Linear IV and Simultaneous Equations

Daniel Schmierer
Econ 312

April 6, 2007
Setup

- Linear regression model
 \[Y = X\beta + \varepsilon \]

- Endogeneity of \(X \) means that \(X \) and \(\varepsilon \) are correlated, i.e. \(E(X'\varepsilon) \neq 0 \).

- Suppose we observe another variable \(Z \) (the instrument) which is uncorrelated with \(\varepsilon \). We postulate that the relation between \(Z \) and \(X \) is of the form
 \[X = Z\gamma + u \]

- Equation (2) is known as the first stage.
Setup

Note that we can combine equations (1) and (2) to form the reduced form:

\[Y = Z\pi + \eta \]

where \(\pi = \gamma\beta \) and \(\eta = u\beta + \varepsilon \).

Our goal: consistently estimate \(\beta \).

In all IV settings there will be two required conditions:

- **Rank**: In this case: \(Z \) is correlated with \(X \). (testable)
- **Independence**: In this case: \(Z \) is uncorrelated with \(\varepsilon \). (not testable)

Suppose throughout that \(\text{dim}(X) = n \times 1 \) so there is only one endogenous regressor (this is just for simplicity).
Suppose that we have only one instrument, so $\text{dim}(Z) = n \times 1$. Then consider the estimator

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'Y$$

Consistency:

$$p \lim \hat{\beta}_{IV} = p \lim (Z'X)^{-1}Z'(X\beta + \varepsilon)$$

$$= p \lim \beta + (Z'X)^{-1}Z'\varepsilon$$

$$= \beta + [E(Z'X)]^{-1}E(Z'\varepsilon)$$

$$= \beta$$
Asymptotic normality:

$$\hat{\beta}_{IV} = \beta + (Z'X)^{-1}Z'\varepsilon$$

$$\implies \sqrt{n}(\hat{\beta}_{IV} - \beta) = \frac{1}{\sqrt{n}}\sum z_i \varepsilon_i \quad \xrightarrow{d} \quad N(0, V)$$

where $$\frac{1}{\sqrt{n}}\sum z_i \varepsilon_i \xrightarrow{d} N(0, V)$$.

The weaker the correlation between Z and X, the larger this asymptotic variance will be. An instrument with a small $E(Z'X)$ is known as a weak instrument.
Two-stage Least Squares

- Now suppose we have \(k \) instruments (so \(\text{dim}(Z) = n \times k \)).

- Consider first regressing \(X \) on \(Z \) (that's why we called it the \textbf{first stage}) and then regressing \(Y \) on the fitted values \(\hat{X} \) from that regression. This would result in the estimator

\[
\hat{\beta}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y
\]

\[
= \left[(Z(Z'Z)^{-1}Z'X)'(Z(Z'Z)^{-1}Z'X)\right]^{-1}(Z(Z'Z)^{-1}Z'X)'Y
\]

- Consistency:

\[
\hat{\beta}_{2SLS} = \left[X'Z(Z'Z)^{-1}Z'Z(Z'Z)^{-1}Z'X\right]^{-1}X'Z(Z'Z)^{-1}Z'Y
\]

\[
= \left[X'Z(Z'Z)^{-1}Z'X\right]^{-1}X'Z(Z'Z)^{-1}Z'(X\beta + \varepsilon)
\]

\[
= \beta + \left[X'Z(Z'Z)^{-1}Z'X\right]^{-1}X'Z(Z'Z)^{-1}Z'\varepsilon
\]

So \(\text{plim} \hat{\beta}_{2SLS} = \beta \).
Two-stage Least Squares

- Showing asymptotic normality is the same as in the IV case, but now the asymptotic variance depends on how well the linear combination of Z variables explain X.

- Equivalence between $\hat{\beta}_{2SLS}$ and $\hat{\beta}_{IV}$ when Z is scalar:

\[
\hat{\beta}_{2SLS} = [X'Z(Z'Z)^{-1}Z'X]^{-1} X'Z(Z'Z)^{-1}Z'Y \\
= (Z'X)^{-1} [X'Z(Z'Z)^{-1}]^{-1} X'Z(Z'Z)^{-1}Z'Y \\
= (Z'X)^{-1} \tilde{Z}'Y
\]
Some Interpretation

- Remember what the IV estimator is in terms of the reduced form and the first stage:

\[\hat{\beta}_{IV} = \frac{\hat{\pi}}{\hat{\gamma}} \]

where \(\pi \) is the coefficient on \(Z \) in the reduced form and \(\gamma \) is the coefficient on \(Z \) in the first stage. This is another way of seeing that a weak relationship between \(X \) and \(Z \) (a small \(\gamma \)) will lead to an imprecisely estimated \(\gamma \).

- If \(X \) is binary (say, our treatment, so call it \(D \)) and \(Z \) is binary (say, a randomized assignment) then the IV estimator is just

\[\hat{\beta}_{IV} = \frac{E(Y|Z = 1) - E(Y|Z = 0)}{E(D|Z = 1) - E(D|Z = 0)} \]
Simultaneous Equations

- Model from class:

 \[Y_1 + \gamma_{12} Y_2 = \alpha_1 + \beta_{11} X_1 + \beta_{12} X_2 + U_1 \]

 \[\gamma_{21} Y_1 + Y_2 = \alpha_2 + \beta_{21} X_1 + \beta_{22} X_2 + U_2 \]

- Discussion of causal effects is a black hole.

- Counterfactuals are ambiguous only insofar as we fail to specify an intervention that would bring them about.

- When moving along the demand curve, does changing price cause quantity demanded to change, or does a change in quantity demanded cause price to change?
To fix ideas, rename the variables so that these two equations specify the supply curve and the demand curve respectively:

\[Q_s + \gamma_{12} P_s = \alpha_1 + \beta_{11} X_1 + \beta_{12} X_2 + U_1 \]
\[\gamma_{21} Q_d + P_d = \alpha_2 + \beta_{21} X_1 + \beta_{22} X_2 + U_2 \]

Because in equilibrium \(P_s = P_d \) we can plug the bottom equation into the top one and solve for \(Q = Q_s = Q_d \).

The algebra is easier in matrix notation:

\[
\Gamma \left(\begin{array}{c} Q \\ P \end{array} \right) = \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right) + B \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) + \left(\begin{array}{c} U_1 \\ U_2 \end{array} \right)
\]
The reduced form is:

$$\begin{pmatrix} Q \\ P \end{pmatrix} = \Gamma^{-1} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} + \Gamma^{-1} B \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \Gamma^{-1} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$$

where

$$\Gamma^{-1} B = \frac{1}{1-\gamma_{12}\gamma_{21}} \begin{pmatrix} 1 & -\gamma_{12} \\ -\gamma_{21} & 1 \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$$

$$= \frac{1}{1-\gamma_{12}\gamma_{21}} \begin{pmatrix} \beta_{11} - \gamma_{12}\beta_{21} & \beta_{12} - \gamma_{12}\beta_{22} \\ -\gamma_{21}\beta_{11} + \beta_{21} & -\gamma_{21}\beta_{12} + \beta_{22} \end{pmatrix}$$
Exclusions

- Say we know that X_2 doesn’t enter the supply curve (so $\beta_{12} = 0$). That is, X_2 shifts the demand curve, but not the supply curve. Intuitively, this means we should be able to trace out points on the supply curve.

- We can in fact do this because if we regress Q on both X_1 and X_2 the coefficient on X_2 will be $\frac{\beta_{12} - \gamma_{12} \beta_{22}}{1 - \gamma_{12} \gamma_{21}}$ while regressing P on X_1 and X_2 will give a coefficient on X_2 of $\frac{-\gamma_{21} \beta_{12} + \beta_{22}}{1 - \gamma_{12} \gamma_{21}}$.

- Take the ratio of these coefficients (remember, $\beta_{12} = 0$) and you get $-\gamma_{12}$. This is precisely the slope of the supply curve.