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Abstract

This paper formulates and estimates models of the evolution of cognitive and noncognitive skills

over the life cycle of children and explores the role of family environments in shaping these skills at

different stages of the life cycle. Central to this analysis is the identification of the technology of

human skill formation. We estimate a dynamic factor model to solve the problem of endogeneity

of inputs and multiplicity of inputs relative to instruments. We identify the scale of the factors

by estimating their effects on adult outcomes. In this fashion we avoid reliance on test scores and

changes in test scores that have no natural metric. Parental investments are more effective in raising

noncognitive skills. Noncognitive skills promote the formation of cognitive skills but not vice versa.

Parental inputs have different effects at different stages of the child’s life cycle with cognitive skills

affected more at early ages and noncognitive skills affected more at later ages.
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1 Introduction

The importance of cognitive skills in explaining socioeconomic success is now firmly established (see

Cawley, Heckman, and Vytlacil, 2001; Herrnstein and Murray, 1994; Murnane, Willett, and Levy,

1995; Neal and Johnson, 1996). An emerging body of empirical research documents the importance

of noncognitive skills for wages, schooling and participation in risky behaviors (See Bowles, Gintis,

and Osborne, 2001, Heckman and Rubinstein, 2001, and Heckman, Stixrud, and Urzua, 2006).

Heckman, Stixrud, and Urzua (2006) demonstrate that cognitive and noncognitive skills are equally

important in explaining a variety of aspects of social and economic life in the sense that movements

from the bottom to the top of the noncognitive and cognitive distributions have comparable effects

on many outcome measures.

There is a substantial body of empirical research on the determinants of cognitive test scores

and their growth.1 There is little work on the determinants of the evolution of noncognitive skills.

This paper develops, identifies and estimates models of the technology of skill formation. Building

on the theoretical analyses of Cunha and Heckman (2003) and Cunha, Heckman, Lochner, and

Masterov (2006), we analyze the joint evolution of cognitive and noncognitive skills over the life

cycle of the child.

We model the self productivity of skills as well as their dynamic complementarity. Our tech-

nology formalizes the notion that noncognitive skills foster acquisition of cognitive skills by making

children more adventuresome and open to learning.2 It also formalizes the notion that cognitive

skills promote the formation of noncognitive skills. With our estimated technology, it is possible

to define and measure critical and sensitive periods in the life cycle of child development, and to

determine at which ages inputs most affect the evolution of skills.

Child development psychologists have long advocated the importance of understanding the for-

mation of noncognitive skills for interpreting the effects of early childhood intervention programs

(see Raver and Zigler, 1997). Heckman, Stixrud, and Urzua (2006) note that the Perry Preschool

program did not raise IQ but promoted success among its participants in a variety of aspects of

1Todd and Wolpin (2003) survey the vast educational production function literature as well as the child develop-
ment literature.

2Cameron (2004) reports evidence for such effects in her experimental studies of macaque monkeys, and Meaney
(2001) reports similar results for rodents. See the evidence in Knudsen, Heckman, Cameron, and Shonkoff (2006).
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social and economic life. Our analysis of noncognitive skills, their role in shaping cognitive skills,

our investigation of the role of cognitive skills in shaping noncognitive skills, and our determination

of the effectiveness of parental inputs on the formation of both types of skill over the life cycle,

is a first step toward providing a unified treatment of the early intervention and family influence

literatures.

The conventional approach to the estimation of cognitive production functions, best exempli-

fied by the research of Todd and Wolpin (2003, 2005), is to estimate a production function for

cognitive test scores relating inputs to outputs. As they emphasize, a central problem with this

approach is accounting for the endogeneity of inputs. Another problem is the wealth of candidate

parental input measures available in the Children of NLSY (CNLSY) data described below that

Todd and Wolpin (2005) analyze, and that we utilize in this paper. The confluence of these two

problems—endogeneity and the multiplicity of input measures—places great demands on standard

instrumental variable (IV ) and fixed effect procedures, such as those used by Todd and Wolpin. It

is common in studies of cognitive production functions for analysts to have more inputs than instru-

ments. Indices of inputs are used to circumvent this problem and reduce the parental input data

to more manageable dimensions. As emphasized by Todd and Wolpin (2005), fixed effects methods

invoke strong assumptions about separability of the technology of skill formation in observables and

unobservables, and the way unobservables enter the model.

Our approach to the identification of the technology of skill formation bypasses these problems.

We estimate a dynamic factor model that exploits cross equation restrictions (covariance restrictions

in linear systems) to secure identification using a version of dynamic state space models (Shumway

and Stoffer, 1982; Watson and Engle, 1983). The idea underlying our approach is to model cognitive

and noncognitive skills, as well as parental investments as low dimensional latent variables. Building

on the analysis of Jöreskog and Goldberger (1975), Jöreskog, Sörbom, and Magidson (1979), Bollen

(1989) and Carneiro, Hansen, and Heckman (2003), we use a variety of measurements related to skills

and investments to proxy latent skills and investments. With enough measurements relative to the

number of latent skills and investments, we can identify the latent state space dynamics generating

the evolution of skills through cross-equation restrictions. When instruments are required, they are

internally justified by our model. We economize on the instruments required to secure identification,
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which are often scarce. We solve the problem of the multiplicity of measures of parental investments

by using all of them as proxies for low dimensional latent investments. Instead of creating an

arbitrary index of parental inputs, we estimate an index that best predicts latent skill dynamics.

We also address a recurrent problem in the literature on cognitive production functions. Studies

in this tradition typically use a test score as a measure of output (see, e.g. Hanushek, 2003). Yet test

scores are arbitrarily normalized. Any monotonic transformation of a test score is also a valid test

score. Value added–the change in test scores over stages (or grades)–is not invariant to monotonic

transformations.

We solve the problem of defining a scale for output by anchoring our test scores using the adult

earnings of the child, which have a well defined cardinal scale. Other anchors such as high school

graduation, college enrollment and the like could be used. We normalize the latent factors that

generate test scores by determining how the factors predict adult outcomes.3 This approach sets

the scale of the test scores and factors in an interpretable metric.

Applying our methodology to CNLSY data we find that: (1) Both cognitive and noncognitive

skills change over the life cycle of the child. (2) Parental inputs affect the formation of both

noncognitive skills and cognitive skills. Direct measures of mother’s ability affect cognitive skills

but not noncognitive skills. (3) We find evidence for sensitive periods for parental inputs in the

acquisition of cognitive skills and noncognitive skills. The sensitive periods for cognitive skills occur

earlier in the life cycle of the child than do sensitive periods for noncognitive skills. In other words,

parental inputs appear to affect cognitive skill formation more strongly at earlier ages. They affect

noncognitive skill formation more strongly at later ages. This finding is consistent with the evidence

presented in Carneiro and Heckman (2003) that noncognitive skills are more malleable at later ages

than cognitive skills.

The plan of this paper is as follows. Section 2 presents our model of skill formation. Section 3

presents our analysis of identification using dynamic factor models. Section 4 discusses our empirical

findings. Section 5 concludes. We use a technical appendix to develop the details of our sample

3See Cawley, Heckman, and Vytlacil (1999) for an analysis that anchors test scores in earnings outcomes. We
substantially extend their analysis by allowing for investment at different life cycle stages to affect the evolution of
test scores.
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likelihood. A website provides supporting material.4

2 A Model of Cognitive and Noncognitive Skill Formation

The influential analysis of Becker and Tomes (1979, 1986) assumes only one period of childhood. In

Cunha, Heckman, Lochner, and Masterov (2006), we analyze a model where there are two periods

of childhood, “1” and “2”, followed by adult working life. This paper summarizes and extends the

analysis and estimates the technology derived in it. We assume that there are two kinds of skills:

θC and θN . θC is cognitive skill and θN is noncognitive skill. Becker and Tomes consider one output

associated with “human capital” that can be interpreted as a composite of these skills.

Let Ikt denote parental investments in child skill k in period t, k = C,N and t = 1, 2. Let

h be the level of human capital as the child starts adulthood which depends on both θC2 and θN2 .

The parents fully control the investment in the child. A richer model which we leave for another

occasion would incorporate, among other features, investment decisions of the child as influenced

by the parent through the process of preference formation, and through parental incentives for

influencing child behavior.

We first describe how skills evolve over time. Assume that each agent is born with initial

conditions θ0 =
¡
θC0 , θ

N
0

¢
. Family environmental and genetic factors may influence these initial

conditions (see Olds, 2002, and Levitt, 2003). At each stage t let θt =
¡
θCt , θ

N
t

¢
denote the vector

of skill or ability stocks. The technology of production of skill k in period t is:

θkt = fkt
¡
θt−1, I

k
t

¢
(1)

for k = C,N and t = 1, 2. We assume that fkt is twice continuously differentiable, increasing

and concave in Ikt .
5 In this model, stocks of both skills and abilities produce next period skills and

influence the productivity of investments. Cognitive skills can promote the formation of noncognitive

skills and vice versa because θt−1 is an argument of (1).

4See http://jenni.uchicago.edu/idest-tech.
5Twice continuous differentiability is only a convenience.
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Adult human capital h is a combination of different period 2 skills:

h = g
¡
θC2 , θ

N
2

¢
. (2)

The function g is assumed to be continuously differentiable and increasing in
¡
θC2 , θ

N
2

¢
. This spec-

ification of human capital assumes that there is no comparative advantage in the labor market or

in other areas of social performance.6

Period 1 is a critical period for θC if investments in θC are productive in period 1 but not in

period 2:
∂θC2
∂IC2

=
∂fC2

¡
θ1, I

C
2

¢
∂IC2

≡ 0 for all θ1, IC2 ,

but
∂θC1
∂IC1

=
∂fC1

¡
θ0, I

C
1

¢
∂IC1

> 0 for some θ0, IC1 .

Cunha, Heckman, Lochner, and Masterov (2006) survey a literature that establishes that the early

periods (before age 8) are critical for intelligence as measured by IQ but not for noncognitive skills.

Period 1 is a sensitive period for θC if at the same level of inputs, investment is more productive

in stage 1 than in stage 2:
∂θC2
∂IC2

¯̄̄̄
θ1=s,IC2 =i

<
∂θC1
∂IC1

¯̄̄̄
θ0=s,IC1 =i

.

The evidence summarized in Cunha, Heckman, Lochner, and Masterov (2006) suggests that early

investments in both cognitive and noncognitive abilities and skills are more productive than later

investments.7

Direct complementarity of skill l acquired in period 1 on the output of investment k in producing

skill k in period 2 is defined as:

∂2θk2
∂Ik2∂θ

l
1

> 0, l = C,N, k = C,N, l 6= k.

6Thus we rule out one potentially important avenue of compensation that agents can specialize in tasks that do
not require the skills in which they are deficient. Cunha, Heckman, Lochner, and Masterov (2006) present a more
general task function that captures the notion that different tasks require different combinations of skills and abilities.

7For a discussion of critical and sensitive periods in animals and humans, see Knudsen, Heckman, Cameron, and
Shonkoff (2006).
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Early stocks of abilities and skills promote later skill acquisition by making later investment more

productive. Students with greater early cognitive and noncognitive abilities are more efficient in

later learning of both cognitive and noncognitive skills. The evidence from the early intervention

literature suggests that the enriched early environments of the Abecedarian, Perry and CPC pro-

grams promote greater efficiency in learning in high schools and reduce problem behaviors. See

Currie and Blau (2006), the survey by Cunha, Heckman, Lochner, and Masterov (2006), and the

discussion in Heckman, Stixrud, and Urzua (2006).

Technology (1) is sufficiently rich to capture the evidence on learning in rodents and macaque

monkeys documented by Meaney (2001) and Cameron (2004) respectively. See Knudsen, Heckman,

Cameron, and Shonkoff (2006) for a review of the literature. Emotionally nurturing early envi-

ronments producing θN create preconditions for later cognitive learning. More emotionally secure

young animals explore their environments more actively and learn more quickly. This is an instance

of complementarity.

To fix these notions and provide a framework for interpreting the evidence presented in Section 4,

consider the following specialization of the model. Suppose initial conditions are the same for

everyone and assume that first period skills are just due to first period investment. This assumption

is made for analytical convenience and is relaxed in our empirical work reported below. Thus

θC1 = fC1
¡
θ0, I

C
1

¢
= IC1

and

θN1 = fC1
¡
θ0, I

C
1

¢
= IN1 ,

where we assume that IC1 and I
N
1 are scalars. Assume a CESmodel for the second period technologies

producing cognitive and noncognitive skill:

θC2 = fC2
¡
θ1, I

C
2

¢

=
©
γ1
¡
θC1
¢α
+ γ2

¡
θN1
¢α
+ (1− γ1 − γ2)

¡
IC2
¢αª 1

α , where

1 ≥ γ1 ≥ 0,

1 ≥ γ2 ≥ 0,

1 ≥ 1− γ1 − γ2 ≥ 0,

(3)
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and

θN2 = fN2
¡
θ1, I

N
2

¢

=
©
η1
¡
θC1
¢σ
+ η2

¡
θN1
¢σ
+ (1− η1 − η2)

¡
IN2
¢σª 1

σ , where

1 ≥ η1 ≥ 0,

1 ≥ η2 ≥ 0,

1 ≥ 1− η1 − η2 ≥ 0,

(4)

where 1
1−α is the elasticity of substitution in the inputs producing θC2 and

1
1−σ is the elasticity of

substitution of inputs in producing θN2 where α ∈ (−∞, 1] and σ ∈ (−∞, 1].

The CES technology is well known and has convenient properties. Notice that IN2 and IC2 are

direct complements with (θC1 , θ
N
1 ) irrespective of the substitution parameters α and σ, except in

limiting cases. Focusing on the technology for producing θC2 , when α = 1, the inputs are perfect

substitutes in the intuitive use of that term (the elasticity of substitution is infinite). The inputs

θC1 , θ
N
1 and I

C
2 can be ordered by their relative productivity in producing θ

C
2 . The higher γ1 and γ2,

the higher the productivity of θC1 and θ
N
1 respectively. When α = −∞, the elasticity of substitution

is zero. All inputs are required in the same proportions to produce a given level of output so there

are no possibilities for technical substitution, and θC2 = min
©
θC1 , θ

N
1 , I

C
2

ª
. In this technology, early

investments are a bottleneck for later investment. Compensation for adverse early environments

through late investments is impossible.

The evidence from numerous studies surveyed in Cunha, Heckman, Lochner, and Masterov

(2006) shows that IQ is no longer malleable after age eight. Taken at face value, this implies that if

θC1 is IQ, and period 1 stops at age eight, for all values of I
C
2 , θ

C
2 = θC1 . Period 1 is a critical period

for IQ but not necessarily for other skills and abilities. More generally, period 1 is a critical period

if
∂θCt
∂ICt

= 0 for t > 1.

For technology (3), this condition is satisfied if γ1 + γ2 = 1.

The evidence surveyed in Cunha, Heckman, Lochner, and Masterov (2006) shows substantial

positive results for adolescent interventions in producing noncognitive skills (θN2 ) and at best modest

gains for cognitive skills
¡
θC2
¢
from such interventions. Technologies (3) and (4) rationalize this
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pattern. Since the populations targeted by adolescent intervention studies tend to come from

families with poor backgrounds, we would expect IC1 and IN1 for such families to be below average.

Thus, θC1 and θN1 will be below average. Interventions make IC2 and IN2 relatively large for the

treatment group in comparison to the control group in the adolescent intervention experiments. At

stage 2, θC2 (cognitive ability) is essentially the same in the control and treatment groups, while θ
N
2

(noncognitive ability) is higher for the treated group. Large values of (γ1 + γ2) which produce small

coefficients on IC2 , or small values of (η1 + η2) (so the coefficient on IN2 is large) and high values of

α and σ can produce this pattern. Another case that rationalizes their evidence is the parameter

configuration α→−∞ and σ = 1. Under these conditions:

θC2 = min
©
θC1 , θ

N
1 , I

C
2

ª
, (5)

while

θN2 = η1θ
C
1 + η2θ

N
1 + (1− η1 − η2) I

N
2 . (6)

In this case, the attainable period 2 stock of cognitive skill
¡
θC2
¢
is limited by the minimum value

of θC1 , θ
N
1 , I

C
2 . Any level of investment in period 2 such that I

C
2 > min

©
θC1 , θ

N
1

ª
is ineffective in

incrementing the stock of cognitive skills. Period 1 is a bottleneck period. Unless sufficient skill

investments are made in θC in period 1, it is not possible to raise skill θC in period 2. This phenom-

enon does not appear in the production of the noncognitive skill, provided that (1− η1 − η2) > 0.

More generally, the higher σ and the larger (1− η1 − η2), the more productive is investment I
N
2 in

producing θN2 .

To complete the CES example, assume that adult human capital h is a CES function of the two

skills accumulated at stage two:

h =
n
τ
¡
θC2
¢φ
+ (1− τ)

¡
θN2
¢φo ρ

φ
= g (I1, I2) , (7)

where ρ ∈ (0, 1), τ ∈ [0, 1], and φ ∈ (−∞, 1]. In this parameterization, 1
1−φ is the elasticity of

substitution across different skills in the production of adult human capital. Equation (7) reminds

us that the market, or life in general, requires use of multiple skills. Heckman, Stixrud, and
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Urzua (2006) show the importance of both cognitive and noncognitive skills in producing market

effectiveness and estimate the trade-off among the skills. In general, different tasks require cognitive

and noncognitive skills in different proportions. One way to remedy early skill deficits is to make

compensatory investments. Another way is to motivate people from disadvantaged environments

to pursue tasks that do not require the skill that deprived early environments do not produce. A

richer theory would account for this choice of tasks and its implications for remediation. For the

sake of simplifying the argument, we work with equation (7) that captures the notion that skills can

trade off against each other in producing effective people. Highly motivated, but not very bright,

people may be just as effective as bright but unmotivated people. That is one of the lessons from

the GED program (See Heckman and LaFontaine, 2006).

Our analysis is simplified by assuming that investments are general or public goods investments:

IC1 = IN1 = I1, IC2 = IN2 = I2.8 Cunha and Heckman (2003) develop the more general case of

skill-specific investments which requires substantially more notational complexity.

With common investment goods, we can solve out for θC2 and θN2 in terms of I1 to simplify (3)

and (4) to reach

θC2 = {(γ1 + γ2) (I1)
α + (1− γ1 − γ2) (I2)

α}
1
α (8)

and

θN2 = {(η1 + η2) (I1)
σ + (1− η1 − η2) (I2)

σ}
1
σ . (9)

If we substitute these expressions into the production function for adult human capital (7), we

obtain

h =

½
τ [γ̃ (I1)

α + (1− γ̃) (I2)
α]

φ
α + (1− τ)

h
φ̃ (I1)

σ +
³
1− φ̃

´
(I2)

σ
iφ
σ

¾ ρ
φ

, (10)

where γ̃ = γ1 + γ2, φ̃ = η1 + η2. Equation (10) expresses adult human capital as a function of the

entire sequence of childhood investments in human capital. Current investments in human capital

are combined with the past stock of skills in order to increment the stock of current skills.

A conveniently simple formulation of the problem arises if we assume that α = σ = φ so that

8Thus when a parent reads to the child in the first period of childhood, such reading may be an investment in all
kinds of skills. It is an investment in cognitive skills, as it helps the child get exposure to language and new words. It
can also be an investment in noncognitive skills, if reading nurtures the self confidence and persistence of the child.
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CES substitution among inputs in producing outputs and CES substitution among skill in producing

human capital are the same. This produces the familiar CES expression for adult human capital

stocks:

h =
n
γIφ1 + (1− γ) Iφ2

o ρ
φ
, (11)

where γ = τ γ̃ + (1− τ) φ̃ and φ = α = σ. The parameter γ is a skill multiplier. It arises because

I1 affects the accumulation of θC1 and θN1 . These stocks of skills in turn affect the productivity of

I2 in forming θ
C
2 and θN2 . Thus γ captures the net effect of I1 on h through both self-productivity

and direct complementarity.9 The parameter γ also illustrates the concepts of sensitive and critical

periods. For example, if γ = 1, then period one is critical for h. On the other hand, if γ = 0 period

two is critical for h. Whenever 1
2
< γ < 1, period one is sensitive for h, but not critical. Finally, if

0 < γ ≤ 1
2
, then period two is sensitive for h.

The quantity 1
1−φ is a measure of how easy it is to substitute between I1 and I2 where the

substitution arises from both the task performance (human capital) function in equation (7) and the

technology of skill formation. Within the CES technology, φ is a measure of the ease of substitution

of inputs. In this analytically convenient case, the parameter φ plays a dual role. First, it informs

us how easily one can substitute across different skills in order to produce one unit of adult human

capital h. Second, it also represents the degree of complementarity (or substitutability) between

early and late investments in producing skills. In this second role, the parameter φ dictates how

easy it is to compensate for low levels of stage 1 skills in producing late skills.10

When φ is small, low early investments I1 are not easily remediated by late investments I2 in

producing human capital. The other face of CES complementarity is that when φ is small, high

early investments should be followed with high late investments in order for the early investments

to be effective. In the extreme case when φ → −∞, (11) converges to h = (min {I1, I2})ρ. The

Leontief case contrasts with the case of perfect CES substitutes, which arises when φ = 1: h =

9Direct complementarity between I1 and I2 is ∂2h
∂I1∂I2

> 0. As long as ρ > φ, I1 and I2 are direct complements,

because sign
³

∂2h
∂I1∂I2

´
= sign (ρ−φ). This definition of complementarity is to be distinguished from the notion based

on the elasticity of substitution between I1 and I2, which is 1
1−φ . When φ < 0, I1 and I2 are sometimes described

as complements. When φ > 0, I1 and I2 are sometimes described as substitutes. When ρ = 1, I1 and I2 are always
direct complements, but if 1 > φ > 0, they are CES substitutes.
10In principle, compensation can come through two channels: (i) through skill investment or (ii) through choice of

market activities, substituting deficits in one skill by the relative abundance in the other through choice of tasks.
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[γI1 + (1− γ) I2]
ρ. When we impose the further restriction that γ = 1

2
, we generate the model that

is implicitly assumed in the literature of human capital investments that collapse childhood into a

single period. In this special case, the output of adult human capital is determined by the total

amount of human capital investments, regardless of how investment is distributed across childhood

periods. In the case of perfect CES substitutes, it is possible in a physical productivity sense, to

compensate for early investment deficits by later investments, although it may not be economically

efficient to do so.

To analyze the optimal timing of investment, it is convenient to work with the technology

embodied in (11). We now show how the ratio of early to late investments varies as a function of φ,

γ, and ρ. Consider the following model in which parents maximize the present value of net wealth

of their children.11 In order to do that, parents decide how much to invest in period “1,” I1, how

much to invest in period “2,” I2, and how much to transfer in risk-free assets, b, given total parental

resourcesM . Period “1” could include in utero investments. Parents cannot extract resources from

children, so b ≥ 0. From period “3” to period T , the age of retirement from the workforce, persons

are assumed to work full time. Let r denote the time-invariant interest rate, set exogenously and

assumed to be constant for all periods, and let q denote the present value of future earnings per

efficiency unit of human capital {wt}Tt=3:

q =
TX
t=3

µ
1

1 + r

¶t−3
wt.

12

Lifetime earnings of children when they start working at period “3” are given by qg (I1, I2), where

g is the function determining the adult stock of human capital. Discounted to period 1, the present

value of lifetime earnings is q

(1+r)2
g (I1, I2). The problem of the parents is to maximize the present

value of the child’s net wealth:

max
I1,I2,b

½
1

(1 + r)2
[qg (I1, I2) + b]

¾
,

11This setup is overly simplistic but allows us to focus on the important points. See Cunha (2004) and Cunha and
Heckman (2003) for more general models.
12We abstract from endogenously determined on-the-job training, learning-by-doing, and assume that agents supply

labor inelastically.
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subject to the standard budget constraint

I1 +
1

1 + r
I2 +

1

(1 + r)2
b =M, (12)

and the constraint that parents cannot leave negative bequests to their children

b ≥ 0, (13)

where g (I1, I2) is defined in equation (11) and is concave in I1 and I2.

When φ = 1, early and late investments are perfect CES substitutes. This is a CES version of

Becker and Tomes (1979, 1986). In this case, the optimal investment strategy is straightforward.

The price of early investment is $1. The price of the late investment is $ 1
(1+r)

. Thus the parents can

purchase (1 + r) units of I2 for every unit of I1 foregone. The amount of human capital produced

from one unit of I1 is γ, while $ (1 + r) of I2 produces (1 + r) (1− γ) units of human capital.

Therefore, the parent invests early if γ > (1− γ) (1 + r) and late otherwise. Two forces act in

opposite directions. High productivity of initial investment (the skill multiplier) drives the agent

toward making early investments. Intertemporal prices (the interest rate) drive the agent to invest

late. It is optimal to invest early if γ > 1+r
2+r
.

As φ → −∞, the CES production function converges to the Leontief case and the optimal in-

vestment strategy is to set I1 = I2. CES complementarity dominates and the profile of investments

is such that I1
I2
converges to one. In this extreme case, CES complementarity has a dual face. Invest-

ments in the young are essential. At the same time, later investments are needed to harvest early

investments. On efficiency grounds, early disadvantages should be perpetuated, and compensatory

investments at later ages are economically inefficient.

For −∞ < φ < 1, the first-order conditions are necessary and sufficient given concavity of

the technology in terms of I1 and I2. Let µ, λ denote the Lagrange multipliers associated with

constraints (12) and (13), respectively. The first-order conditions for I1, I2, and b are

q

(1 + r)2
ργ
n
γIφ1 + (1− γ) Iφ2

oρ−φ
φ

Iφ−11 = µ, (14)

12



q

(1 + r)
ρ (1− γ)

n
γIφ1 + (1− γ) Iφ2

oρ−φ
φ

Iφ−12 = µ, (15)

µ− 1 = λ (1 + r)2 . (16)

Notice that if restriction (13) is not binding, then λ = 0, µ = 1 and optimal early and late

investments are only functions of (q, r). In this case, unconstrained families that make bequests

will all invest the same in their children. The only difference is in the transfers of assets to their

children. If MA > MB then bA > bB.

For an interior solution, if we take the ratio of (14) to (15) and rearrange terms we obtain

I1
I2
=

∙
γ

(1− γ) (1 + r)

¸ 1
1−φ

. (17)

Figure 1 plots the ratio of early to late investments as a function of the skill multiplier γ, under

different values of the complementarity parameter φ. When φ → −∞, we obtain the Leontief

technology and there is high CES-complementarity between early and late investments. In this

case, the ratio is not sensitive to variations in γ. CES-complementarity dominates, and the optimal

investment profile distributes investments equally across different periods. When φ = 0, technology

g is given by the Cobb-Douglas function:

h = (I1)
ργ (I2)

ρ(1−γ) .

In this case, from equation (17), I1
I2
is close to zero for low values of γ, but explodes to infinity as γ

approaches one.

Taking logs of (17) yields the expression

log

µ
I1
I2

¶
=

µ
1

1− φ

¶
log

µ
γ

1− γ

¶
−
µ

1

1− φ

¶
log (1 + r) . (18)

This expression does not depend on ρ. In the special case γ = 1+r
2+r
, investment will be the same

in both periods regardless of the value assumed by φ. More generally, the ratio of early to late

investments varies with the complementarity between early and late investments, φ, with the skill

13



multiplier for human capital, γ, and with the interest rate. Ceteris paribus, if γ
(1−γ)(1+r) > 1, the

greater the CES complementarity, (i.e., the lower φ), the lower the growth of investments over time.

In the limit, if investments complement each other strongly, optimality implies that they should

be equal in both periods. Ceteris paribus, the higher the skill multiplier, γ, the higher first period

investments should be relative to second period investments. Intuitively, if early investments have

a substantial impact in determining future stocks of human capital, optimality implies that early

investments should also be high relative to later investments. Finally, the higher the interest rate,

the lower is I1
I2
. This reflects the opportunity costs of investing today relative to investing tomorrow.

The higher the interest rate today, the cheaper it is to postpone investments. Expression (18) is

the basis for the internal instruments we develop in section 3.

We summarize the lessons from this analysis in Table 1. When CES complementarity is high,

the skill multiplier γ plays a limited role in shaping the ratio of early to late investments. High

early investments should be followed by high late investments. As the degree of CES complemen-

tarity decreases, the role of the skill multiplier increases, and the higher the multiplier, the more

investments should be concentrated in early ages.

This simple model also has implications for the optimal timing of interventions. If MA > MB

and family A is unconstrained while family B is constrained, then for family B, λB > 0, µB =£
1 + λB (1 + r)2

¤
. Consequently, in equilibrium, the marginal return to one dollar invested in the

poor child from family B is above the marginal return to the same dollar invested in the rich child

from family A, so family B underinvests compared to the less constrained family A.

There is no trade-off between equity and efficiency in early childhood investments. Government

policies to promote early accumulation of human capital should be targeted to the children of

poor families. However, the optimal second period intervention for a child from a disadvantaged

environment depends critically on the nature of human capital aggregation function (11) and the

technology of skill production. If I1 and I2 are perfect CES complements, then a low level of I1

cannot be compensated at any level of investment by a high I2.

On the other hand, suppose that φ = 1, so inputs are perfect substitutes. The technology in

this case is:

h = [γI1 + (1− γ) I2]
ρ , 0 ≤ γ ≤ 1. (19)
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In this case, a second-period intervention can, in principle, eliminate initial skill deficits (low values

of I1). At a sufficiently high level of second-period investment, it is technically possible to offset

low first period investments. However, it may not be cost effective to do so. For example, if ρ = 1

and q (1− γ) < 1+ r, then the gains from future earnings do not justify the costs of investment. It

would be more efficient to give the child a bond that earns interest rather than to invest in human

capital in order to put the child at a certain level of income. Carneiro and Heckman (2003) show

that at current levels of spending, reduced classroom size interventions in U.S. public schools have

this feature and are economically inefficient.

We previously discussed the concepts of critical and sensitive periods in terms of the technical

possibilities of remediation. These concepts were defined in terms of the technology of skill forma-

tion. Here, we consider the net effects of interventions operating through investment and market

substitution. The higher φ, the greater are the possibilities for alleviating early disadvantage. When

φ = 1, as in the example just discussed, it is always technically possible to remediate early disad-

vantage. But it may not be economically efficient to do so. From an economic point of view, critical

and sensitive periods should be defined in terms of the costs and returns of remediation, and not

solely in terms of technical possibilities. We now turn to identifying and estimating key aspects of

the technology.

3 Identifying the Technology using Dynamic Factor Models

Identifying and estimating technology (1) is a challenging task. Both the inputs and outputs can

only be proxied, producing the problem of measurement error. In addition, the inputs are likely

to be endogenous because parents choose them in the light of their preferences and early outcomes

of children. General nonlinear specifications of technology (1) raise additional problems regarding

measurement error in latent variables for nonlinear systems. (See Schennach, 2004).

In this paper we estimate log linear specifications of (1) and therefore assume Cobb Douglas

technologies. Log linear specifications are a traditional starting point. A more general nonlinear

analysis would entail additional econometric and computational complications although it would

identify key substitution (α, σ) parameters. We leave that task for the future (See Cunha, Heckman,
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and Schennach, 2006).13

3.1 Identifying A Log Linear Technology

Using a log linear specification we can identify critical and sensitive periods for inputs. We can also

identify cross effects, as well as self productivity of the stocks of skills. If we find little evidence of

self productivity, sensitive or critical periods, or little evidence of cross effects in a simpler setting,

it is unlikely that a more general nonlinear model will overturn these results. Identifying the log

linear technology raises many challenges that we address in this paper.

There is a large body of research that estimates the determinants of the evolution of cognitive

skills. Todd and Wolpin (2003) present a valuable survey of this literature that is a guide for

interpretation and estimation. To our knowledge, there is no previous research on estimating the

evolution of noncognitive skills.

The empirical analysis reported in Todd and Wolpin (2005) represents the state of the art in

modeling the determinants of the evolution of cognitive skills.14 In their paper, they use a scalar

measure of cognitive ability (θCt+1) in period t + 1 that depends on period t cognitive ability (θCt )

and investment (It). They assume a linear-in-parameters technology

θCt+t = atθ
C
t + btIt + ηt (20)

where ηt represents unobserved inputs, measurement error, or both. They allow inputs to have

different effects at different stages of the child’s life cycle. They use the components of the “home

score” measure as measures of parental investment.15 We use a version of the inputs into the home

score as well, but in a different way than they do.

Using logs of latent skills and investments, one can interpret (20) as a Cobb Douglas repre-

13We could have equally well adopted a linear specification assuming perfect substitution among inputs. As an
approximation, this would also be valid. The results reported in this paper are silent about the magnitudes of the
key substitution parameters (α, σ), introduced in the last section, but allow us to approximate other features of the
technology and distinguish the effects early versus late investment.
14Todd and Wolpin (2005) discuss a paper by Fryer and Levitt (2004) that uses inappropriate static methods to

estimate a dynamic model of investment. Fryer and Levitt assume that parental inputs do not cumulate. Alterna-
tively, they assume 100% depreciation of investment in each period. They also do not account for endogeneity of
inputs.
15This measure originates in the work of Bradley and Caldwell (1980, 1984) and is discussed further in section 4.
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sentation of technology (1). The Cobb Douglas case is intermediate between the case of perfect

substitutes and perfect complements. It sets α = σ = 0. The effects of investment and lagged skill

can depend on the stage of the investment (a and b have t subscripts) so it is possible to identify

critical and sensitive periods. Todd and Wolpin (2003, 2005) provide an extensive discussion of

problems arising from endogenous inputs (θCt , It dependent on unobservable ηt). In their 2005

paper, they use instrumental variable (IV ) methods coupled with fixed effect methods (see Hsiao,

1986, Baltagi, 1995, and Arellano, 2003, for descriptions of these procedures). Reliance on IV is

problematic because of the ever present controversy about the validity of exclusion restrictions.16

As stressed by Todd and Wolpin, fixed effect methods require very special assumptions about the

nature of the unobservables, their persistence over time and the structure of agent decision rules.

The CNLSY data that Todd and Wolpin (2005) (and we) use has a multiplicity of investment mea-

sures subsumed in a “home score” measure which, as they discuss, combines many diverse parental

input measures into a score that weights all components equally.17

Todd and Wolpin (2005) and the large literature they cite use a cognitive test score as a measure

of output. This imparts a certain arbitrariness to the analysis. Test scores are arbitrarily normed.

Any monotonic function of the test score is a perfectly good alternative test score. A test score

is only a relative rank. While Todd and Wolpin use raw scores and others use ranks (see, e.g.

Carneiro and Heckman, 2003; Carneiro, Heckman, and Masterov, 2005), none of these measures is

intrinsically satisfactory because there is no meaningful cardinal scale for test scores. We address

this problem by using adult outcomes to anchor the scale of the test score.

In Cunha, Heckman, and Schennach (2006), we address this problem in a general way for

arbitrary monotonic transformations of the factors. In this paper, we develop an interpretable scale

for θ that is robust to all affine transformations.18 We assume that investment It is measured in

the scale of log dollars. We report results for alternative normalizations of the units of investment.

16Fixed effect methods do not easily generalize to the nonlinear frameworks that are suggested by our analysis of
the technology of skill formation presented in Section 2 but that concern is not relevant to this paper. See however
the analysis of Altonji and Matzkin (2005) for one approach to fixed effects in nonlinear systems.
17There are many other papers that use this score. See e.g. Baydar and Brooks-Gunn, 1991, and the papers cited

by Todd and Wolpin.
18An affine transformation is e.g. χ1 + χ2θ, χ2 6= 0, so it includes linear transformations but also allows for

intercepts.
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For example, using the earnings as the anchor in period T , we write

lnET = µT + δθT + εT , (21)

where the scale of θT is unknown. For any affine transformation of θT , corresponding to different

units of measuring investment, the value of δ adjusts and we can identify the left hand side of

∂ lnET

∂IT−1
= δ

µ
∂θT
∂IT−1

¶
. (22)

Thus, although the scale of δ is not uniquely determined, nor is the scale of θT , the scale of δθT

is uniquely determined by its effect on log earnings and define all factors relative to their effects

on earnings. This approach generalizes to multiple factors and we apply it in this paper. We now

develop our empirical approach to identifying and estimating the technology of skill formation.19

3.2 Estimating the Technology of Production of Cognitive and Noncog-

nitive Skills

Our analysis departs from that of Todd andWolpin (2005) in six ways. (1) We analyze the evolution

of both cognitive and noncognitive outcomes using the equation system

µ
θNt+1
θCt+1

¶
= At

µ
θNt
θCt

¶
+BtIt +

µ
ηNt
ηCt

¶
(23)

where It can be a vector and Bt a suitably dimensioned coefficient matrix. (2) We determine how

stocks of cognitive and noncognitive skills at date t affect the stocks at date t+ 1, examining both

self productivity (the effects of θNt on θNt+1, and θCt on θCt+1) and cross productivity (the effects

of θCt on θNt+1 and the effects of θ
N
t on θCt+1) at each stage of the life cycle. (3) We develop a

dynamic factor model where we proxy θt =
¡
θNt , θ

C
t

¢
by vectors of measurements on skills which can

include test scores as well as outcome measures. In our analysis, test scores and parental inputs are

19To check the robustness of our results, we could use another anchor - such as the probability of high school
completion - using the methods developed in Carneiro, Hansen, and Heckman (2003) to incorporate the factors in
the (nonlinear) outcome equations. See the discussion below in section 4.1.2. In this paper we use a linear probability
model for high school choices.
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indicators of the latent skills and latent investments. In some specifications we also use earnings

as well as test scores as indicators of latent skills. We account for measurement errors in output

and input measures. We find substantial measurement errors in the proxies for parental investment.

(4) Instead of imposing a particular index of parental input based on components of the home score,

we implicitly estimate an index. (5) Instead of relying solely on exclusion restrictions to generate

instruments to correct for measurement error in the proxies for θt and It, and for endogeneity, we use

covariance restrictions that exploit the feature of our data that we have many more measurements

on θt+1, θt and It than the number of unobserved factors. This allows us to secure identification from

cross equation restrictions using MIMIC (Jöreskog and Goldberger, 1975) and LISREL (Jöreskog,

Sörbom, and Magidson, 1979) models.20 When instruments are needed, they arise from the internal

logic of the model presented in section 2, equation (18), using methods developed by Madansky

(1964) and Pudney (1982). (6) Instead of relying on test scores as a measure of output and change

in output due to parental investments, we anchor the scale of the test scores using adult outcome

measures as log earnings and probability of high school graduation. Thus we estimate the effect of

parental investments on the adult earnings of the child.

In terms of the model of Todd and Wolpin (equation (20)), we assume access to measurement

systems for θCt+1, θ
C
t , It and assume that we can represent the measurements by a dynamic factor

structure:

Y C
j,t+1 = µCj,t+1 + αC

j,t+1θ
C
t+1 + εCj,t+1, for j = 1, . . . ,mC

t+1,

Y C
j,t = µCj,t + αC

j,tθ
C
t + εCj,t, for j = 1, . . . ,mC

t , (24)

Xk,t = µXk,t + βk,tIt + εIk,t, for k = 1, . . . ,mI
t , t = 1, . . . , T ,

where mC
t ,m

I
t are, respectively, the number of measurements on cognitive skills and investments

in period t. Assuming that the components of (εCj,t+1, ε
C
j,t, ε

I
k,t) are mutually independent and are

independent of (εCj,t0+1, ε
C
j,t0, ε

I
k,t0) t 6= t0, and all pairs are independent of θCt+1, θ

C
t , It, we can,

under the conditions we present in the next section, identify the parameters of (20). In a linear

system, our approach to identification is based on the covariance restrictions used in LISREL (see,

20See Carneiro, Hansen, and Heckman (2003) and Hansen, Heckman, and Mullen (2004) for some recent extensions.
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e.g. Bollen, 1989) and in MIMIC models (Jöreskog and Goldberger, 1975). Our approach can be

extended to general nonlinear systems so we can use it to estimate more general technologies. See

Cunha, Heckman, and Schennach (2006). However, in this paper, we confine our analysis to (log)

linear technologies.

In our model, a “fixed effect” is an unmeasured factor that enters each stage of the production

function. Exploiting the rich nature of the CNLSY data, we assume that fixed effects are factors

that can be proxied by measurement equations. Since we allow for and identify correlations among

the unobserved factors, we account for dependence among the latent inputs. We account for latent

initial conditions of the process, θ0, which correspond to endowment abilities. Because we have

many different measures of abilities in the first period of our data, we identify the distribution of

the latent initial conditions. We also identify the distribution of each θt as well as the dependence

across θt and θt0, t 6= t0.

Todd and Wolpin (2005) adopt a more agnostic posture and assume no measurements are avail-

able to proxy unobserved fixed effects. In this respect, their approach is more general than ours.

They refer to “mental ability” as one candidate fixed effect. We have multiple measurements of

mental (and other abilities) over the life cycle of the child and use these as proxies for “true” mental

ability. We now present a formal statement of our identification strategy for the parameters of the

model of equation (23).

3.3 A Model for the Measurements

Let θCt , θ
N
t denote, respectively, the stock of cognitive and noncognitive skills of the agent in period

t. We do not observe θCt or θ
N
t directly. Instead, we observe a vector of measurements, such as test

scores and behavioral measures, Y C
j,t, Y

N
j,t for j = 1, 2, . . . ,m

k
t , k = C,N respectively. Assume that:

Y k
j,t = µkj,t + αk

j,tθ
k
t + εkj,t for j = 1, . . . ,mk

t and k = C,N (25)

and set αC
1,t = αN

1,t = 1. Some normalization is needed to set the scale of the factors. The µ
k
j,t may

depend on regressors. We normalize the factors on adult earnings instead of test scores as described

in section 3.1 using a log linear earnings function. We make the following assumptions about the
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εkj,t for k = C,N :

1. εkj,t is independent across agents and over time for j = 1, 2, . . . ,m
k
t , k = C,N , t = 1, . . . , T ;

2. εki,t is independent from εlj,t for i, j = 1, 2, . . . ,m
k
t and i 6= j, k = C,N , l = C,N , t = 1, . . . , T ;

3. εkj,t is independent of θ
k
τ for all t, τ = 1, 2, . . . , T and j = 1, 2, . . . ,mk

t , k = C,N .

Let It denote parental investments in the skills of the child. We do not observe investments It

directly. We observe a vector of measurements Xk,t. We represent these by

Xk,t = µXk,t + βk,tIt + εIk,t for k = 1, . . . ,mI
t , t = 1, . . . , T, (26)

and we set β1,t = 1, a normalization that sets the scale of It. Again, the µXk,t may depend on

regressors. The following assumptions are made about εIk,t :

1. εIk,t is independent across agents and over time for k = 1, 2, . . . ,m
I
t , t = 1, . . . , T ;

2. εIj,t is independent from εIk,t for j, k = 1, 2, . . . ,m
I
t and k 6= j, t = 1, . . . , T ;

3. εIk,t is independent from Iτ for all t, τ = 1, 2, . . . , T and k = 1, 2, . . . ,mI
t , t = 1, . . . , T .

4. εIk,t is independent of θ
k
τ and εlj,t for all t, τ = 1, 2, . . . , T and j = 1, 2, . . . ,mk

t , k = C,N ,

l = C,N .

The ε’s are components of measurement error accounting for the fallible measure of the latent skills

and investments. Let S,A denote mother’s education and latent cognitive ability, respectively. We

have a vector of measurements on mother’s cognitive ability, Mk for k = 1, . . . ,mA :

Mk = µMk + δkA+ εAk (27)

where the error term εAk satisfies:

1. εAk is independent from εAj for j 6= k.

2. εAk is independent from A, all θ’s and It.
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3. εAk is independent of all ε
I
l,t, ε

k
j,t: l = 1, . . . ,m

I
T ; t = 1, . . . , T ; j = 1, . . . ,m

k
t ; k = C,N .

We assume that the mother’s education is not measured with error.

We analyze a simple log linear law of motion for skills. Let Γt = (At, Bt)

θkt+1 = γk1,tθ
N
t + γk2,tθ

C
t + γk3,tIt + γk4,tS + γk5,tA+ ηkt for k = C,N and t = 1, . . . , T, (28)

where the error term ηkt satisfies the property that η
k
t is independent across agents and over time

for the same agents, but ηCt and ηNt are freely correlated. We show how to relax the independence

assumption at our website appendix and allow for unobserved inputs, but in this paper we assume

independence.21

We allow the components of (θt+1, θt, It, A) to be freely correlated for any t and with any vector

(θt0+1, θt0 , It0 , A), t0 6= t, and we can identify this dependence. We assume that mk
t is independent

of θt, It, S, and A for k = C,N and t = 1, . . . , T . When the means associated with each mea-

surement system contain regressors, we assume that the regressors are independent of the errors in

all measurement systems. We now establish conditions under which the technology parameters are

identified.

3.4 Semiparametric Identification

The goal of the analysis is to recover the joint distributions of
©
θCt , θ

N
t

ªT
t=1
, A, {It}Tt=1,

©
ηkt
ªT
t=1,k=C,N

,©
εkj,t
ªmk

t

j=1
,
©
εIk,t
ªmI

t

k=1
and

©
εAk,t
ªmA

t

k=1
nonparametrically, as well as the parameters

©
αk
j,t

ªmk
t

j=1,t=1
,
©
βj,t
ªmI

t

j=2
,©

γkj,t
ª5
j=1
for k = C,N . For simplicity we do not discuss identification of the means of the measure-

ments because under our assumptions, this is straightforward.

3.4.1 The identification of
©
αC
j

ªmC
t

j=2
,
©
αN
j

ªmN
t

j=2
,
©
βk,t
ªmI

t

k=1
and the distributions of

©
θCt , θ

N
t

ªT
t=1
,

{It}Tt=1

Suppose that mk
t ≥ 3, k = C,N . Since we observe

©
Y C
j,t

ªmC
t

j=1
for every person, we can compute

from the data Cov
¡
Y C
i,t , Y

C
j,t

¢
for all i, j pairs. Let V ar

¡
θCt
¢
= σ2

θCt
denote the variance of θCt ,

21When we apply the econometric framework that relaxes independence, our empirical conclusions do not change
in any important way.
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t = 1, 2, . . . , T , and note that it may change over time. Recall that αC
1,t = 1. Consequently, we

obtain:

Cov
¡
Y C
1,t, Y

C
2,t

¢
= αC

2,tσ
2
θt (29)

Cov
¡
Y C
1,t, Y

C
3,t

¢
= αC

3,tσ
2
θt (30)

Cov
¡
Y C
2,t, Y

C
3,t

¢
= αC

2,tα
C
3,tσ

2
θt. (31)

Taking ratios:
Cov

¡
Y C
2,t, Y

C
3,t

¢
Cov

¡
Y C
1,t, Y

C
3,t

¢ = αC
2,t

Cov
¡
Y C
2,t, Y

C
3,t

¢
Cov

¡
Y C
1,t, Y

C
2,t

¢ = αC
3,t.

We can identify αC
2,t and α

C
3,t from the ratios of covariances. Proceeding in the same fashion, we can

identify αC
j,t for j = 2, 3, . . . ,m

C
t , t = 1, . . . , T up to the normalization αC

1,t = 1. Then, using, for

example, (29) we can identify σ2
θCt
for all t = 1, 2, . . . , T .

Once the parameters αC
1,t, α

C
2,t, . . . , α

C
mC
t ,t
are identified (up to the normalization αC

1 = 1), we can

rewrite (25) as:
Y C
j,t

αC
j,t

= θCt +
εCj,t
αC
j,t

, j = 1, 2, . . . ,mC
t .

We can apply Kotlarski’s Theorem (Kotlarski, 1967) and identify the distributions of θCt and
εCj,t
αCj,t
.

Since αC
j,t is identified, it is possible to recover the distribution of ε

C
j,t for j = 1, 2, . . . ,mC

t , and

t = 1, 2, . . . , T .

The preceding analysis can also be applied to the system of measurements of noncognitive

skills. Consequently, it is possible to identify the loadings αN
j,t for j = 1, 2, . . . ,mN

t up to the

normalization αN
j,t = 1. Once factor loadings are identified, we can apply Kotlarski’s Theorem and

obtain identification of the distributions of θNt and εNj,t for t = 1, 2, . . . , T and j = 1, 2, . . . ,mN
t .

Proceeding in a similar fashion for the measurements on investments, we conclude that the

parameters βk,t, k = 1, 2, . . . ,mI
t are identified up to the normalization β1,t = 1. Also, we can

apply Kotlarski’s Theorem and conclude that the distributions of It and εIk,t are identified for

t = 1, 2, . . . , T and k = 1, 2, . . . ,mI
t . Suppose that we have a vector of Mk test scores for parents,
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k = 1, . . . ,mA, where mA ≥ 3. We can use the same principles to identify the distribution of A for

parents.

Finally, we can identify the covariance between θCt , θ
N
t by computing:

Cov
¡
Y C
1,t, Y

N
1,t

¢
= Cov

¡
θCt , θ

N
t

¢
and we can proceed analogously to identify the covariances Cov

¡
θCt , It

¢
and Cov

¡
θNt , It

¢
, and the

joint covariances among all factors associated with all measurement systems.22

3.4.2 The Identification of the Technology Parameters

Consider, for example, the law of motion for noncognitive skills:

θNt+1 = γN1,tθ
N
t + γN2,tθ

C
t + γN3,tIt + γN4,tS + γN5,tA+ ηNt for t = 1, . . . , T. (32)

A parallel analysis can be performed for cognitive skills. We assume that ηNt is serially independent

but possibly correlated with all of the latent factors. We substitute the measurement equations

Y N
1,t+1, Y

N
1,t , Y

C
1,t,X1,t, and M1, for θ

N
t+1, θ

N
t , θ

C
t , It, and A respectively:

Y N
1,t+1 = γN1,tY

N
1,t+γ

N
2,tY

C
1,t+γ

N
3,tX1,t+γ

N
4,tS+γ

N
5,tM1+

¡
εN1,t+1 − γN1,tε

N
1,t − γN2,tε

C
1,t − γN3,tε

I
1,t − γN5,tε

A
1 + ηNt+1

¢
.

(33)

If we estimate (33) by least squares, we do not obtain consistent estimators of γNk,t for k = 1, . . . , 5

because the regressors Y N
1,t , Y

C
1,t, X1,t, and M1 are correlated with the error term ωt+1 where:

ωt+1 = εN1,t+1 − γN1,tε
N
1,t − γN2,tε

C
1,t − γN3,tε

I
1,t − γN5,tε

A
1 + ηNt+1.

However, we can instrument Y N
1,t , Y

C
1,t, X1,t, andM1 using

¡
Y N
j,t

¢mN
t

j=2
,
¡
Y C
j,t

¢mC
t

j=2
, (Xj,t)

mI
t

k=2 , (Mk)
mA

k=2.

The
¡
Y N
j,t

¢mN
t

j=1
,
¡
Y C
j,t

¢mC
t

j=2
are valid instruments as long as in equation (23) At 6= (0), so the factors are

correlated over time. The (Xj,t)
mI
t

k=2 are valid instruments for X1,t as a consequence of equation (18)

22We can recover the joint distributions from a standard multivariate Fourier inversion argument. See Cunha,
Heckman, and Schennach (2006).
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connecting investments in different periods. The (Mk)
mA

k=2 are valid for M1 because of the common

factor generating them. Using two stage least squares with these instruments allows us to recover

the parameters γNk,t for k = 1, 2, 3, 4, 5. See Pudney (1982). Our instruments are the internal

instruments justified by the model. We can perform a parallel analysis for the cognitive factor. The

suggested instruments are also independent of ηNt because of the lack of serial correlation in ηNt .
23

We can repeat the argument for different time subscripts and the same results apply. We now turn

to our estimates.

3.5 Anchoring the Factors in the Metric of Earnings

We set the scale of the factors by estimating their effects on log earnings for children when they

become adults. Let ET be adult earnings. We write

lnET = µT + δNθ
N
T + δCθ

C
T + εT (34)

Define

D =

µ
δN 0

0 δC

¶
.

We assume δN 6= 0 and δC 6= 0.

For any given normalization of the test scores we can transform the θt to an earnings metric by

multiplying (23) by D:

Dθt+1 =
¡
DAtD

−1¢ (Dθt) + (DB) It + (Dηt) , (35)

and working with Dθt+1 and Dθt in place of θt+1 and θt. The cross terms in (DAtD
−1) are affected

by this change of units but not the self-productivity terms. The relative magnitude of It on the

outcomes can be affected by this change in scale. We report results from two anchors in this paper:

(a) log earnings and (b) the probability of graduating from high school. For the latter, we use a

linear probability model to represent outcomes.

23See our website for an analysis of the case in which nkt are serially correlated for k = C,N .
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4 Estimating the Technology of Skill Formation

We use a sample of the 1053 white males from the Children of the NLSY/79 (CNLSY/79) data

set. Starting in 1986, the children of the NLSY/1979 female respondents have been assessed every

two years. The assessments measure cognitive ability, temperament, motor and social development,

behavior problems, and self-competence of the children as well as their home environment. Data

were collected via direct assessment and maternal report during home visits at every biannual wave.

Table 2 presents summary statistics of our data.

The measures of quality of a child’s home environment that are included in the CNLSY/79

survey are the components of the Home Observation Measurement of the Environment - Short

Form (HOME-SF). They are a subset of the measures used to construct the HOME scale designed

by Bradley and Caldwell (1980, 1984) to assess the emotional support and cognitive stimulation

children receive through their home environment, planned events and family surroundings. These

measurements have been used extensively as inputs to explain child characteristics and behaviors

(see e.g. Todd and Wolpin, 2005). As discussed in Linver, Brooks-Gunn, and Cabrera (2004), some

of these items are not useful because they do not vary much among families (i.e., more than 90%

to 95% of all families make the same response). Web appendix tables 1-8 show the raw correlations

of the home score items with a variety of cognitive and noncognitive outcomes at different ages

of the child.24 Our empirical study uses measurements on the following parental investments: the

number of books available to the child, a dummy variable indicating whether the child has a musical

instrument, a dummy variable indicating whether the family receives a daily newspaper, a dummy

variable indicating whether the child receives special lessons, a variable indicating how often the

child goes to museums, and a variable indicating how often the child goes to the theater. We also

report results from some specifications that use family income as a proxy for parental inputs, but

none of our empirical conclusions rely on this particular measure.

As measurements of noncognitive skills we use components of the Behavior Problem Index

(BPI), created by Peterson and Zill (1986), and designed to measure the frequency, range, and type

of childhood behavior problems for children age four and over, although in our empirical analysis

24See http://jenni.uchicago.edu/idest-tech.
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we only use children age six to thirteen. The Behavior Problem score is based on responses from the

mothers to 28 questions about specific behaviors that children age four and over may have exhibited

in the previous three months. Three response categories are used in the questionnaire: often true,

sometimes true, and not true. In our empirical analysis we use the following subscores of the

behavioral problems index: (1) antisocial, (2) anxious/depressed, (3) headstrong, (4) hyperactive,

(5) peer problems. Among other characteristics, a child who scores high on the antisocial subscore

is a child who often cheats or tell lies, is cruel or mean to others, and does not feel sorry for

misbehaving. A child who displays a high score on the anxious/depressed measurement is a child

who experiences sudden changes in mood, feels no one loves him/her, is fearful, or feels worthless

or inferior. A child with high scores on the headstrong measurement is tense, nervous, argues

too much, and is disobedient at home, for example. Children will score high on the hyperactivity

subscale if they have difficulty concentrating, act without thinking, and are restless or overly active.

Finally, a child will be assigned a high score on the peer problem subscore if they have problems

getting along with others, are not liked by other children, and are not involved with others.

For measurements of cognitive skills we use the Peabody Individual Achievement Test (PIAT),

which is a wide-ranging measure of academic achievement of children aged five and over. It is

widely used in developmental research. Todd and Wolpin (2005) use the raw PIAT test score as

their measure of cognitive outcomes. The CNLSY/79 includes two subtests from the full PIAT

battery: PIAT Mathematics and PIAT Reading Recognition25. The PIAT Mathematics measures

a child’s attainment in mathematics as taught in mainstream education. It consists of 84 multiple-

choice items of increasing difficulty. It begins with basic skills such as recognizing numerals and

progresses to measuring advanced concepts in geometry and trigonometry. The PIAT Reading

Recognition subtest measures word recognition and pronunciation ability. Children read a word

silently, then say it aloud. The test contains 84 items, each with four options, which increase in

difficulty from preschool to high school levels. Skills assessed include the ability to match letters,

name names, and read single words aloud.

Our dynamic factor models allow us to exploit the wealth of measures available in these data.

25We do not use the PIAT Reading Comprehension battery since it is not administered to the children who score
low in the PIAT Reading Recognition.
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The Appendix presents the sample likelihood. The dynamic factor models enable us to solve

several problems. First, there are many proxies for parental investments in children’s cognitive

and noncognitive development. Even if all parents provided responses to all of the measures of

family input, we would still face the problem of selecting which variables to use and how to find

enough instruments for so many endogenous variables. Applying the dynamic factor model, we

let the data tell us the best combination of family input measures to use in predicting the levels

and growth in the test scores. Measured inputs that are not very informative on family investment

decisions will have estimated factor loadings that are close to zero.

Second, the models have the additional advantage that they help us solve the problem of missing

data. It often happens that mothers do not provide responses to all items of the HOME-SF score.

Similarly, some children may take the PIAT Reading Recognition exam, but not the PIAT mathe-

matics test. Another missing data problem that arises is that the mothers may provide information

about whether the child has peer problems or not, but may refuse to issue statements regarding the

child’s hyperactivity level. For such cases, some researchers drop the observations on the parents

who do not respond to certain items, or do not analyze the items that are not responded to by

many parents, even though these items may be very informative. With our setup, we do not need

to drop the parents or entire items in our analysis. Assuming that the data are missing randomly,

we integrate out the missing items from the sample likelihood. We now present and discuss our

empirical results using the CNLSY data.

4.1 Empirical Results

We first present our estimates of an age-invariant version of the technology where we assume no

critical and sensitive periods. We report estimates of a model with critical and sensitive periods in

section 4.1.3.

4.1.1 Estimates of Time-Invariant Technology Parameters

Using the CNLSY data, we first estimate the simplest version of the model that imposes the

restriction that the coefficients on the technology equations do not vary over periods of the child’s
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life cycle. We first report results in the scale of standardized test scores. We discuss estimates in the

scales of log earnings and the probability of graduating from high school below. We normalize the

scale of the investment factor It by using “trips to the theater”. We report the effect of alternative

normalizations on our estimates below. Recall that we use adult outcome measures (log earnings

and high school graduation) of the child as outcomes generated, in part, by the terminal cognitive

and noncognitive factors
¡
θNT , θ

C
T

¢
respectively. Dropping this information has negligible effects on

the estimates.

Table 3 shows the estimated parameter values and their standard errors. From this table, we see

that: (1) both cognitive and noncognitive skills show strong persistence over time; (2) noncognitive

skills affect the accumulation of next period cognitive skills, but cognitive skills do not affect the

accumulation of next period noncognitive skills; (3) the estimated parental investment factor affects

noncognitive skills somewhat more strongly than cognitive skills, although the differences are not

statistically significant; (4) the mother’s ability affects the child’s cognitive ability but not noncog-

nitive ability; (5) the mother’s education plays no role after controlling for parental investments.

These results are robust to alternative normalizations of the factor loadings on the measurements

associated with family inputs that set the scale of the parental investment factor as we discuss

below.

The dynamic factors are estimated to be statistically dependent. Table 4 shows the evolution of

the correlation patterns across the dynamic factors. Early in the life cycle, the correlation between

cognitive and noncognitive skills is strong. The correlation is 0.21 as early as ages 6 and 7, and it

grows to around 0.29 at ages 12 and 13. There is also strong contemporaneous correlation among

noncognitive skill and the home investment. The correlation starts off at 0.32 at ages 6 and 7 and

grows to 0.53 by ages 12 and 13. The same pattern is true for the correlation between cognitive

skills and home investments. In fact, the correlation between these two variables actually doubles

from 0.27 at ages 6 and 7 to 0.57 at ages 12 and 13.

We also report results adding family income at age t to the list of parental inputs. One advantage

of this proxy is that it provides a natural scale for It. However, as Todd and Wolpin (2003,

2005) note, family income is not a valid input measure and using it as an input can make the
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interpretation of estimated relationships as production functions problematic.26 However, when we

add this “input,” and normalize off of it, our estimates are barely affected. Compare the estimates

in table 5 with those in table 3. The same conclusion holds for the contemporaneous correlation

matrices, which we do not show for the sake of briefness.

We compare results from these estimations with those obtained from OLS regression. Table 6

reports the OLS estimates of the technology parameters with roughly comparable specifications. In

this table, instead of using all measures of noncognitive and cognitive skills available in the data,

we use only the antisocial measure for noncognitive skills and the PIAT mathematics for cognitive

skills. Qualitatively, the results reported in Table 6 are similar to those reported in Table 3. There

is strong persistence of noncognitive and cognitive skills. Noncognitive skills affect the accumulation

of cognitive skills but not vice versa. The estimates suggest that noncognitive skills respond more

strongly to investment than cognitive skills. However, the estimated parameter values tend to be

consistently lower in the OLS regressions in comparison to the corresponding estimates from our

dynamic factor approach. One possible explanation is attenuation bias due to measurement error.

We report evidence on the severity of the measurement error in section 4.1.4.27

4.1.2 Anchoring our estimates of the factor scale using adult outcomes

We now report estimates that use the earnings data for persons age 23—28 to anchor the output of

the production function in a dollar metric. Our fitted earnings function is linear and quadratic in

age, and depends on the final level of the factors θCT and θNT . The coefficient on cognitive skills in

the log earnings equations is estimated to be 0.14 (standard error is 0.054). For noncognitive skills,

we estimate a loading of 0.052 (with a standard error of 0.0109). These estimates are consistent

with estimates reported in Heckman, Stixrud, and Urzua (2006). From equation (34) it is clear that

anchoring does not affect the estimates of self productivity but can affect the estimates of cross

productivity. It can also affect the magnitude of the estimated effect of It on outcomes.

26They stress the point that controlling for family income, changing one input requires changing other inputs if
the budget is exhausted on other inputs. We use family income as a proxy for It and do not directly condition on
family income.
27We experimented with alternative specifications of the OLS regression using different test scores and input

measures and obtain the same approximate results. One specification was based on indices constructed from the
first principal components of the test scores and family investments. It shows severe attenuation bias as would be
predicted from our analysis of measurement error in section 4.1.4.
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Table 7, which transforms the estimates in Table 3 by D into a log earnings metric, shows that

some of our conclusions are altered when we anchor outcomes in adult earnings. The two cross

effects are ordered in the same direction as in the model where we use the metric of test scores

and the statistical inference on the coefficients is unchanged. In the metric of earnings the effect of

cognitive skills on noncognitive skill is weaker and the effect of noncognitive skills on cognitive skills

is stronger than in the test score metric. In the metric of earnings, the estimated parental investment

factor affects cognitive skills more strongly than noncognitive skills. The relative strength of these

effects is reversed across the two metrics. The other qualitative conclusions from Table 3 stand.

One problem that might arise in using log earnings as an anchor for this sample is that log

earnings are observed for the children who are born to very young mothers, making it a very

selected sample. To check the robustness of our results we also use high school graduation for a

person at least 19 years-old to anchor the parameters of the technology equations. We model the

probability of high school graduation as a linear probability model and find that the coefficient on

noncognitive skills is 0.098 (with a standard deviation of 0.031) and the coefficient on cognitive

skills is 0.26 (with a standard deviation of 0.07). On table 8, we show the empirical results from

using high-school graduation and only note that the same conclusions from the comparison of tables

3 and 7 are also found comparing table 8 to table 3.

4.1.3 Evidence of Sensitive Periods of Investment in Skills

We now report evidence on sensitive periods. Our analysis in section 3 presents conditions under

which we can identify the parameters of the technology when they are allowed to vary over stages

of the life cycle. We can identify whether there are sensitive periods in the development of skills

provided that we normalize our investment factor on an input that is used at all stages of the life

cycle. Using several alternative measures including trips to the theater, the number of books, as

well as family income as a “proxy,” we obtain the same qualitative ordering in terms of critical and

sensitive periods.28 All of our estimated models include an equation for the adult earnings of the

child based on the period T value of the factors but “output” is reported in test score units.

28In the text we report the results for the normalization relative to “trips to the theater and musical performances”.
In our website appendix, we report estimates of alternative normalizations using family income and the number of
books. Family income does not appear among the family inputs unless it is used as a normalization.
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Using a likelihood ratio test, we test and reject the hypothesis that the parameters describing

the technologies are invariant over stages of the lifecycle. Specifically, we use a likelihood ratio

test. Under the restricted model, we estimate 277 parameters and the value of the log likelihood

at the maximum is -53877. Under the unrestricted model, we estimate 305 parameters and the log

likelihood attains the maximum value of -53800. The statistic λ = −2 (lnLR − lnLU) is distributed

as chi-square with 28 (= 305− 277) degrees of freedom. We find that λ is 155, significantly above

the critical value of 41.337 at a 5% significance level.

Our estimates are reported in table 9. Although we use test scores as a measure of output,

transformation byD will not affect our inference about sensitive periods becauseD is time invariant.

When we allow the coefficients of the technology to vary over time we find evidence of sensitive

periods for both cognitive and noncognitive skills. A sensitive period for parental investments

in cognitive skills occurs at an earlier age than the sensitive period for parental investments in

noncognitive skills. The coefficient on investments in the technology for cognitive skills for the

transition from period one to period two (ages 6 and 7 to ages 8 and 9) is around 0.11 (with a

standard error of 0.0152). For the transition from period two to period three (ages 8 and 9 to 10

and 11) this same coefficient decreases rather sharply to 0.0397 (with a standard error of 0.0131).

For the final transition (ages 10 and 11 to ages 12 and 13), this coefficient is about the same: 0.0294,

with a standard error of 0.0103. The difference between the early coefficient and the later two is

statistically significant. This finding is consistent with periods 1 and 2 being sensitive periods for

cognitive skills.29

For noncognitive skills in period one, the coefficient on investments is only 0.0462, with a stan-

dard error of 0.0131. Then, it increases to 0.1119 in period two. It reduces to 0.0375 in the final

transition. This evidence suggests that the sensitive periods for the development of noncognitive

skills tend to take place at later ages in comparison to sensitive periods for cognitive skills.30 Table

10 shows that the correlation among the dynamic factors does not change even after we allow for

the technology parameters to vary over time. Compare it to table 4. When we use alternative

29For the coefficients on cognitive skills, the lower bound for the t statistic for the hypothesis γCI,2 = γCI,1 is 2.73.
For the hypothesis γCI,2 = γCI,3 it is 3.43.
30For the coefficients of investments on noncognitive skills, the lower bound for the t statistic for the hypothesis

γNI,2 = γNI,1 is 2.16 and for the hypothesis γ
N
I,2 = γNI,3 it is 2.34.
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normalizations of parental input measures and add family income to the list, we obtain the same

results. See tables 9 and 10 in our web appendix.

4.1.4 Estimating the Components of the Home Investment Dynamic Factor

In table 11 we show how our method constructs an implicit home score by estimating factor loadings

on the inputs used to form the conventional home score. We use the estimates generating the

parameters reported in tables 9 and 10. Thus we normalize the scale of the investment factor

by “trips to the theater”. The CNLSY/1979 reports an aggregate HOME score by adding these

variables and assigning each one of them the same weight. For expositional purposes we call these

ad-hoc weights. The advantage of working with (dynamic) factor models is that the relative weights

on the components of the home score are estimated rather than imposed. We set the absolute scale

of the factor by the normalizations discussed in the preceding section.

For example, consider the number of books available to the child. This variable is correlated

with parental inputs because parents who invest more in the development of their children will

tend to spend more resources on books. But the number of books is unlikely to be a perfect

indicator of total parental input. Our method allows for imperfect proxies. Under our method, the

number of books a child has at age t (Rt) is modelled as Rt = αI
R,tIt + εIR,t so that V ar (Rt) =¡

αI
R,t

¢2
V ar (It) + V ar

¡
εIR,t
¢
, because of the independence between It and εIR,t. We can decompose

the total unobserved variance in two terms: one that is due to the parental input, the other that is

orthogonal to it. The relative importance of the two measures can be computed as:

sI,R,t =

¡
αI
R,t

¢2
V ar (It)¡

αI
R,t

¢2
V ar (It) + V ar

¡
εIR,t
¢

and

sI,ε,t =
V ar

¡
εIB,t

¢¡
αI
R,t

¢2
V ar (It) + V ar

¡
εIR,t
¢ .

Table 11 reports that sI,R,1 = 0.1359 (corresponding to 6 and 7), while sI,ε,1 = 0.8641. So, most of

the unobservable variance in “the number of books a child has” is actually not informative on the

parental input unobserved variable It. We report the same measures for the other input variables

33



in table 11. Over stages of the life cycle, all of the input measures tend to become more error laden

as a proxy for It.

One can interpret the inverse of the factor loadings on the investment inputs as a measure of

the strength of the relationship between the measure and the latent factor. Consequently, for every

measurement Xk,t we obtain the relationship:

1

αI
k,t

E (Xk,t) = E (It) .

If we havemI
t measurements for investments, we can construct the implicit relative weights on input

in predicting It, wk,t, k = 1, 2, ...,m
I
t , as:

wi,t =

1
αIk,tPmI
t

i=1
1

αIi,t

.

This is a weighted average of the inputs that proxies It, which is a measure of the true home score.

Table 11 displays the estimated weights wi,t for each measurement i at each period t. Note that

the weights are not stable over stages of the life cycle. Our estimates show that the number of

books receives high weight early on (ages 6/7 and 8/9), but the weight declines considerably in the

later periods (ages 10/11 and 12/13). The variable that indicates whether the child receives special

lessons, on the other hand, exhibits the opposite behavior. It starts small in early ages, but it

becomes more important at later ages. It is interesting to remark that variables that describe how

often children attend theater or visit museums, although informative about the home investments,

receive lower weights in our method than the weights that weight all items equally strongly.

5 Conclusion

This paper formulates, identifies and estimates a model of investment in child cognitive and noncog-

nitive skills using dynamic factor models. We present a simple model of human skill development

that generates critical and sensitive periods of investment and that can explain the body of evidence

surveyed in Cunha, Heckman, Lochner, and Masterov (2006).
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Our empirical methodology accounts for the proxy nature of the measurements on parental

investments and outcomes and for the endogeneity of inputs. It allows us to utilize the large

number of potentially endogenous proxy variables available in our data set without exhausting the

available instruments. Our instruments are justified by the internal logic of the model. To avoid the

arbitrariness in using test scores to measure output of parental investments, we normalize estimated

effects of investment in the metric of adult earnings. The choice of the metric affects conclusions

on cross effects but not our results on self productivity or sensitive periods. We report results for

alternative normalizations of the scale of parental investment and find agreement in the conclusions

from alternative specifications.

Our estimated technology displays the following features. (1) High levels of self productivity in

the production of cognitive and noncognitive skills. (2) Evidence of sensitive periods for parental

investments in both types of skills with the sensitive period for cognitive skill investments occurring

earlier in the life cycle than the sensitive period for investments in noncognitive skills. (3) Substantial

evidence of measurement error in the home input proxies and corollary evidence of attenuation bias

in the OLS estimates of the model. The estimated strength of cross effects is sensitive to the metric

in which we measure output.

Missing from this paper is an estimate of the key substitution parameters that determine the

cost of later remediation relative to early investment. To recover these crucial parameters requires

a more general specification of the technology and more advanced econometric methods. This task

is underway in Cunha, Heckman, and Schennach (2006), who also present a more general nonlinear

approach to anchoring the test scores in an outcome measure.
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A Sample Likelihood

We derive the likelihood and describe the estimation strategy. In period t, let mt = mN
t +mC

t +mI
t

where mN
t is the number of measurements on the noncognitive factor, and mC

t ,m
I
t are defined

accordingly for the cognitive and investment factors. Here we explicitly allow for the number of

measurements to be period specific. Let Yt denote the (mt × 1) vector

Y 0
t =

µ
Y N
1,t . . . Y N

mN
t ,t

Y C
1,t . . . Y C

mC
t ,t

X1,t . . . XmI
t ,t

¶
.

At each period t, let θ0t =
¡
θNt , θ

C
t, , It

¢
. We use αt to denote the (mt × 3) matrix containing the

factor loadings.

αt=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

...
...

...

αN
mN
t ,t

0 0

0 1 0

...
...

...

0 αC
mC
t ,t

0

0 0 1

...
...

...

0 0 αI
mI
t ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let εt denote the (mt × 1) vector of uniquenesses and Ht = V ar (εt) , where Ht is (mt ×mt) matrix.

With this notation, we can write the observation equations as:

Yt = αtθt + εt (A.1)

We remind the reader that we use S,A to denote mother’s education and cognitive ability. Let

Gt be a (3× 3) matrix of coefficients. Let ψ1 and ψ2 denote (3× 1) vectors. The Gt matrix and

the vectors ψ1 and ψ2 contain the technology parameters for both the cognitive and noncognitive

factors:

θt+1 = Gtθt + ψ1S + ψ2A+ ηt+1
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where ηt+1 is a (3× 1) vector of error terms in the technology equations. Define Qt = V ar (ηt).

We assume that θ1|S,A ∼ N (a1, P1). In the text, we establish the conditions for identification

of a1 and P1. We also assume that εt ∼ N (0,Ht) and ηt ∼ N (0, Qt). Then, given a normality

assumption, together with linearity, it follows that Y1 ∼ N (µ1, F1) where:

µ1 = α1a1 and F1 = α1P1α
0
1 +H1.

Normality is not required for identification but it facilitates computation. In future work we plan

to relax this assumption. To proceed, we apply the Kalman filtering procedure (for details on the

derivations see, for example, Harvey, 1989 or Durbin and Koopman, 2001). If we define Y t =

(Y1, . . . , Yt), at+1 = E (θt+1|S,A, Y t), and Pt+1 = V ar (θt+1|S,A, Y t), it is straightforward to

establish that:

at+1 = Gtat +GtPtα
0
t (αtPtα

0
t +Ht)

−1
+ ψ1S + ψ2A,

and

Pt+1 = GtPtG
0
t −GtPtα

0
tαtPt (αtPtα

0
t +Ht)

−1
G0
t.

Consequently, using the relationship in (A.1) we obtain that Yt+1|S, λ, Y t ∼ N (µt, Ft) where:

µt = αtat and Ft = αtPtα
0
t +Ht.

Assuming that we observe mother’s schooling, S, and mother’s education, A, we can decompose the

contribution of individual i to the likelihood as:

f (yi,T , yi,T−1, . . . , yi,1|Si, A) = f (yi,1|Si, A)
TY
t=2

f
¡
yi,t|Si, A, Y t−1

i

¢
.

In general we observe S but not A. However, we have shown that we can identify the distribution

of A if we have a set of cognitive test scores for the mother, M . Consequently, we can integrate A

out:

f (yi,T , yi,T−1, . . . , yi,1|Si) =
Z

f (yi,1|Si, A)
TY
t=2

f
¡
yi,t|Si, A, Y t−1

i

¢
fA (A) dA.
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Assuming that observations are i.i.d. over children, we get that the likelihood of the data is:

nY
i=1

f (yi,T , yi,T−1, . . . , yi,1|Si) =
nY
i=1

Z
f (yi,1|Si, A)

TY
t=2

f
¡
yi,t|Si, A, Y t−1

i

¢
fA (A) dA.

Missing data can be integrated out and so all cases can be used even in the presence of missing

data.
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Figure 1
The Ratio of Early to Late Investment in Human Capital

As a function of the Skill Multiplier for Different Values of Complementarity

Leontief
φ = - 0.5
CobbDouglas
φ =  0.5

Skill Multiplier (γ)

This figure shows the optimal ratio of early to late investments, I1
I2
, as a function of the skill multiplier

parameter γ, for different values of the complementarity parameter φ, assuming that the interest rate r is zero.
The optimal ratio I1

I2
is the solution of the parental problem of maximizing the present value of the child’s wealth

through investments in human capital, h, and transfers of risk-free bonds, b. In order to do that, parents have to
decide how to allocate a total ofM dollars into early and late investments in human capital, I1 and I2, respectively,
and risk-free bonds. Let q denote the present value as of period “3” of the future prices of one efficiency unit of
human capital: q =

PT
t=3

wt
(1+r)t−3

. The parents solve

max

µ
1

1 + r

¶2
[qh+ b]

subject to the budget constraint

I1 +
I2

(1 + r)
+

b

(1 + r)2
=M

and the technology of skill formation:

h =
h
γIφ1 + (1− γ) Iφ2

i ρ
φ

for 0 < ρ < 1, 0 ≤ γ ≤ 1, and φ ≤ 1. From the first-order conditions it follows that I1
I2
=
h

γ
(1−γ)(1+r)

i 1
1−φ

. This

ratio is plotted in this figure when φ → −∞ (Leontief), φ = −0.5, φ = 0 (Cobb-Douglas) and φ = 0.5 and for
values of the skill multiplier γ between 0.1 and 0.9.



����� �� The Ratio of Optimal Early and Late Investments ��
��
Under Di�erent Assumptions About the Skill Formation Technology

Low Self-Productivity: � � �����
����� High Self-Productivity: � 
 �����

�����

High Degree of Complementarity: � � � ��
��
� 	 as �� �� ��

��
� 	 as �� ��

Low Degree of Complementarity: � � � � 	 ��
��
� � as �� 	 ��

��
�� as �� 	

����� This table summarizes the behavior of the ratio of optimal early to late investments according to four cases: 	� and 	� have
high complementarity, but self-productivity is low; 	� and 	� have both high complementarity and self-productivity; 	� and 	� have
low complementarity and self-productivity; and 	� and 	� have low complementarity, but high self-productivity. When 	� and 	�
exhibit high complementary, complementarity dominates and is a force towards equal distribution of investments between early
and late periods. Consequently, self-productivity plays a limited role in determining the ratio ��

��
(row 1). On the other hand, when

	�and 	� exhibit a low degree of complementarity, self-productivity tends to concentrate investments in the ���� period if
self-productivity is low, but in the ����	 period if it is high (row 2).



Obs Mean Std Error Obs Mean Std Error Obs Mean Std Error Obs Mean Std Error
Piat Math1 753 -1.0376 0.5110 799 0.0423 0.6205 787 0.7851 0.6101 690 1.2451 0.5783
Piat Reading Recognition1 751 -1.0654 0.4303 795 -0.0932 0.6543 783 0.6179 0.7334 688 1.1442 0.7852
Antisocial Score1 753 0.0732 0.9774 801 -0.0843 1.0641 787 -0.0841 1.0990 717 -0.0658 1.0119
Anxious Score1 778 0.1596 1.0016 813 -0.0539 1.0187 813 -0.0753 1.0771 730 -0.0664 1.0561
Headstrong Score1 780 0.0192 0.9882 813 -0.2127 1.0000 812 -0.2146 1.0416 729 -0.2123 1.0572
Hyperactive Score1 780 -0.0907 0.9673 815 -0.1213 1.0148 813 -0.0983 0.9902 729 -0.0349 0.9910
Conflict Score1 779 0.0177 0.9977 815 -0.0057 0.9935 814 -0.0441 1.0304 731 -0.0472 1.0420
Number of Books2 629 3.9173 0.3562 821 3.9220 0.3104 676 3.6746 0.6422 730 3.6315 0.6768
Musical Instrument3 628 0.4650 0.4992 821 0.4896 0.5002 674 0.5504 0.4978 728 0.5907 0.4921
Newspaper3 629 0.5326 0.4993 821 0.5043 0.5003 674 0.4985 0.5004 728 0.5000 0.5003
Child has special lessons3 627 0.5470 0.4982 820 0.7049 0.4564 672 0.7247 0.4470 727 0.7717 0.4200
Child goes to museums4 628 2.2596 0.9095 821 2.3082 0.8286 672 2.2604 0.8239 729 2.2195 0.8178
Child goes to theater4 630 1.8111 0.8312 820 1.8012 0.7532 674 1.8309 0.8000 728 1.8475 0.7920
1The variables are standardized with mean zero and variance one across the entire CNLSY/79 sample. 
2The variable takes the value 1 if the child has no books, 2 if the child has 1 or 2 books, 3 if the child has 3 to 9 books and 4 if the child has 10 or more books. 
3For example, for musical instrument, the variable takes value 1 if the child has a musical instrument at home and 0 otherwise. Other variables are defined accordingly.

5For example, for "Child spends time with father indoors", the variable takes the value 1 if the child never spends time with the father indoors, 2 if the child spends time with the father indoors a few times in 
a year, 3 if the child spend time with the father indoors about once a month, 4 if the child spends time with the father indoors about once a week, 5 if the child spends time with the father indoors at least four 
times a week, and 6 if the child spends time with the father once a day or more often. 

4For example, for "museums", the variable takes the value 1 if the child never went to the museum in the last calendar year, 1 if the child went to the museum once or twice in the last calendar year, 3 if the 
child went to the museum several times in the past calendar year, 4 if the child went to the museum about once a month in the last calendar year, and 5 if the child went to a museum once a week in the last 
calendar year.

Table 2: Summary Dynamic Measurements - White Children NLSY/1979
Ages 6 and 7 Ages 8 and 9 Ages 12 and 13Ages 10 and 11



Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.8835 0.0215 0.0282 0.0131
Current Period Cognitive Skills 0.0181 0.0130 0.9814 0.0388
Current Period Investment 0.0601 0.0206 0.0566 0.0137
Mother's Education 0.0067 0.0088 0.0047 0.0062
Mother's Ability -0.0063 0.0069 0.0290 0.0104
Variance of Shocks 0.1357 0.0219 0.0340 0.0091

Next Period Noncognitive Skills Next Period Cognitive Skills

Table 3
The Technology Equations

Measurement Variables are Standardize with Mean Zero and Variance One

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the

noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s education
and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. In table 3 we show the estimated parameter values and standard errors of γ, ψ1,
and ψ2 as well as the V ar

¡
ηNt+1

¢
and V ar

¡
ηCt+1

¢
.



Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2089 0.3217

Cognitive 0.2089 1.0000 0.2712
Investment (Home) 0.3217 0.2712 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2406 0.3797

Cognitive 0.2406 1.0000 0.3478
Investment (Home) 0.3797 0.3478 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2668 0.4500

Cognitive 0.2668 1.0000 0.4459
Investment (Home) 0.4500 0.4459 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2868 0.5318

Cognitive 0.2868 1.0000 0.5714
Investment (Home) 0.5318 0.5714 1.0000

Table 4
Contemporaneous Correlation Matrices

Period 4 - Children ages 12 and 13

Period 3 - Children ages 10 and 11

Period 1 - Children ages 6 and 7

Period 2 - Children ages 8 and 9

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the

noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s education
and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. Suppose that the initial distribution of the dynamic factors is θ1 ∼ N (a1, P1) .
In table 4, we show the covariance matrix Pt for differente ages. To see how this matrix is updated, let
G contain the matrix of the technology parameters γ. Let Ht denote the covariance-variance matrix of
the uniquenesses εt. Let Qt denote the variance-covariance matrix of the error terms in the technology
equations, ηt+1. This matrix is updated by the standard Kalman rule:

Pt+1 = GtPtG
0
t −GtPtα

0
tαtPt (αtPtα

0
t +Ht)

−1
G0tPt



Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.8848 0.0212 0.0285 0.0132
Current Period Cognitive Skills 0.0041 0.0264 1.0779 0.0250
Current Period Investment 0.0705 0.0302 0.0414 0.0187
Mother's Education 0.0039 0.0056 0.0079 0.0028
Mother's Ability -0.0168 0.0444 0.0268 0.0127
Variance of Shocks 0.1381 0.0296 0.0249 0.0034

Next Period Noncognitive Skills Next Period Cognitive Skills

Table 5
The Technology Equations

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score). Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
de-

note the noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s
education and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. In table 5 we show the estimated parameter values and standard errors of γ, ψ1,
and ψ2 as well as the V ar

¡
ηNt+1

¢
and V ar

¡
ηCt+1

¢
. The difference between table 3 and table 5 is that in

the former we normalized the investment factor in "trips to the theater" while in the latter we normalized
it in "log family income".



Coefficient T-Statistic Coefficient T-Statistic
Lagged Standardized Antisocial Score 0.6271** 28.24 0.0269** 2.14
Lagged Standardized Math Score 0.0409 1.00 0.5703** 24.67
Lagged Number of Books2 0.0710 1.27 0.0154 0.48
Lagged Musical Instruments3 0.1223** 2.57 0.04784* 1.78
Lagged Newspaper3 -0.0080 -0.17 0.0402 1.53
Lagged Special Lessons3 0.0824 1.57 0.0512* 1.72
Lagged Museum4 0.0501 1.68 0.0018 0.11
Lagged Theater4 -0.0466 -1.43 0.0036 0.20
Mother's Education 0.0287** 2.46 0.0276** 4.18
Mother's ASVAB (AR)5 -0.0626 -1.53 0.0271 1.17
Mother's ASVAB (WK)6 -0.0695 -1.59 -0.0039 -0.16
Mother's ASVAB (PC)7 0.0077 0.17 -0.0257 -0.99
Mother's ASVAB (NO)8 0.0852** 2.09 0.0321 1.39
Mother's ASVAB (CS)9 0.0431 1.19 -0.0277 -1.35
Mother's ASVAB (MK)10 -0.0062 -0.16 -0.0008 -0.04
Constant -0.9703** -2.48 -0.0985 -0.45
Adjusted R Squared
Observations11

5AR stands for Arithmetic Reasoning. It is standardized with mean zero and variance one across the entire NLSY/1979 sample
6WK stands for Word Knowledge. It is standardized with mean zero and variance one across the entire NLSY/1979 sample
7PC stands for Paragraph Composition. It is standardized with mean zero and variance one across the entire NLSY/1979 sample
8NO stands for Numerical Operations. It is standardized with mean zero and variance one across the entire NLSY/1979 sample
9CS stands for Coding Speed. The variable is standardized with mean zero and variance one across the entire NLSY/1979 sample
10MK stands for Mathematics Knowledge. It is standardized with mean zero and variance one across the entire NLSY/1979 sample

*Statistically significant at 10%. ** Statistically significant at 5%. 

0.4392 0.6348
1367 1367

11The total number of observations is given by the number of children times the number of periods we have nonmissing data for the children. 
On average, we have around 650 children per period. For each child, we have at most 4 periods of data.

Table 6

4For example, for "museums", the variable takes the value 1 if the child never went to the museum in the last calendar year, 1 if the child went 
to the museum once or twice in the last calendar year, 3 if the child went to the museum several times in the past calendar year, 4 if the child 
went to the museum about once a month in the last calendar year, and 5 if the child went to a museum once a week in the last calendar year.

2The variable takes the value 1 if the child has no books, 2 if the child has 1 or 2 books, 3 if the child has 3 to 9 books and 4 if the child has 10 
or more books. 
3For example, for musical instrument, the variable takes value 1 if the child has a musical instrument at home and 0 otherwise. Other variables 
are defined accordingly.

1The variables are standardized with mean zero and variance one across the entire CNLSY/79 sample. Let m(t) denote the dependent variable 
at age t. Let X(t) denote the inputs at age t. For each dependent variable we run a OLS regression: m(t) = bm(t-1) + aX(t-1) + e(t).

Standardized Social Score1 Standardized Math Score1
Dependent Variables

OLS Regressions



Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.8835 0.0215 0.0790 0.0367
Current Period Cognitive Skills 0.0065 0.0046 0.9814 0.0388
Current Period Investment 0.0030 0.0010 0.0079 0.0019
Mother's Education 0.0003 0.0004 0.0007 0.0009
Mother's Ability -0.0003 0.0003 0.0041 0.0015
Variance of Shocks 0.0003 0.0001 0.0007 0.0002

Next Period Noncognitive Skills Next Period Cognitive Skills

Table 7
The Technology Equations - Anchored in Adult Earnings of the Child

Measurement Variables are Standardize with Mean Zero and Variance One

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the

noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s education
and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. In table 7 we show the estimated parameter values and standard errors of γ, ψ1,
and ψ2 as well as the V ar

¡
ηNt+1

¢
and V ar

¡
ηCt+1

¢
.



Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.8848 0.0231 0.0745 0.0125
Current Period Cognitive Skills 0.0007 0.0365 1.0744 0.0250
Current Period Investment 0.0073 0.0031 0.0120 0.0043
Mother's Education 0.0004 0.0016 0.0022 0.0029
Mother's Ability -0.0016 0.0119 0.0058 0.0167

Next Period Noncognitive Skills Next Period Cognitive Skills

Table 8
The Technology Equations -

We anchor the parameters on the probability of graduating from High School

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the

noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s education
and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. In table 8 we show the estimated parameter values and standard errors of γ, ψ1,
and ψ2 as well as the V ar

¡
ηNt+1

¢
and V ar

¡
ηCt+1

¢
. Note that while in table 7 we anchor on adult log

earnings of the children, here we anchor on the probability of graduating from high school.



Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.9862 0.0141 0.0624 0.0242
Current Period Cognitive Skills 0.0508 0.0712 0.9235 0.0912
Current Period Investment 0.0462 0.0131 0.1170 0.0152
Mother's Education 0.0035 0.0032 -0.0080 0.0059
Mother's Ability 0.0074 0.0410 0.0567 0.0413
Variance of Shocks 0.1425 0.0141 0.0646 0.0152

Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.9405 0.0132 0.0220 0.0072
Current Period Cognitive Skills -0.0417 0.0814 0.8871 0.0213
Current Period Investment 0.1119 0.0173 0.0397 0.0131
Mother's Education -0.0025 0.0079 0.0124 0.0083
Mother's Ability -0.0048 0.0132 0.0067 0.0069
Variance of Shocks 0.1286 0.0152 0.0232 0.0064

Mean Standard Error Mean Standard Error
Current Period Noncognitive Skills 0.7597 0.0351 0.0021 0.0041
Current Period Cognitive Skills 0.0511 0.0254 0.9124 0.0409
Current Period Investment 0.0375 0.0144 0.0294 0.0103
Mother's Education 0.0082 0.0125 0.0036 0.0041
Mother's Ability -0.0073 0.0183 0.0193 0.0413
Variance of Shocks 0.1574 0.0172 0.0103 0.0029

Next Period Noncognitive Skills Next Period Cognitive Skills
Estimated Parameter Values - Technology from Period 3 to Period 4

Estimated Parameter Values - Technology from Period 2 to Period 3
Next Period Noncognitive Skills Next Period Cognitive Skills

Next Period Noncognitive Skills Next Period Cognitive Skills

Table 9

Estimated Parameter Values - Technology from Period 1 to Period 2
The Technology Equations1

1The parental investment factor is normalized on "trips to the theater". Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements

of cognitive skills. Let Xt =
³
X1,t, ...,XmI

t ,t

´0
denote the measurements of parental investment (from

the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the noncognitive, cognitive

and investment dynamic factors, respectively. Let S denote mother’s education and A denote mother’s
cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. In table 9 we show the estimated parameter values and standard errors of γt, ψ1,t,
and ψ2,t as well as the V ar

¡
ηNt+1

¢
and V ar

¡
ηCt+1

¢
.



Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.1822 0.3263

Cognitive 0.1822 1.0000 0.2704
Investment (Home) 0.3263 0.2704 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2687 0.3698

Cognitive 0.2687 1.0000 0.3684
Investment (Home) 0.3698 0.3684 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2832 0.4094

Cognitive 0.2832 1.0000 0.4279
Investment (Home) 0.4094 0.4279 1.0000

Noncognitive Cognitive Investment (Home)
Noncognitive 1.0000 0.2858 0.4647

Cognitive 0.2858 1.0000 0.5653
Investment (Home) 0.4647 0.5653 1.0000

Table 10
Per Period Correlation Matrices

Period 4 - Children ages 12 and 13

Period 3 - Children ages 10 and 11

Period 1 - Children ages 6 and 7

Period 2 - Children ages 8 and 9

Technology Parameters are allowed to vary over time

1Let Y N
t =

³
Y N
1,t, ..., Y

N
mN
t ,t

´0
denote the measurements of noncognitive skills. Let Y C

t =
³
Y C
1,t, ..., Y

C
mC
t ,t

´0
denote the measurements of cognitive skills. Let Xt =

³
X1,t, ...,XmI

t ,t

´0
denote the measurements of

parental investment (from the HOME-SF score. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the

noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s education
and A denote mother’s cognitive ability. The measurement equations are:

Yt = αtθt + εt

and the technology equations are:

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations and the error terms in the
technology equations. Suppose that the initial distribution of the dynamic factors is θ1 ∼ N (a1, P1) . In
table 10, we show the covariance matrix Pt for differente ages. To see how this matrix is updated, let
G contain the matrix of the technology parameters γ. Let Ht denote the covariance-variance matrix of
the uniquenesses εt. Let Qt denote the variance-covariance matrix of the error terms in the technology
equations, ηt+1. This matrix is updated by the standard Kalman rule:

Pt+1 = GtPtG
0
t −GtPtα

0
tαtPt (αtPtα

0
t +Ht)

−1
G0tPt



Estimated 
Weights1

Ad Hoc 
Weights2

Share of Total 
Residual 

Variance due to 
Factors3

Share of Total 
Residual 

Variance due to 
Uniqueness4

Estimated 
Weights1

Ad Hoc 
Weights2

Share of Total 
Residual 

Variance due to 
Factors3

Share of Total 
Residual 

Variance due to 
Uniqueness4

Number of Books 0.3079 0.1667 0.1242 0.8758 0.2971 0.1667 0.0943 0.9057
Musical Instrument 0.1997 0.1667 0.1417 0.8583 0.1667 0.1667 0.1312 0.8688
Newspaper 0.1932 0.1667 0.1517 0.8483 0.2148 0.1667 0.0766 0.9234
Child has special lessons 0.1431 0.1667 0.2808 0.7192 0.1560 0.1667 0.1801 0.8199
Child goes to museums 0.0740 0.1667 0.3063 0.6937 0.0768 0.1667 0.2158 0.7842
Child goes to theater 0.0821 0.1667 0.3068 0.6932 0.0821 0.1667 0.2473 0.7527

Estimated 
Weights1

Ad Hoc 
Weights2

Share of Total 
Residual 

Variance due to 
Factors3

Share of Total 
Residual 

Variance due to 
Uniqueness4

Estimated 
Weights1

Ad Hoc 
Weights2

Share of Total 
Residual 

Variance due to 
Factors3

Share of Total 
Residual 

Variance due to 
Uniqueness4

Number of Books 0.1396 0.1667 0.1056 0.8944 0.1380 0.1667 0.0568 0.9432
Musical Instrument 0.1707 0.1667 0.1196 0.8804 0.2001 0.1667 0.0500 0.9500
Newspaper 0.2082 0.1667 0.0754 0.9246 0.2253 0.1667 0.0370 0.9630
Child has special lessons 0.1971 0.1667 0.1074 0.8926 0.2396 0.1667 0.0457 0.9543
Child goes to museums 0.0866 0.1667 0.1693 0.8307 0.0910 0.1667 0.1011 0.8989
Child goes to theater 0.0821 0.1667 0.2074 0.7926 0.0821 0.1667 0.1412 0.8588

Ages 10 and 11 Ages 12 and 13

The Weights in the Construction of the Investment Factor
Table 11

Ages 6 and 7 Ages 8 and 9

1Let Y N
t , Y C

t , and Xt denote the measurements on noncognitive skills, cognitive skills and parental

investment (from the HOME-SF score), respectively. Let Yt =
¡
Y N
t , Y C

t ,Xt

¢
. Let θ =

³
θNt , θ

C
t , It

´
denote the noncognitive, cognitive and investment dynamic factors, respectively. Let S denote mother’s
education and A denote mother’s cognitive ability. We estimate the model

Yt = αtθt + εt (1)

θt+1 = γtθt + ψ1,tS + ψ2,tA+ ηt+1 (2)

where αt is the factor-loading matrix, γt is the technology-parameters matrix, ψk,t are parameter vectors.
The vectors εt, ηt+1 contain the uniquenesses of the measurement equations (1) and the error terms in
the technology equations (2).
To construct our estimated weights we take the corresponding element on the factor-loading matrix.

To fix ideas, let αt (i, j) denote the element in row i and column j in the matrix αt. For measurement
XI
1,t we have that E (It) =

1
αt(i,3)

E
¡
XI
i,t

¢
for i = 1, ..., T. We say that 1

αt(i,3)
is the contribution of

measurement XI
i,t for the investment factor It. We define the estimated weight wi,t of measurement XI

i,t

in the construction of the investment factor by: wi,t =
1

αt(i,3)

mI
t

j=1
1

αt(j,3)

.

2Ad-hoc weighting is uniform weighting. If there are mI
t measures, each measure has weight

1
mI
t
.

3Let σ2It denote the variance of the investment factor at period t. For each measurement on parental

investment k, the total residual variance is σ2k,t =
³
αIk,t

´2
σ2It + σ2εk,t , where σ

2
εk,t is the variance of the

uniqueness in measurement k at period t. The share of the total residual variance that is due to the factor

is sIt =
(αIk,t)

2
σ2It

σ2k,t
.

4Analogously, the share of the total residual that is due to the uniqueness is sεk,t =
σ2εk,t
σ2k,t

.




