The common dependence of Y0 and Y1 on I∗ secures identification of the joint distribution of Y0,Y1, I∗. We

next develop a complementary strategy based on the same idea where, in addition to a choice equation,

we have a measurement equation observed for all observations whether or not Y1 or Y0 is observed. The

measurement may be a test score which is a proxy for ‘ability’ θ. This measurement plays the role of I∗ and,

in certain respects, identification with a measurement of this type is more transparent and more traditional.
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Adding a measurement equation

Suppose that we have access to a measurement for θ that is observed whether S = 1 or S = 0 in addition to

data on outcomes S and Y0 or Y1. In educational statistics, a test score is often used to proxy ability. Suppose

that the analyst has access to one ability test M for each person. Measured ability M is

M = µM (X) + UM.

Assume that

UM = θαM + εM,

where εM is mutually independent from (ε0, ε1, εI) , and θ.14 We assume αM , 0. With this additional

information we can form

Cov (M,Y0|X,Z) = Cov (UM,U0) = αMα0σ
2
θ,

Cov (M,Y1|X,Z) = Cov (UM,U1) = αMα1σ
2
θ,

Cov (M, I∗|X,Z) = Cov (UM,UI∗ ) = αMαI∗σ
2
θ.

Conditioning on (X,Z), we can recover the error terms for the unobservables U0, UI∗ and UM using the

preceding arguments. If we impose the normalization αM = 1, which can be interpreted as requiring that

higher levels of measured ability are associated with higher levels of factor θ, we can form the ratio

Cov (U0,UI∗ )
Cov (UM,UI∗ )

= α0

and identify α0. In a similar fashion, we can form

Cov (U1,UI∗ )
Cov (UM,UI∗ )

= α1

and we can recover α1. From

Cov (UM,U0) = α0σ
2
θ,

we can obtain σ2
θ. Finally, we can identify αI∗ based on information from

Cov (UM,UI∗ ) = αI∗σ
2
θ,

14For simplicity, we assume that this is a continuous measurement. Discrete measurements can also be used. See Carneiro, Hansen,
and Heckman (2003).
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so we can obtain αI∗ up to scale. Thus, with one measurement, one choice equation and two outcomes we

can identify σ2
θ and αI∗ up to scale. We can use the identified variances Var (U0) , Var (U1) , Var (UI∗ ) = 1,

and Var (UM) to recover the variance of the uniquenesses σ2
ε0
, σ2
ε1
, σ2
εI∗
, and σ2

εM
. Thus, having access to a

measurement (M) and choice data with decision rule (III-10)–(III-12) allows us to estimate the covariances

among the counterfactual states.15

But how to identify the distributions? Traditional factor analysis assumes normality. We present a more

general nonparametric analysis. Allowing for nonnormality is essential for getting acceptable empirical

results as we note below.

III-2.3 Recovering the distributions nonparametrically

Given the identification of factor loadings, factor variances, and uniquenesses, we show how to identify the

marginal distributions of θ and ε0, ε1, εI∗ nonparametrically (the last one up to scale). The method is based

on a theorem by Kotlarski (1967). For completeness, we state his theorem.

Theorem 1 Suppose that we have two random variables T1 and T2 that satisfy:

T1 = θ + v1

T2 = θ + v2

with θ, v1, v2 mutually statistically independent, E (θ) < ∞, E (v1) = E (v2) = 0, that the conditions for Fubini’s

Theorem are satisfied for each random variable, and that the random variables possess nonvanishing (almost everywhere)

characteristic functions. Then, the densities fθ, fv1 , fv2 are identified.

Proof See Kotlarski (1967). �

Applied to the current context, we have a choice equation, two outcome equations, and a measurement

equation.16 Assume that we normalize αM = 1 so that all factor loadings, factor variances, and variances of

15We cannot dispense with the choice equation unless we have data on F(Y0,M | X,Z) and F(Y1,M | X,Z). Recall that, in most cases,
we observe data that allows us to construct F (Y0,M | X,Z,S = 0) and F (Y1,M | X,Z,S = 1). The required information for dispensing
with the choice equation might be obtained when we have limit sets Z̄u and Z̄l such that Pr(S = 1 | X,Z) = 1 for z ∈ Z̄u and
Pr(S = 0 | X,Z) = 0 for z ∈ Z̄l. Then we can replace I with M and do factor analysis(see Carneiro, Hansen, and Heckman, 2001).

16Again, for the sake of simplicity, we assume that M is continuous but our methods work for discrete measurements. (See Carneiro,
Hansen, and Heckman, 2003).
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uniquenesses are known. The system is

I∗ = µI∗ (X,Z) + θαI∗ + εI∗ ,

Y0 = µ0 (X) + θα0 + ε0,

Y1 = µ1 (X) + θα1 + ε1,

M = µM (X) + θ + εM.

Note that this system can be rewritten as

I∗ − µI∗ (X,Z)
αI∗

= θ +
εI∗

αI∗
,

Y0 − µ0(X)
α0

= θ +
ε0

α0
,

Y1 − µ1(X)
α1

= θ +
ε1

α1
,

M − µM(X) = θ + εM.

Applying Kotlarski’s theorem to any pair of equations, we conclude that we can identify the densities of

θ, εI∗

αI∗
, ε0
α0
, ε1
α1
, εM. Since we know αI∗ , α0, and α1, we can identify the densities of θ, εI∗ , ε0, ε1, εM.17 Thus, we

can identify the distributions of all of the error terms. Finally, to recover the joint distribution of (Y1,Y0),

note that

F (Y1,Y0 | X) =

∫
F (Y1,Y0 | θ,X) dFθ (θ) .

From Kotlarski’s Theorem, Fθ(θ) is known. Because of the factor structure, Y1,Y0, and S are independent

once we condition on θ, so it follows that

F (Y1,Y0 | θ,X) = F (Y1 | θ,X) F (Y0 | θ,X) .

But F (Y1 | θ,X) and F (Y0 | θ,X) are identified once we condition on the factors since

F (Y1 | θ,X,S = 1) = F (Y1 | θ,X)

F (Y0 | θ,X,S = 0) = F (Y0 | θ,X) .

Note further that if θ were known to the analyst, our procedure would be equivalent to matching on θ

which is equivalent, for identification, to matching on the propensity score Pr (S = 1 | X,Z, θ).18 Our method
17Recall that UI is only known up to scale σI .
18Carneiro, Hansen, and Heckman (2003) discuss the matching relationship between factor and matching models. For a discussion
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generalizes matching by allowing the variables that would produce the conditional independence assumed

in matching to be unobserved by the analyst.

The discussion in this section is for a one-factor model. In our empirical work, we use a multifactor model

where the factors are used to characterize earnings dynamics and possible dependence between future ε

and S. Carneiro, Hansen, and Heckman (2003) provide the analysis we need for the general multifactor

case. The key idea is that, with enough measurements, outcomes and choice equations, we can identify

the number of factors generating dependence among the Y1, Y0, C, S, and M and the distributions of the

factors.19

III-2.4 Models with multiple factors and tests for full insurance versus perfect cer-

tainty

The empirical work in CHN is based on a 5 period (t = 0, . . . , 4) version of equations (III-1) and (III-8). In

fitting the model, we introduce the possibility of additional sources of dependence in the choice equation (III-

8), distinct from the dependence arising from some or all of the components ofθ. This additional dependence

may be generated from future (ε1,i,t, ε0,i,t), t = 0, . . . ,T, that affect schooling choices.

From the covariances between Si (or I∗i ) and Y0,i,t and Y1,i,t, t = 0, . . . ,T, under certain conditions, we

can identify additional sources of dependence between (Y0,i,t,Y1,i,t) and I∗i apart from θi arising from the

dependence of ε0,i,t and ε1,i,t with
∑T

t=0
E(ε1,i,t−ε0,i,t |Ĩi,0)

(1+r)t . In our empirical specification discussed below, there

are multiple earnings outcomes in each schooling state, a choice equation and a vector of measurement

equations to tie down the distribution of θi and the distributions of the
{
ε0,i,t, ε1,i,t

}T
t=0.

To see how additional sources of dependence might arise in fitting the data, consider a model with

perfect foresight. Following the analysis in section III-2.2 and in the papers cited there, we can estimate

Cov
(
Y j,i,t, I∗i | X,Z

)
=
α′j,t
σ∗I

ΣΘ

∑T
t=0

(
α1,t − α0,t

)
(1 + r)t − αC

 +

(
1
σ∗I

) Var
(
ε j,i,t

)
(1 + r)t ,

t = 0, . . . ,T; j = 0, 1,

where ΣΘ is the variance-covariance matrix of the θi. Conditional on X and Z, dependence between Y j,i,t

and I∗i can arise from two sources: from the θi and from the ε j,i,t. Under complete markets, if the ε j,i,t are

unknown at date t = 0 and have mean zero given Ii,0, the second term on the right hand side vanishes and

of factor models and control functions, see Heckman and Navarro (2004).
19A precise statement of what is ‘enough’ information is given in Carneiro, Hansen, and Heckman (2003). See their discussion of the

Ledermann bound. The key idea is that the number of factors has to be small relative to the number of measurements, outcomes and
choice equations. This bound can be relaxed if there are a priori restrictions on the factor loadings beyond innocuous normalizations.
Using nonnormality one can also relax the Ledermann bound.
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the factors θi capture any dependence between Y j,i,t and Si.

Using limit set arguments, as in Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman, and

Navarro (2004), we can identify the α j,t, j = 0, 1, t = 0, . . . ,T, the distribution of θi and the distributions

of the ε j,i,t from earnings data alone in the limit sets.20 Under either complete markets or under perfect

foresight, we can identify αC up to scale σ∗I from the covariances between Y j,i,t, and I∗i , provided a rank

condition is satisfied. In the case of scalar θi, we can identify αC for a fixed scale of I∗i from the preceding

equation for perfect foresight as

1
α j,tσ2

θ

−Cov
(
Y j,i,t, I∗i | X,Z

)
+

Var
(
ε j,i,t

)(
σ∗I

)
(1 + r)t

+
α j,t

σ∗I
σ2
θ

∑T
t=0

(
α1,t − α0,t

)
(1 + r)t

 =
αC

σ∗I
.

Since we know all of the ingredients on the left hand side, we can identify αC up to scale σ∗I . If there is

an element of X not in Z, we can identify the scale σ∗I (See equation (III-7)). Since αC is overidentified if

T > 0, we can test between a perfect foresight model and a complete contingent claims model by checking

if the same αC is estimated for different Cov
(
Y j,i,t, I∗

)
terms.21 In the complete contingent claims model with

uncertainty, the middle term in the brackets would be zero for all ε j,i,t.22

III-3 Perfect Foresight

CHN interpret the αt as prices and the θ as quantities. Their interpretation assumes that the agent has

perfect foresight about future prices. In this paper, we view the factor structure as an approximation of an

income process which involves uncertainty in terms of prices and quantities. Thus, we do not assume perfect

foresight in the model, and we use the factor structure as a method for decomposing realized earnings into

anticipated and unanticipated components of quantities and prices.

20Footnote 15 defines the limit sets. See Carneiro, Hansen, and Heckman (2003) for a more complete discussion of identification in
limit sets.

21This procedure would break down only if

Var
(
ε j,i,t

)
(1+r)t

α j,tΣΘ
∑T

t=0

(
α1,t−α0,t

)
(1+r)t

is constant across all t.

22This testing procedure generalizes to the case of vector θ provided that a rank condition

α′j,tΣΘ

∑T
t=0

(
α1,t − α0,t

)
(1 + r)t , 0

holds for a collection of L terms of the covariances of Y j,i,t with I∗i where L is the number of factors.
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III-4 A Heuristic Discussion of Identification of the Model

It is useful to provide an intuitive discussion of identification based on normal errors. Normality joined

with the assumption of expected value income maximization produces closed form solutions. See Carneiro,

Hansen, and Heckman (2003) for proofs of semi-parametric identification of the distributions of the factors

θ and uniquenesses ε without the normality assumption. The identification strategy used in our paper is

not based on normality. In this section of the appendix, we use the notation of the main paper and not the

distinct, but related, notation of CHN.

III-4.1 Test Scores

First consider identification of the test score equations. Test scores are available for all agents and are

determined before they make their college decisions. There is no selection bias in the test score equations.

Three assumptions are crucial in securing identification through factor models. First, the explanatory

variables XM are independent of θ1 and εM
k , for k = 1, . . . ,K. Second, the factor θ1 is independent of εM

k ,

for k = 1, . . . ,K. Third, the uniqueness εM
k is independent from εM

l for any k , l, for k, l = 1, . . . ,K. The

first assumption, along with standard rank conditions, allows βM
k to be consistently estimated from a simple

OLS regression of Mk against XM. Given the βM
k , we can construct differences Mk − XMβM

k and compute the

covariances:

Cov
(
M1 − XMβM

1 ,M2 − XMβM
2

)
= αM

1 α
M
2 σ

2
θ1

, (III-13)

Cov
(
M1 − XMβM

1 ,M3 − XMβM
3

)
= αM

1 α
M
3 σ

2
θ1

, (III-14)

Cov
(
M2 − XMβM

2 ,M3 − XMβM
3

)
= αM

2 α
M
3 σ

2
θ1

. (III-15)

The left-hand sides of (III-13), (III-14), and (III-15) can be computed from the data. The right-hand sides

of (III-13), (III-14), and (III-15) are implied by the factor model. As is common in the factor literature, we

need to normalize one of the factor loadings to set the scale of the factor. Let αM
1 = 1. If we take the ratio

of (III-15) to (III-13) we identify αM
3 . Analogously, the ratio of (III-15) to (III-14) allows us to recover αM

2 .

Given the normalization of αM
1 = 1 and identification of αM

2 , we identify σ2
θ1

from (III-13). Finally, we can

identify the variance of εM
k from the variance of Mk − XMβM

k . Because the factor θ1 and uniquenesses εk are

independently normally distributed random variables, we have identified their distribution.
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III-4.2 Earnings and Choice Equations

To establish identification of the objects of interest in earnings equations requires a little more work because

of the selection problem. Our assumption of normally distributed factors and uniquenesses simplifies the

analysis because we can use closed-form solutions to reduce the identification problem to the identification

of a few parameters.

We rely on four key assumptions to secure identification. First, all of the observable explanatory

variables X and Z are independent of the unobservable factors, θ1 and θ2, as well as uniquenesses εs,t for all

s, t. Second, θ1 is independent of θ2. Third, both θ1 and θ2 are independent of εC and εs,t for all s, t. Fourth,

εs,t is independent from εC and εs′,t′ for any pairs s, s′ and t, t′ such that s , s′ or t , t′. All of the dependence

among U0,t,U1,t, and UC is captured through the factors θ1 and θ2. As a consequence of these assumptions,

 θ1

θ2

 ∼ N


 0

0

 ,
 σ2

θ1
0

0 σ2
θ2


 .

Because the loadings α1,s,t, α2,s,t, α1,C, and α2,C can be freely specified, the factors θ can affect U0,t,U1,t, and

UC differently. The joint distribution of the labor earnings Y0,t ,Y1,t conditional on X is

 Y0,t

Y1,t

 | X ∼ N


 Xβ0,t

Xβ1,t

 ,
 α2

1,0,tσ
2
θ1

+ α2
2,0,tσ

2
θ2

+ σ2
ε0,t

α1,0,tα1,1,tσ2
θ1

+ α2,0,tα2,1,tσ2
θ2

α1,0,tα1,1,tσ2
θ1

+ α2,0,tα2,1,tσ2
θ2

α2
1,1,tσ

2
θ1

+ α2
2,1,tσ

2
θ2

+ σ2
ε1,t


 .

As a result, identification of the joint distribution F
(
Y0,t,Y1,t | X

)
reduces to the identification of the param-

eters βs,t, αk,s,t, σεs,t , and σ2
θ j

for s = 0, 1; t = 1, . . . ,T and j = 1, 2, and k = 1, 2. From the observed data and the

factor structure assumption it follows that

E
(
Y1,t

∣∣∣ X,S = 1
)

= Xβ1,t + α1,1,tE [θ1|X,S = 1] + α2,1,tE [θ2|X,S = 1] + E
[
ε1,t

∣∣∣ X,S = 1
]
. (III-16)

The event S = 1 corresponds to the event I = E
(∑T

t=1

(
1

1+ρ

)t−1 (
Y1,t − Y0,t

)
− C

∣∣∣∣I) ≥ 0. Assuming that εs,t does

not enter agent information sets, for the case {θ1, θ2} ⊂ Iwe obtain

E

 T∑
t=1

(
1

1 + ρ

)t−1 (
Y1,t − Y0,t

)
− C

∣∣∣∣∣∣∣I
 = µI(X,Z) + α1,Iθ1 + α2,Iθ2 − εC.

Let η be the linear combination of three independent normal random variables: η = α1,Iθ1 + α2,Iθ2 − εC.
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Then, η ∼ N
(
0, σ2

η

)
, with σ2

η = α2
1,Iσ

2
θ1

+ α2
2,Iσ

2
θ2

+ σ2
εc

and

S = 1⇔ η > −µI(X,Z). (III-17)

If we replace (III-17) in (III-16) and use the fact that εs,t is independent of X,Z, and θ,

E
(
Y1,t

∣∣∣ X,S = 1
)

= Xβ1 + α1,1,tE
[
θ1|X, η > −µI(X,Z)

]
+ α2,1,tE

[
θ2|X, η > −µI(X,Z)

]
. (III-18)

Because θ1, θ2 and η are normal random variables,

θ j =
Cov

(
θ j, η

)
Var

(
η
) η + ρ j for j = 1, 2, (III-19)

where ρ j is a mean zero, normal random variable independent from η. Because Cov
(
θ1, η

)
= σ2

θ1
α1,I and

Cov
(
θ2, η

)
= σ2

θ2
α2,I it follows that

E
[
θ1|X, η > −µI(X,Z)

]
=
σ2
θ1
α1,I

σ2
η

E
[
η
∣∣∣ η > −µI(X,Z)

]
and

E
[
θ2|X, η > −µI(X,Z)

]
=
σ2
θ2
α2,I

σ2
η

E
[
η
∣∣∣ η > −µI(X,Z)

]
.

For any standard normal random variable µ, E
(
µ
∣∣∣µ ≥ −c

)
=

φ(c)
Φ(c) where φ (.) and Φ (.) are the density and

distribution function of a standard normal random variable. Define, for j = 0, 1, π j,t =
(
α1, j,tα1,Iσ2

θ1
+α2, j,tα2,Iσ2

θ2
ση

)
.

These facts together allow us to rewrite (III − 16) as

E
(
Y1,t

∣∣∣ η ≤ −µI(X,Z)
)

= Xβ1,t + π1,t

φ
(
µI(X,Z)
ση

)
Φ

(
µI(X,Z)
ση

) . (III-20)

We can derive a similar expression for mean observed earnings in sector “0”:

E
(
Y0,t

∣∣∣ η > −µI(X,Z)
)

= Xβ0,t − π0,t

φ
(
µI(X,Z)
ση

)
Φ

(
µI(X,Z)
ση

) . (III-21)

We can apply the two-step procedure developed in Heckman (1976) to identify β0,t, β1,t, π0,t and π1,t. Given
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identification of βs,t for all s and t, we can construct the differences Ys,t − Xβs,t and compute the covariances

Cov
(
M1 − XMβM

1 ,Y0,t − Xβ0,t

)
= α1,0,tσ

2
θ1

(III-22)

and

Cov
(
M1 − XMβM

1 ,Y1,t − Xβ1,t

)
= α1,1,tσ

2
θ1

. (III-23)

The left-hand sides of (III-22) and (III-23) are identified from the data. The right-hand sides are an implication

of the factor model. We determined σ2
θ1

from the analysis of the test scores. From equations (III-22) and

(III-23), we can recover α1,0,t and α1,1,t for all t. Note that we can also identify α1,C/ση by computing the

covariance

Cov
(
M1 − XβM

1 ,
I − µI(X,Z)

ση

)
=

∑T
t=1

(
1

1+ρ

)t−1 (
α1,1,t − α1,0,t

)
− α1,C

ση
σ2
θ1

. (III-24)

Using (III-22) and (III-23), we can identify α1,1,t and α1,0,t for all t. The only remaining term to be identified

is the ratio α1,C/ση, which can be identified from covariance equation (III-24).

Note that if T ≥ 2, we can also identify the parameters related to factor θ2, such as α2,s,t and σ2
θ2

. To see

this, first normalize α2,0,1 = 1 and compute the covariances:

Cov
(
Y0,1 − Xβ0,1,Y0,2 − Xβ0,2

)
− α1,0,1α1,0,2σ

2
θ1

= α2,0,2σ
2
θ2
, (III-25)

Cov
(
Y0,1 − Xβ0,1,

I − µI(X,Z)
ση

)
−

α1,0,1σ2
θ1

T∑
t=1

(
α1,1,t − α1,0,t − α1,C

)
ση

=

σ2
θ2

T∑
t=1

(
α2,1,t − α2,0,t − α2,C

)
ση

,

Cov
(
Y0,2 − Xβ0,2,

I − µI(X,Z)
ση

)
−

α1,0,2σ2
θ1

T∑
t=1

(
α1,1,t − α1,0,t − α1,C

)
ση

=

α2,0,2σ2
θ2

T∑
t=1

(
α2,1,t − α2,0,t − α2,C

)
ση

.

The left-hand sides of (III-25), (III-26), and (III-26) are identified from the data. Computing the ratio of

(III-26) to (III-26), we can recover α2,0,2. From (III-25) we can recover σ2
θ2

. We now add in the information on
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the covariances from the college earnings equation:

Cov
(
Y1,1 − Xβ1,1,Y1,2 − Xβ1,2

)
− α1,1,1α1,1,2σ

2
θ1

= α2,1,1α2,1,2σ
2
θ2
, (III-26)

Cov
(
Y1,1 − Xβ1,1,

I − µI(X,Z)
ση

)
−

α1,1σ2
θ1

T∑
t=1

(
α1,1,t − α1,0,t − α1,C

)
ση

=

α2,1,1σ2
θ2

T∑
t=1

(
α2,1,t − α2,0,t − α2,C

)
ση

,

Cov
(
Y1,2 − Xβ1,2,

I − µI(X,Z)
ση

)
−

α1,1,2σ2
θ1

T∑
t=1

(
α1,1,t − α1,0,t − α1,C

)
ση

=

α2,1,2σ2
θ2

T∑
t=1

(
α2,1,t − α2,0,t − α2,C

)
ση

.

Computing the ratios of (III-27) to (III-26) and (III-27) to (III-26), we obtain α2,1,2 and α2,1,1 respectively.

Finally, we use the information available from the data on earnings by schooling choice, Var
(
Y0,t

∣∣∣ X,S = 0
)

and Var
(
Y1,t

∣∣∣ X,S = 1
)
, to compute σ2

ε0,t
and σ2

ε1,t
, respectively. Note that we have identified all of the elements

that characterize the joint distribution as specified in (III-16).

The identification analysis in this section uses the data on test scores in an essential way. However, with

sufficiently long panel earnings data, it is possible to identify the model without test score data. See the

analysis in Abbring and Heckman (2007).
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Web Supplement IV

Determining Ex Ante and Ex Post Joint

Distribution
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Let E (Ys| I) denote the ex ante present value of truncated lifetime earnings at schooling level s. We seek

to determine the means and the covariances between ex ante college and high-school earnings conditional

on information set I that we estimate. Since θ1 and θ2 are known by the agent at the time schooling choices

are made, the ex ante mean truncated present value of earnings is

E (Ys| I) =

T∗∑
t=1

Xβs,t + θ1α1,s,t + θ2α2,s,t

(1 + ρ)t−1 , s = 0, 1,

where T∗ = 36 is the latest age at which we observe earnings and the first age we analyze (age 22) is denoted

t = 1. Conditional on covariates X, the covariance between E (Y1| I) and E (Y0| I) is

Cov (E (Y1 | I) ,E (Y0 | I)) =

2∑
j=1

Var
(
θ j

)  T∗∑
t=1

α j,1,t

(1 + ρ)t−1


 T∗∑

t=1

α j,0,t

(1 + ρ)t−1

 .

Tables IV-1-A and IV-1-B present the conditional distributions of the truncated (at T∗) present values of ex

ante college earnings given ex ante high school earnings by decile for the NLSY/1979 and NLS/1966 samples,

respectively. If the dependence across outcomes were perfect and positive, the diagonal elements would

be ‘1’ and the off-diagonal elements would be ‘0.’ The estimated distributions exhibit strong negative

dependence between the relative positions of individuals in the two distributions. For example, for the

NLSY/1979 sample, 59.76% of the individuals who are in the first decile of the truncated high school

present value of earnings distributions would be in the 10th decile of the college present value of earnings

distributions. For the NLS/1966 sample, this figure is 74.22%. Comparing Tables IV-1-A and IV-1-B, the

correlation between ex ante high school and ex ante college truncated present value of lifetime earnings

strengthens slightly for the more recent cohort. For both cohorts, the evidence supports the conjecture of

Willis and Rosen (1979) that comparative advantage is prevalent in the U.S. labor market. Persons who are

good college educated workers make poor high school educated workers. CHN report similar findings.

We can also compute the covariance between the truncated present value of ex post college and high-

school earnings conditional on X. Recall that agents learn θ3 after schooling is completed. For both samples,

the ex post covariance is

Cov (Y1,Y0|X) =

3∑
j=1

Var
(
θ j

)  T∗∑
t=1

α j,1,t

(1 + ρ)t−1


 T∗∑

t=1

α j,0,t

(1 + ρ)t−1

 .

Tables IV-2-A and IV-2-B display the conditional distributions of the present values of truncated ex post
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college earnings given truncated ex post high school earnings for the NLSY/1979 and NLS/1966 samples,

respectively. The ex post correlations are roughly the same as those found for the ex ante distributions. The

extreme negative dependence found in the ex ante distributions weakens slightly in the ex post distributions.

From knowledge of the joint distribution, we can compute the percentage of individuals who regret

their schooling choice after all the information up to age 36 is in about both schooling choices.23 These are

reported by schooling level in Table IV-3. A higher fraction of the individuals who stop at high-school regret

not graduating from college (16.6% in NLSY/1979 and 15.22% in NLS/1966). Around 14.5% of individuals

who attend college regret not stopping their schooling upon high-school graduation, for the NLSY/1979 and

NLS/1966.

23This calculation assumes that agents observe both counterfactual states ex post and may overstate the amount of information
individuals would have ex post.
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Web Data Appendix Table IV-1-A
Ex-Ante Conditional Distributions for the NLSY/79 (College Earnings Conditional on High School

Earnings) Pr(di < Yc < di + 1 | d j < Yh < d j + 1) where di is the ith decile of the College Lifetime Ex-Ante
Earnings Distribution and d j is the jth decile of the High School Ex-Ante Lifetime Earnings Distribution

Individuals fix unknown θ at their means, so θ3 = 0 Correlation (YC,YH) = −0.8730

High School 1 2 3 4 5 6 7 8 9 10
1 0.0002 0.0000 0.0014 0.0053 0.0175 0.0323 0.0645 0.0987 0.1825 0.5976
2 0.0000 0.0020 0.0106 0.0248 0.0524 0.0808 0.0968 0.1598 0.2978 0.2750
3 0.0008 0.0072 0.0276 0.0488 0.0782 0.0976 0.1368 0.2304 0.2774 0.0952
4 0.0006 0.0234 0.0608 0.0814 0.0932 0.1350 0.1932 0.2230 0.1678 0.0216
5 0.0052 0.0430 0.0872 0.0900 0.1362 0.1880 0.2146 0.1744 0.0574 0.0040
6 0.0144 0.0662 0.1038 0.1400 0.1798 0.2166 0.1778 0.0856 0.0158 0.0000
7 0.0318 0.1108 0.1443 0.1895 0.2273 0.1693 0.0960 0.0276 0.0034 0.0000
8 0.0792 0.1609 0.2219 0.2711 0.1757 0.0698 0.0188 0.0020 0.0006 0.0000
9 0.1765 0.3325 0.2931 0.1437 0.0400 0.0112 0.0026 0.0002 0.0002 0.0000
10 0.6064 0.3216 0.0637 0.0078 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

College

Table 2A: Ex-Ante Conditional Distributions for the NLSY/79 (College Earnings Conditional on High School Earnings)

Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d j is the jth decile of 
the High School Ex-Ante Lifetime Earnings Distribution

Individual fixes unknown θ at their means, so θ3=0
Corrrelation(YC,YH) = -0.8730
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Web Data Appendix Table IV-1-B
Ex-Ante Conditional Distributions for the NLSY/66 (College Earnings Conditional on High School

Earnings) Pr(di < Yc < di + 1 | d j < Yh < d j + 1) where di is the ith decile of the College Lifetime Ex-Ante
Earnings Distribution and d j is the jth decile of the High School Ex-Ante Lifetime Earnings Distribution

Individuals fix unknown θ at their means, so θ3 = 0 Correlation (YC,YH) = −0.9332

High School 1 2 3 4 5 6 7 8 9 10
1 0.0012 0.0020 0.0004 0.0004 0.0010 0.0010 0.0056 0.0396 0.2065 0.7422
2 0.0014 0.0000 0.0000 0.0010 0.0034 0.0210 0.0966 0.2664 0.4118 0.1984
3 0.0012 0.0002 0.0004 0.0048 0.0342 0.1148 0.2464 0.3142 0.2322 0.0516
4 0.0004 0.0004 0.0048 0.0326 0.1302 0.2442 0.2726 0.1942 0.1146 0.0060
5 0.0002 0.0014 0.0318 0.1218 0.2354 0.2658 0.1876 0.1256 0.0302 0.0002
6 0.0002 0.0130 0.1034 0.2494 0.2618 0.1862 0.1288 0.0514 0.0058 0.0000
7 0.0020 0.0774 0.2590 0.2864 0.1898 0.1216 0.0550 0.0088 0.0000 0.0000
8 0.0236 0.2616 0.3410 0.2042 0.1186 0.0436 0.0072 0.0000 0.0002 0.0000
9 0.1992 0.4510 0.2260 0.0966 0.0252 0.0018 0.0002 0.0000 0.0000 0.0000
10 0.7669 0.1961 0.0337 0.0028 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

College

Table 2B: Ex-Ante Conditional Distributions for the NLS/66 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d j is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution

Individual fixes unknown θ at its mean, so θ3=0
Corrrelation(YC,YH) = -0.9332
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Web Data Appendix Table IV-2-A
Ex-Post Conditional Distributions for the NLSY/79 (College Earnings Conditional on High School

Earnings) Pr(di < Yc < di + 1 | d j < Yh < d j + 1) where di is the ith decile of the College Lifetime Ex-Ante
Earnings Distribution and d j is the jth decile of the High School Ex-Ante Lifetime Earnings Distribution

Full Information Set Correlation(YC,YH) = −0.8752

High School 1 2 3 4 5 6 7 8 9 10
1 0.0000 0.0000 0.0004 0.0029 0.0123 0.0263 0.0466 0.0936 0.2046 0.6132
2 0.0000 0.0010 0.0072 0.0220 0.0470 0.0762 0.1110 0.1818 0.2968 0.2570
3 0.0010 0.0074 0.0270 0.0454 0.0788 0.1172 0.1722 0.2250 0.2464 0.0796
4 0.0012 0.0160 0.0440 0.0784 0.1084 0.1528 0.2076 0.2184 0.1476 0.0256
5 0.0032 0.0368 0.0754 0.1108 0.1536 0.1816 0.1950 0.1596 0.0766 0.0074
6 0.0108 0.0668 0.1108 0.1644 0.1892 0.1950 0.1506 0.0850 0.0264 0.0010
7 0.0264 0.1129 0.1649 0.2084 0.2028 0.1547 0.0895 0.0326 0.0078 0.0000
8 0.0630 0.1994 0.2487 0.2195 0.1559 0.0794 0.0255 0.0068 0.0018 0.0000
9 0.1780 0.3341 0.2716 0.1409 0.0517 0.0177 0.0043 0.0012 0.0004 0.0000
10 0.5622 0.3368 0.0806 0.0157 0.0035 0.0012 0.0000 0.0000 0.0000 0.0000

College

Table 3A: Ex-Post Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)

Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d j is the jth decile of the 
High School Ex-Ante Lifetime Earnings Distribution

Full Information Set
Corrrelation(YC,YH) = -0.8752
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Web Data Appendix Table IV-2-B
Ex-Post Conditional Distributions for the NLS/66 (College Earnings Conditional on High School Earnings)

Pr(di < Yc < di + 1 | d j < Yh < d j + 1) where di is the ith decile of the College Lifetime Ex-Ante Earnings
Distribution and d j is the jth decile of the High School Ex-Ante Lifetime Earnings Distribution

Full Information Set Correlation(YC,YH) = −0.8869

High School 1 2 3 4 5 6 7 8 9 10
1 0.0002 0.0016 0.0012 0.0006 0.0016 0.0067 0.0224 0.0668 0.2331 0.6657
2 0.0006 0.0002 0.0016 0.0064 0.0216 0.0526 0.1280 0.2388 0.3354 0.2148
3 0.0002 0.0012 0.0060 0.0250 0.0692 0.1360 0.2112 0.2526 0.2218 0.0768
4 0.0004 0.0046 0.0262 0.0694 0.1302 0.1938 0.2234 0.2024 0.1240 0.0256
5 0.0016 0.0156 0.0636 0.1326 0.1906 0.2166 0.1864 0.1262 0.0580 0.0086
6 0.0032 0.0452 0.1294 0.2028 0.2090 0.1832 0.1270 0.0734 0.0242 0.0026
7 0.0188 0.1112 0.2180 0.2306 0.1894 0.1260 0.0684 0.0310 0.0060 0.0006
8 0.0620 0.2348 0.2666 0.1966 0.1368 0.0650 0.0284 0.0082 0.0014 0.0002
9 0.2220 0.3639 0.2204 0.1190 0.0488 0.0192 0.0048 0.0016 0.0002 0.0000
10 0.6762 0.2320 0.0699 0.0178 0.0027 0.0010 0.0004 0.0000 0.0000 0.0000

College

Table 3B: Ex-Post Conditional Distributions for the NLS/66 (College Earnings Conditional on High School Earnings)

Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d j is the jth decile of 
the High School Ex-Ante Lifetime Earnings Distribution

Full Information Set
Corrrelation(YC,YH) = -0.8869
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Web Data Appendix Table IV-3
Percentage that Regret Schooling Choices

Schooling Group NLS/1966 NLSY/1979
Percentage of High School Graduates who 

Regret Not Graduating from College
0.1522 0.1659

Percentage of College Graduates who Regret 
Graduating from College 0.1402 0.1495

Percentage that Regret Schooling Choices
Table 5
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Web Supplement V

Accounting for Schooling Choice
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This appendix shows that the inequality decompositions reported in Section 3.3.4 in the text are barely

affected by allowing for re-optimization of the schooling decision when uncertainty is shut down.
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Web Data Appendix Table V-1
Gini Decomposition

NLS/66 NLSY/79 %Growth
Factual Economy: Heterogeneity and Uncertainty1 0.1803 0.2088 15.85%

Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.1591 0.1825 14.73%

Counterfactual: Allowing Agents to Change Schooling Choices
Heterogeneity Only3 0.1590 0.1825 14.80%

Table 5
Gini Decomposition

1Let Yk,s,t,i denote the earnings of an agent i, i = 1, ...,n, at age t, t = 22, ..., 36, in schooling level s, s = high

school, college, and cohort k, k = NLS/1966,NLSY/1979. We model earnings Yk,s,t,i as:

Yk,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i + θ3,k,iα3,k,s,t,i + εk,s,t,i. (V-1)

The present value of earnings at schooling level s, Yk,s,i, is Yk,s,i =
∑T∗

t=1
Yk,s,t,i

(1+ρ)t−1 . The observed present value of

earnings satisfies Yk,i = Sk,iYk,1,i +
(
1 − Sk,i

)
Yk,0,i where Sk,i = 1 if agent i in cohort k graduates college, and

Sk,i = 0 otherwise. Let Ck,i denote the direct costs for individual i in cohort k. The schooling choice is:

Sk,i = 1⇔ E
(
Yk,1,i − Yk,0,i − Ck,i

∣∣∣Ik

)
≥ 0 (V-2)

This is the factual economy. In this row, we show the Gini coefficient for the observed present value of

earnings Yk,i.

2We simulate the economy by replacing (V-1) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is shut down. The present value of

earnings when only heterogeneity is accounted for is constructed in a similar manner: Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 .

The schooling choices are as determined in (V-2). In this row, we show the Gini coefficient for the observed

present value of earnings Yh
k,s,i when we constrain schooling choices are Sk,i.

3We simulate the economy by replacing (V-1) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The
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present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 . The schooling choices are then deterministic:

Sh
k,i = 1⇔ Yh

k,1,i − Yh
k,0,i − Ck,i ≥ 0.

In this row, we show the Gini coefficient for the observed present value of earnings Yh
k,s,i when schooling

choices are Sh
k,i.
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Web Data Appendix Table V-2
The Theil Entropy Index T

Overall

NLS/66 NLSY/79 % Change
Factual Economy: Heterogeneity and Uncertainty 0.0502 0.0693 37.98%

Counterfactual: Fixing Schooling Choices as in Factual Economy1

Heterogeneity Only 0.0390 0.0522 33.76%
Counterfactual: Allowing Agents to Change Schooling Choices2

Heterogeneity Only 0.0390 0.0521 33.61%

Within Schooling Groups
NLS/66 NLSY/79 % Change

Factual Economy: Heterogeneity and Uncertainty 0.0491 0.0631 28.53%
Counterfactual: Fixing Schooling Choices as in Factual Economy1

Heterogeneity Only 0.0378 0.0465 22.85%
Counterfactual: Allowing Agents to Change Schooling Choices2

Heterogeneity Only 0.0379 0.0464 22.69%

Between Schooling Groups
NLS/66 NLSY/79 % Change

Factual Economy: Heterogeneity and Uncertainty 0.0011 0.0062 447.37%
Counterfactual: Fixing Schooling Choices as in Factual Economy1

Heterogeneity Only 0.0011 0.0057 394.22%
Counterfactual: Allowing Agents to Change Schooling Choices2

Heterogeneity Only 0.0012 0.0057 392.18%

1Let Yk,s,t,i denote the earnings of an agent i, i = 1, ...,n, at age t, t = 1, ...,T∗, in schooling level s, s = high

school, college, and cohort k, k = NLS/1966,NLSY/1979. We model earnings Yk,s,t,i as:

Yk,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i + θ3,k,iα3,k,s,t,i + εk,s,t,i. (V-3)

The present value of earnings in schooling level s, Yk,s,i, is Yk,s,i =
∑T∗

t=1
Yk,s,t,i

(1+ρ)t−1 . The observed present value of

earnings satisfies Yk,i = Sk,iYk,1,i +
(
1 − Sk,i

)
Yk,0,i. Let Ck,i denote the direct costs for individual i in cohort k.

The schooling choice is:

Sk,i = 1⇔ E
(
Yk,1,i − Yk,0,i − Ck,i

∣∣∣Ik

)
≥ 0 (V-4)

This is the factual economy. In this row, we show the Theil Entropy Index T for the observed present value

of earnings Yk,i.

2We simulate the economy by replacing (V-3) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The
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present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 . The schooling choices are as determined in (V-4). In this row, we show the Theil Entropy

Index T for the observed present value of earnings Yh
k,s,i when we constrain schooling choices are Sk,i.

3We simulate the economy by replacing (V-3) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The

present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 . The schooling choices are then deterministic:

Sh
k,i = 1⇔ Yh

k,1,i − Yh
k,0,i − Ck,i ≥ 0.

In this row, we show the Theil Entropy Index T for the observed present value of earnings Yh
k,s,i when

schooling choices are Sh
k,i.
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Web Data Appendix Table V-3
Atkinson Index

NLS/66 NLSY/79 %Change NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0276 0.0389 0.4111 0.0586 0.0847 0.4446
Counterfactual: Fixing Schooling Choices as in Factual Economy

Heterogeneity Only2 0.0213 0.0286 0.3437 0.0447 0.0604 0.3503
Counterfactual: Allowing Agents to Change Schooling Choices

Heterogeneity Only3 0.0213 0.0286 0.3418 0.0447 0.0603 0.3485

NLS/66 NLSY/79 %Change NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0968 0.1467 0.5147 0.1627 0.2627 0.6149
Counterfactual: Fixing Schooling Choices as in Factual Economy

Heterogeneity Only2 0.0716 0.0980 0.3687 0.1060 0.1506 0.4205
Counterfactual: Allowing Agents to Change Schooling Choices

Heterogeneity Only3 0.0716 0.0979 0.3669 0.1059 0.1503 0.4185

ε = 1.5 ε = 2.0

Atkinson Index
Table 7

ε = 0.50 ε = 1.0

1Let Yk,s,t,i denote the earnings of an agent i, i = 1, ...,n, at age t, t = 1, ...,T, in schooling level s, s = high

school, college, and cohort k, k = NLS/1966,NLSY/1979. We model earnings Yk,s,t,i as:

Yk,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i + θ3,k,iα3,k,s,t,i + εk,s,t,i. (V-5)

The present value of earnings in schooling level s, Yk,s,i, is Yk,s,i =
∑T∗

t=1
Yk,s,t,i

(1+ρ)t−1 . The observed present value of

earnings satisfies Yk,i = Sk,iYk,1,i +
(
1 − Sk,i

)
Yk,0,i. Let Ck,i denote the psychic costs for individual i in cohort k.

The schooling choice is:

Sk,i = 1⇔ E
(
Yk,1,i − Yk,0,i − Ck,i

∣∣∣Ik

)
≥ 0 (V-6)

This is the factual economy. We then compute the average present value of earnings across all individuals

in cohort k, µk = 1
n
∑n

i=1 Yk,i. For a given inequality aversion parameter ε,we compute the level of permanent

income Ȳk (ε) that generates the same welfare as the social welfare of the actual distribution in cohort k:

[
Ȳk (ε)

]1−ε
− 1

1 − ε
=

1
nk

nk∑
i=1

(
Yk,i

)1−ε
− 1

1 − ε
.

For each value of ε, the Atkinson Index is A (ε) = 1 − Ȳk(ε)
µk
. In this row, we show the Atkinson Index for the

observed present value of earnings Yk,i for different values of ε.

2We simulate the economy by replacing (V-5) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,
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where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The

present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 . The schooling choices are as determined in (V-6). In this row, we show the Atkinson

Index for the observed present value of earnings Yh
k,i for different values of ε when we constrain schooling

choices are Sk,i.

3We simulate the economy by replacing (V-5) with:

Yh
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Yh
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The

present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Yh
k,s,i =

∑T∗
t=1

Yh
k,s,t,i

(1+ρ)t−1 . The schooling choices are then:

Sh
k,i = 1⇔ E

(
Yh

k,1,i − Yh
k,0,i − Ck,i

∣∣∣Ik

)
≥ 0.

In this row, we show the Atkinson Index for the observed present value of earnings Yh
k,i for different values

of ε when schooling choices are Sh
k,i.
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