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1 IV in Choice Models

We adjoin a choice equation to outcome equations (??) and (??). A standard binary threshold

crossing model for D writes

D = 1 [D∗ > 0] , (1)

where 1[·] is an indicator (1[A] = 1 if A true; 0 otherwise).

A familiar case is

D∗ = γZ − V (2)

where (V ⊥⊥ Z) | X (V is independent of Z given X). The propensity score or choice probability is

P (z) = Pr(D = 1 | Z = z) = Pr(γz > V ) = FV (γz)

where FV is the distribution of V which is assumed to be continuous. In terms of the Generalized

Roy model where C is the cost of participation in sector 1, D = 1[Y1−Y0−C > 0]. For a separable

model in outcomes (??) and in costs C = µC (W ) + UC , Z = (X,W ), µD (Z) = µ1 (X)− µ0 (X)−

µC (W ), V = − (U1 − U0 − UC). In constructing examples, we use a special version where UC = 0.

We call this version the extended Roy model.1 Our analysis, however, applies to more general

models.

In the case where β (given X) is a constant under ?? and ??, it is not necessary to specify

the choice model to identify β. We show that in a general model with heterogenous responses,

the specification of P (z) and its relationship with the instrument play crucial roles. To see this,

study the covariance between Z and ηD discussed in the introduction. By the law of iterated

expectations, letting Z̄ denote the mean of Z

Cov (Z, ηD) = E
((
Z − Z̄

)
Dη
)

= E
((
Z − Z̄

)
η | D = 1

)
Pr (D = 1)

= E
((
Z − Z̄

)
η | γZ > V

)
Pr (γZ > V ) .

Thus even if Z and η are independent, they are not independent conditional on D = 1[γZ > V ]
1The generalized Roy model allows UC 6= 0.
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if η (= U1 − U0) is dependent on V (i.e., if the decision maker has partial knowledge of η and acts

on it). Selection models allow for this dependence (see Ahn and Powell (1993); Heckman and Robb

(1985, 1986); Powell (1994)). Keeping X implicit and assuming that

(U1, U0, V ) ⊥⊥ Z (3)

(alternatively that (ε, η) ⊥⊥ Z), we obtain E(Y | D = 0, Z = z) = E(Y0 | D = 0, Z = z) =

α+ E(U0 | γz < V ) which can be written as

E(Y | D = 0, Z = z) = α+K0(P (z)),

where the functional form of K0 is produced from the distribution of (U0, V ). (This representation

is derived in Ahn and Powell, 1993; Heckman, 1980; Heckman and Robb, 1985, 1986; Powell, 1994.)

Similarly,

E (Y | D = 1, Z = z) = E (Y1 | D = 1, Z = z)

= α+ β̄ + E (U1 | γz > V )

= α+ β̄ +K1(P (z)),

where K0(P (z)) and K1(P (z)) are control functions in the sense of Heckman and Robb (1985,

1986). Under standard conditions, we can identify β̄. Powell (1994) discusses semiparametric

identification. Because we condition on Z = z (or P (z)), correct specification of the Z plays an

important role in econometric selection methods. This sensitivity to the full set of instruments in

Z appears to be absent from the IV method.

If β is a constant (given X), or if η (= β − β̄) is independent of V , only one instrument from

vector Z needs to be used. Missing instruments play no role in identifying mean responses but

may affect the efficiency of the IV estimation. We establish that in a model where β is variable

and not independent of V , misspecification of Z plays an important role in interpreting what IV

estimates analogous to its role in selection models. Misspecification of Z affects both approaches

to identification. This is a new phenomenon in models with heterogenous β. We now review some
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results established in the preceding literature that form the platform on which we build.

1.1 A General Model with Essential Heterogeneity in Outcomes

We now exposit the selection model developed in Heckman and Vytlacil (1999, 2001b, 2005).

Their model for counterfactuals (potential outcomes) is more general than (??) and allows for

nonseparable errors:

Y1 = µ1 (X,U1) , (4)

Y0 = µ0 (X,U0) ,

where X are observed and (U1, U0) are unobserved by the analyst. The X may be dependent on U0

and U1 in a general way. This model is designed to evaluate policies in place and not to extrapolate

to new environments characterized by X.2 The observed outcome is produced by equation (??).

Choices are generated by a standard discrete choice model. We generalize choice model (1) and

(2) for D∗, a latent utility,3

D∗ = µD (Z)− V and D = 1 [D∗ ≥ 0] . (5)

µD (Z) − V can be interpreted as a net utility for a person with characteristics (Z, V ). If it is

positive, D = 1 and the person selects into treatment; D = 0 otherwise. Section ?? discusses

the important role played by additive separability in the recent instrumental variable literature on

essential heterogeneity.

In terms of the notation used in Section ??, β = Y1−Y0 = µ1 (X,U1)−µ0 (X,U0). A special case

that links our analysis to standard models in econometrics writes Y1 = Xβ1+U1 and Y0 = Xβ0+U0

so β = X (β1 − β0)+(U1 − U0). In the case of separable outcomes, heterogeneity in β arises because

in general U1 6= U0 and people differ in their X.4

Following Heckman and Vytlacil (2005) we assume:

(A-1) (U0, U1, V ) are independent of Z conditional on X (Independence Condition for IV).
2See Heckman and Vytlacil (2005, 2007a) for a study of exogeneity requirements for X in answering different

policy questions.
3A large class of latent index, threshold crossing models will have this representation. See Vytlacil (2006).
4In nonseparable cases, heterogeneity arises conditional on X even if U1 = U0 = U .
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(A-2) The distribution of µD (Z) conditional on X is nondegenerate (Rank Condition for IV).5

(A-3) The distribution of V is continuous.6

(A-4) E |Y1| <∞, and E |Y0| <∞ (Finite Means).

(A-5) 1 > Pr (D = 1 | X) > 0 (For each X there is a treatment group and a comparison

group).

(A-6) Let X0 denote the counterfactual value of X that would have been observed if D is set to 0.

X1 is defined analogously. Thus Xd = X, for d = 0, 1 (The Xd are invariant to counterfactual

manipulations).

(A-1) and (A-2) generalize ?? and ?? respectively. (A-3) is a technical condition made for conve-

nience and is easily relaxed at some notational cost. (A-4) is needed to use standard integration

theorems and to have the mean treatment effect parameters be well defined. (A-5) is a standard re-

quirement for any evaluation estimator that for each value of X, there be some who are treated and

some who are not. (A-6) is the requirement that receipt of treatment does not affect the realized

value X, so we identify a full treatment effect when we condition on X instead of a treatment effect

that conditions on variables affected by treatment. This assumption can be relaxed by redefining

the treatment to a set of outcomes corresponding to each Xd state.

The separability between V and µD(Z) in the choice equation is conventional. It plays a crucial

role in justifying instrumental variable estimators in models with essential heterogeneity. It implies

monotonicity (uniformity) condition ?? from choice equation (5). Fixing Z at two different values

moves D(Z) in the same direction for everyone. Vytlacil (2002) shows that under independence,

rank and some regularity conditions, monotonicity ?? implies the existence of a V in representation

(5). Thus the IV model for the general case and the economic choice model turn out to have identical

representations. Independence assumption (A-1), produces the condition that everywhere Z enters

the model only through P (Z). This is called index sufficiency.

Without any loss of generality, following the same argument surrounding (1) and (2), we may
5µD(·) is assumed to be a measurable function of Z given X.
6The distribution is absolutely continuous with respect to Lebesgue measure.
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write the model for D using the distribution of V , FV , as

D = 1 [FV (µD (Z)) > FV (V )] = 1 [P (Z) > UD] , (6)

where UD = FV (V ) and P (Z) = FV (µD(Z)) = Pr(D = 1 | Z), the propensity score. Because FV

is assumed to be a continuous distribution, FV is a strictly monotonic transformation that preserves

the information in the original inequality. Note that UD is uniformly distributed by construction

(UD ∼ Unif [0, 1]).

1.1.1 LATE, The Marginal Treatment Effect and Instrumental Variables

To understand what IV estimates in the model with general heterogeneity in response to treatment,

we define the marginal treatment effect (or MTE) conditional on X and UD:7

∆MTE (x, uD) = E(Y1 − Y0 | X = x, UD = uD)

= E (β | X = x, V = v) ,

for β = Y1 − Y0 and v = F−1
V (uD), where we use both general notation and the regression specific

notation interchangeably to anchor our analysis both in the treatment effect literature and in

conventional econometrics. To simplify the notation, we keep the conditioning on X implicit except

when clarity of exposition dictates otherwise. Since P (Z) is a monotonic transformation of the

mean net utility µD (Z), and UD is a monotonic function of V , when we evaluate ∆MTE (uD) at

the value P (z) = uD, it is the marginal return to agents with Z = z characteristics who are just

indifferent between sector 1 and sector 0. In other words, at this point of evaluation, ∆MTE (uD)

is the gross gain of going from “0” to “1” for agents who are indifferent between the sectors when

their mean utility given Z = z is µD (z) = v, so µD (z)−v = 0 which is equivalent to the event that

P (z) = FV (µD (z)) = FV (v) = uD. When Y1 and Y0 are denominated in value units, the MTE is

a willingness-to-pay measure for persons with characteristics Z = z at the specified margin.

Under assumptions (A-1) to (A-5), Heckman and Vytlacil (1999, 2005) show that all treatment
7As previously noted, the concept of the marginal treatment effect and the limit form of LATE were first introduced

in the literature in the context of a parametric normal Generalized Roy Selection model by Björklund and Moffitt
(1987).
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parameters, matching estimators, IV estimators based on J (Z), a scalar function of Z, and OLS

estimators can be written as weighted averages of the MTE. Tables 1A and 1B summarize their

results for characterizing treatment effects and estimators and the weights given data on P (Z) , D

and the instrument J (Z). We discuss the weights for IV in the next subsection. We show how

to construct these weights at our website, where software for doing so is available.8 Heckman and

Vytlacil (2001b, 2007b) show that these weights can be constructed and the relationships among

the parameters shown in Tables 1A and 1B hold even if a nonseparable choice model, instead of

(5), is used and even if assumption (A-2) is weakened. We discuss this result in Section ??.

Notice that when ∆MTE does not depend on uD, all of the treatment effects are the same and

that, under our assumptions, IV estimates all of them. In this case, ∆MTE can be taken outside the

integral and the weights all integrate to one. Thus, E(Y1 − Y0 | X = x) = ATE = E(Y1 − Y0 | X =

x,D = 1) = TT = MTE, and we are back to the conventional model of homogeneous responses.

This includes the case where η is nondegenerate but independent of D.

The parameters MTE and LATE are closely related. Using the definition of D (z) in ??, let Z(x)

denote the support of the distribution of Z conditional on X = x. For any (z, z′) ∈ Z(x) × Z(x)

so that P (z) > P (z′), under ?? and independence (A-1), LATE is:

∆LATE
(
z′, z

)
= E

(
Y1 − Y0 | D (z) = 1, D

(
z′
)

= 0
)
, (7a)

i.e., the mean outcome in terms of Y1−Y0 for persons who would be induced to switch from D = 0

to D = 1 if Z were manipulated externally from z′ to z. As a consequence of Vytlacil’s (2002)

theorem, LATE can be written as

E
(
Y1 − Y0 | D(z) = 1, D(z′) = 0

)
(7b)

= E
(
Y1 − Y0 | u′D < UD < uD

)

= ∆LATE(uD, u′D)′

where uD = Pr(D (z) = 1) = Pr (D = 1 | Z = z) = P (z), u′D = Pr (D (z′) = 1 | Z = z′) =

Pr(D (z′) = 1) = P (z′).9 In the limit, as u′D → uD, LATE converges to MTE.

8See jenni.uchicago.edu/underiv/.
9Assumption (A-1) implies that Pr (D (z) = 1) = Pr (D = 1 | Z = z), and Pr (D (z′) = 1) = Pr (D = 1 | Z = z′).
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Imbens and Angrist (1994) define the LATE parameter from hypothetical manipulations of an

instrument. Heckman and Vytlacil (1999, 2005) draw on choice theory and define the parameters

in terms of the generalized Roy Model. Their link helps to understand what IV estimates and

relates IV to choice models. We work with definition (7b) throughout the rest of this paper. It

enables us to identify the margin of UD selected by instruments, something currently not possible

in results in the previous literature on IV.

The MTE can be identified by taking derivatives of E (Y | Z = z) with respect to P (z) (see

Heckman and Vytlacil, 1999).10 This derivative is called the local instrumental variable (LIV). For

the model of general heterogeneity, under assumptions (A-1) to (A-5), we can write (keeping the

conditioning on X = x implicit)

E (Y | Z = z) = E(Y | P (Z) = p)

E (Y | P (Z) = p) = E (DY1 + (1−D)Y0 | P (Z) = p)

= E(Y0) + E (D (Y1 − Y0) | P (Z) = p)

= E(Y0) + E (Y1 − Y0 | D = 1) p

= E(Y0) +
∫ p

0
E(Y1 − Y0 | UD = uD) duD.

As a consequence,
∂

∂p
E (Y | P (Z) = p)

∣∣∣∣
P (z)=p

= E(Y1 − Y0|UD = p). (8)

Expression (8) shows how the derivative of E (Y | Z = z), which is the local instrumental variable

(LIV) estimand of Heckman and Vytlacil (1999), identifies the marginal treatment effect (the right

hand side of this expression) over the support of P (Z). Observe that a high value of P (Z) = p

identifies MTE at a value of UD = uD that is high, i.e. that is associated with nonparticipation.

It takes a high p to compensate for the high UD = uD and bring the agent to indifference (see

equation 6). Thus high p values identify returns to persons whose unobservables make them less

likely to participate in the program. Software for estimating MTE using local linear regression is

described in Appendix ?? and is available online at jenni.uchicago.edu/underiv.
10See also Heckman and Vytlacil (2005, 2007b).
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Under the special case where β ⊥⊥ D (no essential heterogeneity), Y is linear in P (Z):

E (Y | Z) = a+ bP (Z) , (9)

where b = ∆MTE = ∆ATE = ∆TT. This representation holds whether or not Y1 and Y0 are separable

in U1 and U0, respectively (see Heckman and Vytlacil, 2001b, 2007b). Thus a test of the linearity

of the conditional expectation of Y in terms of P (Z) is a test of whether the conventional model

or the model of essential heterogeneity generates the data. One useful empirical strategy is to test

for linearity using the variety of tests developed in the literature and to determine whether the

additional complexity introduced by the model of essential heterogeneity is warranted.

Using the formulae presented in Tables 1A and 1B, all of the traditional treatment parameters

as well as the IV estimator using P (Z) as an instrument can be identified as weighted averages of

∆MTE (uD) if P (Z) has full support. The weights can be constructed from data. If P (Z) does not

have full support, simple tight bounds on these parameters can be constructed.11

1.1.2 Understanding What IV Estimates

Standard IV based on J (Z), a scalar function of a vector Z, can be written as

∆IV
J =

∫ 1

0
∆MTE (uD)ωJIV (uD) duD, (10)

where

ωJIV (uD) =
E (J (Z)− E (J (Z)) | P (Z) > uD) Pr (P (Z) > uD)

Cov (J (Z) , D)
. (11)

In this expression uD is a number between zero and one. This weight depends on the choice prob-

ability P (Z). For a derivation see Appendix 1.3. The derivation does not impose any assumptions

on the distribution of J(Z) or P (Z). Notice that J(Z) and P (Z) do not have to be continuous

random variables, and that the functional forms of P (Z) and J(Z) are general.12

For ease of exposition, we initially assume that J(Z) and P (Z) are both continuous. This

assumption plays no essential role in any of the results of this paper and we develop the discrete
11See Heckman and Vytlacil (1999, 2001a,b, 2007b).
12More precisely, J(Z) and P (Z) do not have to have distributions that are absolutely continuous with respect to

Lebesgue measure.
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case after developing the continuous case. The weights defined in (11) can be written as

ωJIV (uD) =

∫
(j − E(J (Z)))

∫ 1
uD
fJ,P (j, t) dt dj

Cov (J (Z) , D)
, (12)

where fJ,P is the joint density of J(Z) and P (Z) and we implicitly condition on X. The weights can

be negative or positive. Observe that ω (0) = 0 and ω (1) = 0. The weights integrate to 1,13 so even

if the weight is negative over some intervals, it must be positive over other intervals. When there is

one instrument (Z is a scalar), and assumptions (A-1) to (A-5) are satisfied, the weights are always

positive provided that J (Z) is a monotonic function of scalar Z. In this case J (Z) and P (Z)

have the same distribution and fJ,P (j, t) collapses to a univariate distribution. The possibility of

negative weights arises when J (Z) is not a monotonic function of P (Z). It can also arise when

there are two or more instruments, and the analyst computes estimates with only one instrument

or a combination of the Z instruments that is not a monotonic function of P (Z) so that J (Z) and

P (Z) are not perfectly dependent. If the instrument is P (Z) (so J (Z) = P (Z)) then the weights

are everywhere non-negative because from (11) E(P (Z) | P (Z) > uD) − E (P (Z)) ≥ 0. In this

case the density of (P (Z) , J (Z)) collapses to the density of P (Z). For any scalar Z we can define

J (Z) and P (Z) so that they are perfectly dependent, provided J(Z) and P (Z) are monotonic in

Z. More generally, weight (11) is positive if E(J (Z) | P (Z) > uD) is weakly monotonic in uD.

Nonmonotonicity of this conditional expectation can produce negative weights.14

Observe that the weights can be constructed from data on (J, P,D). Data on (J (Z) , P (Z))

pairs and (J (Z) , D) pairs (for each X value) are all that is required. We can use a smoothed

sample frequency to estimate the joint density fJ,P . Thus, given our maintained assumptions, any

property of the weight, including its positivity at any point (x, uD), can be examined with data.

We present examples of this approach in section ??.

As is evident from Tables 1A and 1B, the weights on ∆MTE (uD) generating ∆IV are different

from the weights on ∆MTE (uD) that generate the average treatment effect which is widely regarded

as an important policy parameter (see, e.g. Imbens, 2004) or from the weights associated with the

policy relevant treatment parameter which answers well-posed policy questions (Heckman and

13
∫ ∫

(j − E (J(Z)))
∫ 1

uD
fJ,P (j, t) dt dj duD = Cov (J (Z) , D).

14If it is weakly monotonically increasing, the claim is evident from (11). If it is decreasing, the sign of the
numerator and the denominator are both negative so the weight is nonnegative.
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Vytlacil, 1999, 2001b, 2005, 2007b). It is not obvious why the weighted average of ∆MTE (uD)

produced by IV is of any economic interest. Since the weights can be negative for some values

of uD, ∆MTE (uD) can be positive everywhere in uD but IV can be negative. Thus, IV may not

estimate a treatment effect for any person. Therefore, a basic question is why estimate the model

with IV at all given the lack of any clear economic interpretation of the IV estimator in the general

case.

Our analysis can be extended to allow for discrete instruments, J (Z). Consider the case where

the distribution of P (Z) (conditional on X) is discrete. The support of the distribution of P (Z)

contains a finite number of values p1 < p2 < · · · < pK and the support of the instrument J (Z)

is also discrete, taking I distinct values, where I and K may be distinct. E(J(Z)|P (Z) ≥ uD) is

constant in uD for uD within any (p`, p`+1) interval, and Pr(P (Z) ≥ uD) is constant in uD for uD

within any (p`, p`+1) interval, and thus ωJIV (uD) is constant in uD over any (p`, p`+1) interval. Let

λ` denote the weight on the LATE for the interval (`, `+ 1). In this notation,

∆IV
J =

∫
E(Y1 − Y0|UD = uD)ωJIV (uD) duD (13)

=
K−1∑

`=1

λ`

∫ p`+1

p`

E(Y1 − Y0|UD = uD)
1

(p`+1 − p`)
duD

=
K−1∑

`=1

∆LATE(p`, p`+1)λ`.

Let ji be the ith smallest value of the support of J(Z). The discrete version of (11) is

λ` =

I∑
i=1

(ji − E (J))
K∑
t>`

(f (ji, pt))

Cov (J (Z) , D)
(p`+1 − p`) (14)

where f (ji, pt) is the probability frequency of (ji, pt): the probability that J (Z) = ji and P (Z) =

pt. There is no presumption that high values of J(Z) are associated with high values of P (Z). J(Z)

can be one coordinate of Z that may be positively or negatively dependent on P (Z) which depends

on the full vector. In the case of scalar Z, as long as J(Z) and P (Z) are monotonic in Z, there

is perfect dependence between J(Z) and P (Z). In this case, the joint probability density collapses

to a univariate density and the weights have to be positive, exactly as in the case with continuous
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instruments.15 Our expression for the weight on LATE generalizes the expression presented by

Imbens and Angrist (1994) who in their analysis of the case of vector Z only consider the case

where J(Z) and P (Z) are perfectly dependent because J(Z) is a monotonic function of P (Z).16

More generally the weights can be positive or negative for any ` but they must sum to 1 over the `.

Monotonicity or uniformity is a property needed with just two values of Z, Z = z1 and Z = z2,

to guarantee that IV estimates a treatment effect. With more than two values of Z we need to

weight the LATEs and MTEs. If the instrument J(Z) shifts P (Z) in the same way for everyone,

it shifts D in the same way for everyone since D = 1 [P (Z) > UD] and Z is independent of UD. If

J(Z) is not monotonic in P (Z), it may shift P (Z) in different ways for different people. Negative

weights are a tip-off of two-way flows.

An alternative and in some ways more illuminating way to derive the weights is to follow

Yitzhaki (1989, 1996) and Yitzhaki and Schechtman (2004) who prove for a general regression

function E (Y | P (Z) = p) that a linear regression of Y on P estimates

βY,P =
∫ 1

0

[
∂E (Y | P (Z) = p)

∂p

]
ω (p) dp, (15)

where

ω (p) =

∫ 1
p (t− E (P )) dFP (t)

Var (P )
,

which is exactly the weight (11) when P is the instrument. Thus we can interpret (11) as the

weight on ∂E(Y |P (Z)=p)
∂p when two-stage least squares (TSLS) based on P (Z) as the instrument

is used to estimate the “causal effect” of D on Y . Under uniformity, ∂E(Y |P (Z)=p)
∂p

∣∣∣
p=uD

=

E (Y1 − Y0 | UD = uD) = ∆MTE (uD).17 We discuss Yitzhaki’s derivation which is an argument

based on integration by parts in Appendix ??. Our analysis is more general than that of Yitzhaki

(1989), Imbens and Angrist (1994), or Angrist and Imbens (1995) because we allow for instruments

that are not monotonic functions of P (Z). Yitzhaki’s (1989) analysis is more general than that of

Imbens and Angrist (1994) because he does not impose uniformity (monotonicity).
15The condition for positive weights is weak monotonicity of λ` in `. If λ` is monotone increasing in `, the numerator

and the denominator are both positive. If λ` is monotone decreasing, the numerator and the denominator are both
negative and the weights are positive.

16In their case, I = K and f (ji, pt) = 0, ∀ i 6= t.
17Yitzhaki’s weights are used by Angrist and Imbens (1995) to interpret what TSLS estimates in the model of

equation (15). Yitzhaki (1989) derives the finite sample weights used by Imbens and Angrist (See his paper posted
at our website). See also the refinement in Yitzhaki and Schechtman (2004).
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Our simple test for the absence of general heterogeneity based on the linearity of Y in P (Z)

(based on equation 12) applies to the case of LATE for any pair of instruments. An equivalent test

is to check that all pairwise LATEs are the same over the sample support of Z.18

1.1.3 The Central Role of the Propensity Score

Observe that both (11) and (12) (and their counterparts for LATE (13) and (14)) contain expres-

sions involving the propensity score P (Z), the probability of selection into treatment. Under our

assumptions, it is a monotonic function of the mean utility of treatment, µD (Z). The propensity

score plays a central role in selection models as a determinant of control functions in selection

models (see Heckman and Robb, 1985, 1986) as noted in Section 1. In matching models, it pro-

vides a computationally convenient way to condition on Z (see, e.g. Heckman and Navarro, 2004;

Rosenbaum and Rubin, 1983). For the IV weight to be correctly constructed and interpreted,

we need to know the correct model for P (Z), i.e., we need to know exactly which Z determine

P (Z). As previously noted, this feature is not required in the traditional model for instrumental

variables based on response homogeneity. In that simpler framework, any instrument will identify

µ1(X) − µ0 (X) and the choice of a particular instrument affects efficiency but not identifiability.

One can be casual about the choice model in the traditional setup, but not in the model of choice

of treatment with essential heterogeneity. Thus, unlike the application of IV to traditional models,

IV applied in the model of essential heterogeneity depends on (a) the choice of the instrument

J (Z), (b) its dependence with P (Z), the true propensity score or choice probability and (c) the

specification of the propensity score (i.e., what variables go into Z). Using the propensity score

one can identify LIV and LATE and the marginal returns at values of the unobserved UD.

1.1.4 Monotonicity, Uniformity and Conditional Instruments

Monotonicity or uniformity condition ??, is a condition on counterfactuals for the same persons

and is not testable. It rules out general heterogeneous responses to treatment choices in response

to changes in Z. The recent literature on instrumental variables with heterogeneous responses is

thus asymmetric. Outcome equations can be heterogeneous in a general way while choice equations
18Note that it is possible that E (Y | Z) is linear in P (Z) only over certain intervals of UD, so there can be local

dependence and local independence of (UD, U0, U1).
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cannot be. If µD (Z) = γZ, where γ is a common coefficient shared by everyone, the choice

model satisfies the uniformity property. On the other hand, if γ is a random coefficient (i.e., has a

nondegenerate distribution) that can take both negative and positive values, and there are two or

more variables in Z with nondegenerate γ coefficients, uniformity can be violated. Different people

can respond to changes in Z differently, so there is non-uniformity. The uniformity condition can be

violated even when all components of γ are of the same sign if Z is a vector and γ is a nondegenerate

random variable.19

Changing one coordinate of Z, holding the other coordinates at different values across people, is

not the experiment that defines monotonicity or uniformity. Changing one component of Z, allowing

the other coordinates to vary across people, does not necessarily produce uniform flows toward or

against participation in the treatment status. For example, let µD (z) = γ0 + γ1z1 + γ2z2 + γ3z1z2,

where γ0, γ1, γ2 and γ3 are constants, and consider changing z1 from a common base state while

holding z2 fixed at different values across people. If γ3 < 0 then µD (z) does not necessarily satisfy

the uniformity condition. If we move (z1, z2) as a pair from the same base values to the same

destination values z′, uniformity is satisfied even if γ3 < 0, although µD (z) is not a monotonic

function of z.20

Positive weights and uniformity are distinct issues.21 Under uniformity, and assumptions (A-1)

to (A-5), the weights on MTE for any particular instrument may be positive or negative. The

weights for MTE using P (Z) must be positive as we have shown so the propensity score has a

special status as an instrument. Negative weights associated with the use of J (Z) as an instrument

do not necessarily imply failure of uniformity in Z. Even if uniformity is satisfied for Z, it is
19Thus if γ > 0 for each component and some components of Z are positive and others are negative, changes from

z′ to z can increase γZ for some and decrease γZ for others since γ are different among persons.
20Associated with Z = z is the counterfactual random variable D (z). Associated with the scalar random variable

J (Z) constructed from Z is a counterfactual random variable D (j (z)) which is in general different from D (z). The
random variable D (z) is constructed from (5) using 1[µD (z) ≥ V ]. V assumes individual specific values which
remain fixed as we set different z values. From (A-1), Pr(D (z) = 1) = Pr(D = 1 | Z = z). The random variable
D (j) is defined by the following thought experiment. For each possible realization j of J(Z) define D (j) by setting
D (j) = D (Z (j)) where Z (j) is a random draw from the distribution of Z conditional on J(Z) = j. Set D (j) equal
to the choice that would be made given that draw of Z (j). Thus D (j) is a function of (Z (j) , uD). As long as we
draw Z (j) randomly (so independent of Z), we have that (Z (j) , UD) ⊥⊥ Z so D (j) ⊥⊥ Z. There are other possible
constructions of the counterfactual D (j) since there are different possible distributions from which Z can be drawn,
apart from the actual distribution of Z. The advantage of this construction is that it equates the counterfactual
probability that D (j) = 1 given J (Z) = j with the population probability. If the Z were uncertain to the agent,
this would be a rational expectations assumption. See the further discussion in Appendix II posted at the website
for this paper.

21When they analyze the vector case, Imbens and Angrist (1994) analyze instruments that are monotonic functions
of P (Z). Our analysis is more general and recognizes that in the vector case, IV weights may be negative or positive.
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not necessarily satisfied for J (Z). Condition ?? is an assumption about a vector. Fixing one

combination of Z (when J is a function of Z) or one coordinate of Z does not guarantee uniformity

in J even if there is uniformity in Z. The flow created by changing one coordinate of Z can be

reversed by the flow created by other components of Z if there is negative dependence among

components, even if ceteris paribus all components of Z affect D in the same direction. We present

some examples in Section ??.

The issues of positive weights and the existence of one way flows in response to an intervention

are conceptually distinct. Even with two values for a scalar Z, flows may be two way (see equation

(??)). If we satisfy ?? for a vector, so uniformity applies, weights for a particular instrument may

be negative for certain intervals of UD (i.e., for some of the LATE parameters).

If we condition on Z2 = z2, . . . , ZK = zK using Z1 as an instrument, then a uniform flow

condition is satisfied. We call this conditional uniformity. By conditioning, we effectively convert

the problem back to that of a scalar instrument where the weights must be positive. If uniformity

holds for Z1, fixing the other Z at common values, one dimensional LATE/MTE analysis applies.

Clearly, the weights also have to be defined conditionally.

The concept of conditioning on other instruments to produce positive weights for the selected

instrument is a new one, not yet appreciated in the empirical IV literature and has no counterpart

in the traditional IV model. In the conventional model, the choice of a valid instrument affects

efficiency but not the definition of the parameters as it does in the more general case.22

In summary, nothing in the economics of choice models guarantees that if Z is changed from

z to z′, people respond in the same direction to the change. See the general expression (??). The

condition that people respond to choices in the same direction for a common change in Z across

people does not imply that D(z) is monotonic in z for any person in the usual mathematical usage

of the term monotonicity. If D(z) is monotonic in the usual usage of this term, and responses are

in the same direction for all people, then “monotonicity” or “uniformity” condition ?? would be

satisfied.

If responses to a common change of Z across persons are heterogenous in a general way, we
22In the conventional model with homogeneous responses, a linear probability approximation to P (Z) used as an

instrument would identify the same parameter as P (Z). In the general model, the parameters identified are different.
Replacing P (Z) by a linear probability approximation of it (e.g. E (D | Z) = πZ = J(Z)) is not guaranteed to
produce positive weights for ∆MTE (x, uD) or ∆LATE (x, u′D, uD), or to replicate the weights based on the correctly
specified P (Z).
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obtain (??) as the general case. Vytlacil’s (2002) theorem breaks down and IV cannot be expressed

in terms of a weighted average of LATE terms. Nonetheless, Yitzhaki’s characterization of IV

equation (15) as described in Appendix ?? remains valid and the weights on ∂E(Y |P=p)
∂p are positive

and of the same form as the weights obtained for MTE (or LATE) when the monotonicity condition

holds.

1.1.5 Treatment Effects vs. Policy Effects

Even if uniformity condition ?? fails, IV may answer relevant policy questions. By Yitzhaki’s result

(15), IV or TSLS estimates a weighted average of marginal responses which may be pointwise

positive, zero or negative. Policies may induce some people to switch into and others to switch

out of choices, as is evident from equation (??). These net effects are of interest in many policy

analyses. Thus, subsidized housing in a region supported by higher taxes may attract some to

migrate to the region and cause others to leave. The net effect on earnings from the policy is

all that is required to perform cost benefit calculations of the policy on outcomes. If the housing

subsidy is the instrument and the net effect of the subsidy is the parameter of interest, the issue of

monotonicity is a red herring. If the subsidy is exogenously imposed, IV estimates the net effect of

the policy on mean outcomes. Only if the effect of migration on earnings induced by the subsidy

on outcomes is the question of interest, and not the effect of the subsidy, does uniformity emerge

as an interesting condition.

1.2 Comparing Selection and Local IV Models

We now show that local IV identifies the derivatives of a selection model. Making the X explicit,

in the standard selection model, if the U1 and U0 are scalar random variables that are additively

separable in the outcome equations, Y1 = µ1(X) + U1 and Y0 = µ0(X) + U0. The control function

approach conditions on Z and D. As a consequence of index sufficiency this is equivalent to
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conditioning on P (Z) and D:

E (Y | X,D,Z) = µ0 (X) + [µ1 (X)− µ0 (X)]D

+K1 (P (Z) , X)D

+K0 (P (Z) , X) (1−D) ,

where the control functions are

K1 (P (Z), X) = E(U1 | D = 1, X, P (Z))

K0 (P (Z), X) = E (U0 | D = 0, X, P (Z)) .

The IV approach does not condition on D. It works with

E (Y | X,Z) = µ0 (X) + [µ1 (X)− µ0 (X)]P (Z) (16)

+K1 (P (Z) , X)P (Z)

+K0 (P (Z) , X) (1− P (Z)) ,

the population mean outcome given X,Z.

From index sufficiency, E (Y | X,Z) = E (Y | X,P (Z)). The MTE is the derivative of this

expression with respect to P (Z), which we have defined as LIV:

∂E(Y | X,P (Z))
∂P (Z)

∣∣∣∣
P (Z)=p

= LIV (X, p) = MTE (X, p) .23

The distribution of P (Z) and the relationship between J (Z) and P (Z) determine the weight on

MTE.24 Under assumptions (A-1) to (A-5), along with rank and limit conditions (Heckman, 1990;

Heckman and Robb, 1985), one can identify µ1 (X), µ0 (X), K1 (P (Z) , X), and K0 (P (Z) , X).

The selection (control function) estimator identifies the conditional means

E (Y1 | X,P (Z), D = 1) = µ1 (X) +K1 (X,P (Z)) (17a)
23Björklund and Moffitt (1987) analyze this marginal effect for a parametric generalized Roy model.
24Because LIV does not condition on D, it discards information. Lost in taking derivatives are the constants in

the model that do not interact with P (Z) in equation (16).
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and

E (Y0 | X,P (Z), D = 0) = µ0 (X) +K0 (X,P (Z)) . (17b)

These can be identified from nonparametric regressions of Y1 and Y0 on X,Z in each population. To

decompose these means and separate µ1 (X) from K1 (X,P (Z)) without invoking functional form

or curvature assumptions, it is necessary to have an exclusion (a Z not in X).25 In addition there

must exist a limit set for Z given X such that K1 (X,P (Z)) = 0 for Z in that limit set. Otherwise,

without functional form or curvature assumptions, it is not possible to disentangle µ1 (X) from

K1 (X,P (Z)) which may contain constants and functions of X that do not interact with P (Z) (see

Heckman (1990)). A parallel argument for Y0 shows that we require a limit set for Z given X such

that K0 (X,P (Z)) = 0. Selection models operate by identifying the components of (17a) and (17b)

and generating the treatment parameters from these components. Thus they work with levels of

the Y .

The local IV method works with derivatives of (16) and not levels and cannot directly recover

the constant terms in (17a) and (17b). Using our analysis of LIV but applied to Y D = Y1D and

Y (1 −D) = Y0(1 −D), it is straightforward to use LIV to estimate the components of the MTE

separately. Thus we can identify

µ1(X) + E (U1 | X,UD = uD)

and

µ0(X) + E (U0 | X,UD = uD)

separately. This corresponds to what is estimated from taking the derivatives of expressions (17a)
25See Heckman and Navarro (2007) for use of semiparametric curvature restrictions in identification analysis that

do not require functional form assumptions.
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and (17b) multiplied by P (Z) and (1− P (Z)) respectively:26

P (Z)E (Y1 | X,Z,D = 1)

= P (Z)µ1 (X) + P (Z)K1 (X,P (Z))

and

(1− P (Z))E (Y0 | X,Z,D = 0)

= (1− P (Z))µ0 (X) + (1− P (Z))K0 (X,P (Z)) .

Thus the control function method works with levels, whereas the LIV approach works with slopes.

Constants that do not depend on P (Z) disappear from the estimates of the model. The level

parameters are obtained by integration using the formulae in Table 1B.

Misspecification of P (Z) (either its functional form or its arguments) and hence ofK1 (P (Z) , X)

and K0 (P (Z) , X) in general produces biased estimates of the parameters of the model under the

control function approach even if semiparametric methods are used to estimate µ0, µ1,K0 and K1.

To implement the method, we need to know all of the arguments of Z. The terms K1 (P (Z) , X)

and K0 (P (Z) , X) can be nonparametrically estimated so it is only necessary to know P (Z) up

to a monotonic transformation.27 The distributions of U1, U0 and V do not need to be specified to

estimate control function models (see Powell, 1994).

These problems with control function models have their counterparts in IV models. If we use

a misspecified P (Z) to identify the MTE or its components, in general we do not identify MTE or

its components. Misspecification of P (Z) plagues both approaches.

One common criticism of selection models is that without invoking functional form assump-

tions, identification of µ1(X) and µ0(X) requires that P (Z) → 1 and P (Z) → 0 in limit sets.28

Identification in limit sets is sometimes called “identification at infinity.” In order to identify

ATE = E(Y1 − Y0|X), IV methods also require that P (Z) → 1 and P (Z) → 0 in limit sets,
26Björklund and Moffitt (1987) use the derivative of a selection model in levels to define the marginal treatment

effect.
27See Heckman et al. (1998).
28See Imbens and Angrist (1994). Heckman (1990) establishes the identification in the limit argument for ATE in

selection models. See Heckman and Navarro (2007) for a generalization to multiple outcome models.
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so an identification at infinity argument is implicit when IV is used to identify this parameter.29

The LATE parameter avoids this problem by moving the goal posts and redefining the parameter

of interest away from a level parameter like ATE or TT to a slope parameter like LATE which

differences out the unidentified constants. Alternatively, if we define the parameter of interest to

be LATE or MTE, we can use the selection model without invoking identification at infinity.

The IV estimator is model dependent, just like the selection estimator, but in application, the

model does not have to be fully specified to obtain ∆IV using Z (or J(Z)). However, the distribution

of P (Z) and the relationship between P (Z) and J (Z) generates the weights. The interpretation

placed on ∆IV in terms of weights on ∆MTE depends crucially on the specification of P (Z). In

both control function and IV approaches for the general model of heterogeneous responses, P (Z)

plays a central role.

Two economists using the same instrument will obtain the same point estimate using the same

data. Their interpretation of that estimate will differ depending on how they specify the arguments

in P (Z), even if neither uses P (Z) as an instrument. By conditioning on P (Z), the control function

approach makes the dependence of estimates on the specification of P (Z) explicit. The IV approach

is less explicit and masks the assumptions required to economically interpret the empirical output

of an IV estimation. We now turn to some examples that demonstrate the main points of this

paper.

1.3 Deriving the IV Weights on MTE

We consider instrumental variables conditional on X = x using a general function of Z as an

instrument. Let J(Z) be any function of Z such that Cov(J(Z), D | X = x) 6= 0. Consider the

population analog of the IV estimator,

[Cov (J (Z) , Y | X = x)] / [Cov (J (Z) , D | X = x)] .
29Thus if the support of P (Z) is not full, we cannot identify treatment on the treated or the average treatment

effect. We can construct bounds. See Heckman and Vytlacil (1999, 2001a,b, 2007b).
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First consider the numerator of this expression,

Cov (J (Z) , Y | X = x) = E ([J (Z)− E (J (Z) | X = x)]Y | X = x)

= E ((J (Z)− E (J (Z) | X = x)) (Y0 +D (Y1 − Y0)) | X = x)

= E ((J (Z)− E (J (Z) | X = x))D (Y1 − Y0) | X = x)

where the second equality comes from substituting in the definition of Y and the third equality fol-

lows from assumption conditional independence assumption (A-2). Define J̃(Z) ≡ J(Z)−E(J(Z) |

X = x). Then

Cov (J (Z) , Y | X = x)

= E
(
J̃(Z) 1[UD ≤ P (Z)] (Y1 − Y0) | X = x

)

= E
(
J̃(Z) 1[UD ≤ P (Z)] E (Y1 − Y0 | X = x, Z, UD) | X = x

)

= E
(
J̃(Z) 1[UD ≤ P (Z)] E (Y1 − Y0 | X = x, UD) | X = x

)

= E




E
(
J̃(Z) 1[UD ≤ P (Z)] | X = x, UD

)

×E (Y1 − Y0 | X = x, UD)

∣∣∣∣∣∣∣
X = x




=
∫




E(J̃(Z) | X = x, P (Z) ≥ uD) Pr(P (Z) ≥ uD | X = x)

×E (Y1 − Y0 | X = x, UD = uD)




duD

=
∫

∆MTE(x, uD)E(J̃(Z) | X = x, P (Z) ≥ uD) Pr(P (Z) ≥ uD | X = x)duD,

where the first equality follows from plugging in the model for D; the second equality follows from

the law of iterated expectations with the inside expectation conditional on (X = x, Z, UD); the

third equality follows from conditional independence assumption (A-2); the fourth equality follows

from Fubini’s Theorem and the law of iterated expectations with the inside expectation conditional

on (X = x, UD = uD); the fifth equality follows from the normalization that UD is distributed

uniformly [0, 1] conditional on X; and the final equality follows from plugging in the definition of

∆MTE. Next consider the denominator of the IV estimand. Observe that by iterated expectations

Cov (J (Z) , D | X = x) = Cov (J (Z) , P (Z) | X = x) .
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Thus, the population analog of the IV estimator is given by

∫
∆MTE(x, uD)ω (x, uD) duD (18)

where

ω (x, uD) =




E(J̃(Z) | X = x, P (Z) ≥ uD)

×Pr(P (Z) ≥ uD | X = x)




Cov (J (Z) , P (Z) | X = x)
. (19)

where by assumption Cov (J (Z) , P (Z) | X = x) 6= 0.

If J(Z) and P (Z) are continuous random variables then a second interpretation of the weight

can be derived from (19) by noting that

∫
(j − E (J (Z) | X = x))

∫ 1

uD

fP,J (t, j | X = x) dt dj

=
∫

(j − E (J (Z) | X = x)) fJ (j | X = x)

×
∫ 1

uD

fP |J,X (t | J(Z) = j,X = x) dt dj.

Write

∫ 1

uD

fP |J,X (t | J(Z) = j,X = x) dt

= 1− FP |J,X (uD | J(Z) = j,X = x)

= SP |J(Z),X (uD | J(Z) = j,X = x)

where SP |J,X (uD | J(Z) = j,X = x) is the probability of (P (Z) ≥ uD) given J (Z) = j and X = x.

Likewise, Pr[P (Z) > UD | J(Z), X] = SP |J,X (UD | J(Z), X). Using these results, we may write

the weight as

ω (x, uD)

=
Cov

(
J (Z) , SP |J,X (uD | J(Z), X = x) | X = x

)

Cov
(
J (Z) , SP |J,X (UD | J(Z), X = x) | X = x

) .

For fixed uD and x evaluation points, SP |J,X (uD | J(Z), X = x) is a function of the random vari-
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able J(Z). The numerator of the preceding expression is the covariance between J(Z) and the

probability that the random variable P (Z) is greater than the evaluation point uD conditional on

J(Z).

For a fixed x evaluation point, SP |J,X (UD | J(Z), X = x) is a given function of the random vari-

ables UD and J(Z). The denominator of the above expression is the covariance between J(Z) and

the probability that the random variable P (Z) is greater than the random variable UD conditional

on J(Z) and X = x.

Thus, it is clear that if the covariance between J (Z) and the conditional probability that

(P (Z) > uD) given J (Z) is positive for all uD, then the weights are positive. The condition is

trivially satisfied if J (Z) = P (Z), so the weights are positive and IV estimates a gross treatment

effect.

If the J (Z) and P (Z) are discrete valued, we obtain expressions and (13) and (14) in the text.

2 The Choice Model and Assumptions

Following Heckman, Urzua, and Vytlacil (2006, 2009) and Heckman and Vytlacil (2007b), consider

the following model with multiple choices and associated multiple outcome states. Let J denote

the agent’s choice set, where J contains a finite number of elements. For example, J enumerates

possible schooling states (e.g., GED, high school dropout, high school graduate). The value to the

agent of choosing j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj , (20)

where Zj are the agent’s observed characteristics that affect the utility from choosing j, and Vj is

the unobserved shock to the agent’s utility from choice j. We sometimes write Rj for Rj(Zj) to

simplify notation. Let Z denote the random vector containing all unique elements of {Zj}j∈J . We

write Rj(Z) for Rj(Zj), leaving implicit the condition that Rj(·) only depends on the elements of

Z that are contained in Zj . Let Dj be a variable indicating whether the agent would choose j if
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confronted with choice set J :30

Dj =





1 if Rj ≥ Rk ∀ k ∈ J

0 otherwise.

Array the Dj into a vector D. Let Y be the outcome that would be observed if the agent faced

choice set J , defined as

Y =
∑

j∈J
DjYj ,

where Yj is a potential outcome observed only if option j is chosen. Yj is determined by

Yj = µj(Xj , Uj),

where Xj is a vector of the agent’s observed characteristics and Uj is an unobserved random vector.

Let X denote the random vector containing all unique elements of {Xj}j∈J . (Z,X,D, Y ) is assumed

to be observed by the analyst.31

Define RJ as the maximum obtainable value given choice set J :

RJ = maxj∈J {Rj}

=
∑

j∈JDjRj .
(21)

This is the traditional representation of the decision process that if choice j is optimal, choice j is

better than the “next best” option:

Dj = 1⇐⇒ Rj ≥ RJ\j .

Heckman, Urzua, and Vytlacil (2006, 2009) and Heckman and Vytlacil (2007b) show that this

simple, well-known, representation is the key intuition for understanding how instrumental variables

estimate the effect of a given choice versus the “next best” alternative. IV is a weighted average
30Below, we invoke conditions so that ties, Rj = Rk for j 6= k, occur with probability zero.
31Depending on the choice model, Z may or may not include the X. For example, in a Roy model of schooling under

perfect certainty (e.g. Willis and Rosen, 1979), X would be among the Z. In models of schooling under uncertainty
(e.g. Cunha, Heckman, and Navarro, 2005, Cunha and Heckman, 2007 and Urzua, 2008) innovations in X unknown
at the time schooling decisions are made would not be in Z. The key condition on Z is given in Assumption (A-2)
below.
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of the effects for people induced into a choice from different margins. Analogous to the definition

of RJ , we define RJ (z) to be the maximum obtainable value given choice set J when instruments

are fixed at Z = z,

RJ (z) = max
j∈J
{Rj(z)}.

Following the analysis in Heckman et al. (2006, 2009) and Heckman and Vytlacil (2007b), we

assume:

(A-1) The distribution of ({Vj}j∈J ) is continuous.32

(A-2) {(Vj , Uj)}j∈J is independent of Z conditional on X.

(A-3) E | Yj | <∞ for all j ∈ J .

(A-4) Pr(Dj = 1 | X) > 0 for all j ∈ J .

In addition, we assume an exclusion restriction that requires some additional notation.33 Let

Z [−l] denote all elements of Z except for the lth component. We assume

(A-5) For each j ∈ J , their exists at least one element of Z, say Z [l], such that the distribution of

ϑj(Zj) conditional on (X,Z [−l]) is continuous.

With these assumptions, one can generalize the analysis of Heckman and Vytlacil (1999, 2001c,

2005) to the unordered case. Assumptions (A-1) and (A-2) imply that Rj 6= Rk (with probability

1) for j 6= k, so that argmaxj∈J {Rj} is unique (with probability 1). Assumption (A-2) assures the

existence of an instrument. Assumption (A-3) is required for mean treatment parameters to be well

defined. It also allows one to integrate to the limit and to produce well-defined means. Assumption

(A-4) requires that at least some individuals participate in each choice for all X. Assumption

(A-5) imposes the requirement that one be able to independently vary the index for the given value

function. It imposes a type of exclusion restriction, that for any j ∈ J , Z contains an element

such that (i) it is contained in Zj ; (ii) it is not contained in any Zk for k 6= j, and (iii) ϑj(·) is a

nontrivial function of that element conditional on all other regressors.34

32Absolutely continuous with respect to Lebesgue measure on
∏

j∈J<.
33We work here with exclusion restrictions in part for ease of exposition. By adapting the analysis of Cameron

and Heckman (1998) and Heckman and Navarro (2007), one can modify our analysis for the case of no exclusion
restrictions if Z contains a sufficient number of continuous variables and there is sufficient variation in the ϑk function
across k.

34See Heckman and Vytlacil (2007b) for additional discussion.

25



In a series of papers, Heckman and Vytlacil (1999, 2001c, 2005, 2007b), develop the method of

local instrumental variables (LIV) to estimate the marginal treatment effect (MTE) for the case of

binary choices. We now define and interpret the MTE and LIV in the case of general unordered

choices.

2.1 Interpreting Local Instrumental Variables in the Unordered Case

We define local instrumental variables (LIV) using a variable that shifts people toward (or against)

choice j by operating only on Rj(Zj). LIV identifies an average marginal return to j vs. the next

best alternative across persons.35 However, without further assumptions, LIV will not decompose

the average marginal return into its component parts corresponding to the effects for persons

induced into j from each of the possible origin states.

To see this, consider a three outcome case, J = {1, 2, 3}. For concreteness, we pursue the

education example previously stated and let 1 be GED, 2 be high school dropout, and 3 be high

school graduate. Our results are more general but the three outcome case is easy to exposit.

In this section, we assume that Z1, Z2, Z3 are disjoint sets of regressors so Z = (Z1, Z2, Z3) but

they are not necessarily statistically independent. We can easily relax this assumption but making

it simplifies the notation. We condition on X and keep it implicit throughout the analysis of this

paper.36 In this notation,

E (Y | Z) = E




3∑

j=1

YjDj

∣∣∣∣∣∣
Z


 (22)

= E (Y1D1 | Z) + E (Y2D2 | Z) + E (Y3D3 | Z) .

E(Y |Z) and its components can be estimated from data on (Y, Z). IV is based on (22). From (21),

choices are generated by the following inequalities:

D1 = 1 (R1 ≥ R2, R1 ≥ R3)

D2 = 1 (R2 ≥ R1, R2 ≥ R3)

D3 = 1 (R3 ≥ R1, R3 ≥ R2) .
35See Heckman, Urzua, and Vytlacil (2006) and Heckman and Vytlacil (2007b).
36See Heckman and Vytlacil (2007b) for a more general analysis.
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We define the marginal change in Y with respect to Z1. IV methods are based on such types

of variation. The local instrumental variable estimator using Z1 as an instrument is the sample

analogue of
∂E(Y |Z)
∂Z1

∂ Pr(D1=1|Z)
∂Z1

∣∣∣∣∣
Z=z

= LIV(z),

where LIV is a function of z. In the case of three choices, there are two margins from which persons

can be attracted into or out of choice 1 by Z1.37

From local variations in Z1, one can recover the following combinations of parameters from the

data on Y1D1:

∂E (Y1D1 | Z = z)
∂Z1

=
∂

∂Z1

∫ ∫ ϑ1(Z1)−ϑ2(Z2)

−∞

∫ ϑ1(Z1)−ϑ3(Z3)

−∞
y1fY1,V1−V2,V1−V3 (y1, v1 − v2, v1 − v3) d (v1 − v3) d (v1 − v2) dy1

∣∣∣∣∣
Z=z

=
∂ϑ1 (Z1)
∂Z1

∣∣∣∣
Z1=z1



∫
y1

∫ ϑ1(z1)−ϑ3(z3)
−∞ fY1,V1−V2,V1−V3 (y1, ϑ1 (z1)− ϑ2 (z2) , v1 − v3) d (v1 − v3) dy1

+
∫
y1

∫ ϑ1(z1)−ϑ2(z2)
−∞ fY1,V1−V2,V1−V3 (y1, v1 − v2, ϑ1 (z1)− ϑ3 (z3)) d (v1 − v2) dy1


 .

(23)

By similar reasoning, we can recover the following combination of parameters from the data on

Y2D2:

∂E (Y2D2 | Z = z)
∂Z1

=
∂

∂Z1

∫
y2

∫ ϑ2(Z2)−ϑ1(Z1)

−∞

∫ ϑ2(Z2)−ϑ3(Z3)

−∞
fY2,V2−V1,V2−V3(y2, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) dy2

∣∣∣∣∣
Z=z

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

[∫
y2

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2,V2−V1,V2−V3(y2, ϑ2(z2)− ϑ3(z1), v2 − v3)d (v2 − v3) dy2

]
.

(24)

37Recall that Z1 only affects the utility associated with choice 1.
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From data on Y3D3, we obtain the following combination of parameters:

∂E (Y3D3 | Z1 = z)
∂Z1

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

∫
y3

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3,V3−V1,V3−V2 (y3, ϑ3 (z3)− ϑ1 (z1) , v3 − v2) d (v3 − v2) dy3 .

(25)

Agents induced into 1 come from 2 and 3. There are two margins:

(R1 = R2) and (R1 ≥ R3) (margin of indifference between 1 and 2),

and

(R1 = R3) and (R1 ≥ R2) (margin of indifference between 1 and 3).

Unaided, IV does not enable analysts to identify the returns at each of the different margins.

Instead, it identifies a weighted average of returns. It does not identify the density of persons at

the various margins, i.e., the proportion of people induced into (or out of) 1 from each possible

alternative state by a change in the instrument.

Collecting terms and rewriting in more easily interpretable components, which generalize the

MTE developed for a two choice model to a multiple choice unordered model:38

(
∂E(Y |Z)
∂Z1

)

(
∂ϑ1
∂Z1

)

∣∣∣∣∣∣
Z=z

=




Generalization of MTE for persons indifferent
between 1 and 2, where choice 3 is dominated︷ ︸︸ ︷

[E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))] Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ [E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))]︸ ︷︷ ︸
Generalization of MTE for persons indifferent
between 1 and 3, where choice 2 is dominated

Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))



.

This is a weighted return to alternative 1 for persons coming from two separate margins: alternative

1 versus alternative 2, and alternative 1 versus alternative 3, i.e., the return to people induced into

1 from their next best choice. The weights are the proportion of people induced into 1 from each
38Heckman, Urzua, and Vytlacil (2006) generalize the MTE to an ordered choice model. See also Heckman and

Vytlacil (2007b).
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margin. This combination of parameters can be identified from IV. The components of the sum

cannot be identified by IV without further assumptions. Note that it is possible that a group at one

margin gains while a group at another margin loses. IV only estimates a net effect, which might

be zero.

Notice that from representation (2.1) and the assumption that the Zj (jεJ ) are distinct, pairwise

monotonicity, an extension of the monotonicity assumption invoked by Imbens and Angrist (1994)

for the binary choice case, is satisfied.39 In the context of a model with multiple choices, pairwise

monotonicity means the same pattern of flow between any two states is experienced by everyone.

Thus, as Zj increases, there is a flow from i to j but not from j to i (or vice versa). From (20),

changing Z1 induces all persons to move in the same direction (i.e. from 1 to 2 or 2 to 1 but

not both, and from 1 to 3 or 3 to 1 but not both). Pairwise monotonicity does not rule out the

possibility that a change in an instrument causes people to move in the direction from j to i but

to move away from the direction from k to i for j 6= k, and j, k 6= i.

By the chain rule, the derivative of Pr (D1 = 1 | Z) is:

∂ Pr (D1 = 1 | Z = z)
∂Z1

=
∂ϑ1

∂Z1

∣∣∣∣
Z1=z1




Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


 .

We can define LIV in terms of the preceding ingredients as

LIV(z) =

(
∂E(Y |Z)
∂Z1

)

(
∂ Pr(D1=1|Z)

∂Z1

)

∣∣∣∣∣∣
Z=z

=




E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))ω12

+E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))ω13


 .

(26)

The combination of terms can be identified by LIV from the data on (Y,D,Z).

The IV weights are:

ω12 =
Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))


Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))




(27)

(28)
39This is defined as “uniformity” in Heckman, Urzua, and Vytlacil (2006).
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and

ω13 =
Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))




. (29)

The weights can be identified from a structural discrete choice analysis.40 They cannot be identified

by an unaided instrumental variable analysis. Thus it is not possible to identify the component

parts of (24) by LIV alone, i.e., one cannot separately identify the generalized MTEs:

E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

and

E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2)) ,

unless one invokes “identification at infinity” arguments or alternative arguments using local vari-

ation in regressors developed by Fox and Gandhi (2008).41 ? and Heckman and Vytlacil (2007b)

develop classes of economically interpretable parameters that do not require “identification at in-

finity” and that can be identified using estimated marginal treatment effects.

Using a structural model, one can estimate the components of (26) and determine the flow into

(or out of) state 1 from all sources. We illustrate this point in Section 2.3. First we consider what

standard IV estimates.
40Conditions for nonparametric identification of the multinomial discrete choice model are presented in Matzkin

(1993, 1994). Conditions for nonparametric identification of the full choice model with outcomes are given in Heck-
man and Vytlacil (2007a, Appendix B). Conditions for identification of general dynamic discrete choice models are
presented in Abbring and Heckman (2007). Conditions for identification in multinomial models that do not require
“identification at infinity” are given in Fox and Gandhi (2008).

41See Heckman and Vytlacil (2007b) who show how to vary Z3 or Z2 to effectively shut down one margin of
choice. Specifically, for any fixed Z1 = z1, if limZ2→Z̃2

R2(Z2)→ −∞ and limZ3→Z̃3
R3(Z3)→ −∞ where Z̃2 and Z̃3

represent limit sets, then we can identify, respectively, the gains at the 3→ 1 margin in the limit set, and the gains
in the 2 → 1 margin in the limit set. These assumptions require that one can vary Z2 and Z3 to shut down one or
the other margin of choice. Under these assumptions and some additional mild regularity assumptions, the structural
approach can identify distributions of (Y1−Y2) and (Y2−Y3) as we demonstrate in the example in Section 2.3 of this
paper. “Identification at infinity” is a model-specific misnomer. It is an assumption that there are different sets each
with non-negligible probability such that the probabilities of attaining various outcome states are arbitrarily close
to one. “Identification at infinity” assumptions are justified naturally in truncated regression models. See Heckman
(1987).
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2.2 What does standard IV estimate?

To see what standard IV estimates, consider the following linear-in-schooling model of earnings

that receives much attention in the literature in labor economics.42 Let Y denote log earnings and

write S as years of schooling. The model writes

Y = α+ βS + U (30)

where

S =
3∑

j=1

jDj , (31)

and Y is defined as in Section 2. It is interpreted in this section as an approximation to the general

model presented in Section 2. S is assumed to be correlated with U , and β is a random variable

that may be statistically dependent on S. The model of Section 2 does not, in general, imply (30).

Indeed, there is much empirical evidence against model (30).43 An analysis of what IV estimates

when linearity in S is imposed as an approximation, even though it may be inappropriate, is an

interesting exercise because linearity is so often invoked.

Suppose Z1 is a valid instrument. We now interpret what

∆IV
Z1

=
Cov(Z1, Y )
Cov(Z1, S)

(32)

estimates. We do this by decomposing ∆IV
Z1

into components analogous to the decomposition

produced by Heckman et al. (2006, 2009) and Heckman and Vytlacil (2007b). The Appendix

presents the derivation of the following decomposition of IV into our pairwise generalization of
42We keep conditioning on X implicit.
43See Heckman, Lochner, and Todd (2006) for discussions of this model and various justifications for it. Heckman,

Layne-Farrar, and Todd (1996) present evidence against linearity of the earnings function in terms of years of
schooling.
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MTE for the unordered case:

∆IV
Z1

=
Cov(Z1, Y )
Cov(Z1, S)

= (33)



∫∞
−∞

∫∞
−∞

Generalized MTE (2→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y2 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))




+




∫∞
−∞

∫∞
−∞

Generalized MTE(3→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y3 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))




∫∞
−∞

∫∞
−∞

[
−ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)
]

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1)

+2
∫∞
−∞

∫∞
−∞

[
−ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)
]

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

IV identifies a weighted average of gains to state 1 compared to the next best alternative which

may be 2 or 3. The two terms of the decomposition are defined as generalized MTEs and are

weighted averages of the gain of moving from state 2 to state 1 for persons on the margin of

indifference between 1 and 2 and for whom 2 is a better choice than 3 (the first term) and the gain

of moving from 3 to 1 for persons on the margin of indifference between 1 and 3 and for whom 3

is a better choice than 2 (the second term).44

In the Appendix, we derive the weights on the generalized MTEs and show that they do not

sum to 1 even when normalized by the denominator. The mathematical reason for this result is

simple. The weights in the numerator do not sum to the weights in the denominator. The second

term in the denominator receives twice as much weight as the corresponding term in the numerator.

This is a consequence of the definition of S (31), which plays no role in the numerator term. Thus,

IV applied to the general model produces an arbitrarily weighted sum of generalized MTEs with

weights that do not sum to 1, and which, in general, places more weight on the first generalized
44Since Z1 only affects R(Z1), it has no direct effect on the margin 2→ 3.
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MTE term than on the second term, compared to the weights placed on the corresponding terms

in the denominator.45 Using IV alone, we cannot decompose (33) into its component parts, even

though the weights can be identified from discrete choice analysis.46,47

2.3 An Example

It is instructive to summarize our analysis with an example. Consider a 3 choice model with as-

sociated outcomes. This corresponds to the GED, high school dropout and high school graduate

example that we have used throughout the paper. Under conditions presented in Heckman and Vyt-

lacil (2007a, Appendix B), the structural model is nonparametrically identified. A key assumption

in their proof is the “identification at infinity” assumption previously discussed.48 This assumes

the ability to vary (Z1, Z2, Z3) freely and the existence of limit sets such that fixing any two of

(Z1, Z2, Z3), one makes the Rj associated with Zj arbitrarily small.49

Heckman and Vytlacil (2007b) show that if one augments the IV assumptions with the same

identification at infinity assumptions used in structural models, one can use IV in the limit to

identify the components of (3.5). In the limit sets, one can identify

E(Y1 − Y2|R1(z1) = R2(z2)) (35)
45Thus “2” appears only in the denominator and not in the numerator.
46The structural model is nonparametrically identified under the conditions in Appendix B of Heckman and Vytlacil

(2007a).
47Decomposition (33) is not unique. It arises from decomposing Y into

Y = D1Y1 +D2Y2 +D3Y3

where we solve out D1 = 1−D2 −D3, to obtain

Y = Y1 +D2(Y2 − Y1) +D3(Y3 − Y1).

We could also solve out D2 = 1−D1 −D3 to obtain

Y = Y2 +D1(Y1 − Y2) +D3(Y3 − Y2)

or D3 = 1−D1 −D2 to obtain

Y = Y3 +D1(Y1 − Y3) +D2(Y2 − Y3).

Each decomposition can be used to represent ∆IV
Z1 . For each decomposition, the leading terms on the right-hand

side, (Y1, Y2, Y3), respectively, are uncorrelated with Z1 by virtue of (A-2). Corresponding generalized MTEs can be
defined for each decomposition. Z1 affects the lower boundary of the opportunity set in

E(Y2 − Y3|R(z2) ≥ R(z1), R(z3) ≥ R(z1)).

We choose the decomposition reported in the text for its greater interpretability.
48Alternatively, one can make functional form assumptions about the distribution of the error terms.
49See the conditions in footnote 41.
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and

E(Y1 − Y3|R1(z1) = R3(z3)) (36)

by setting Z3 and Z2 respectively to limit set values. Essentially one can use the limit sets to make

a three choice model into a two choice model, and the standard results for the two choice model

apply.50 Under these assumptions, and additional mild regularity assumptions, using structural

methods, one can identify the distributions of (Y1, Y2) and (Y1, Y3) so that one can identify distri-

butions of treatment effects, Y2 − Y1 and Y3 − Y1, in addition to the mean parameters identified

by IV.51 One can also identify the proportion of people induced into 1 from each alternative state

using variation in the instrument.

Consider the model with the parameters presented in Table 5. This is a discrete choice model

with associated outcome variables. The Zj , j = 1, . . . , 3, are assumed to be scalar and mutually

independent. They are normally distributed so they satisfy large support (“identification at infin-

ity”) conditions. Table 6 shows how a change in Z1, which increases it by .75 standard deviations,

shifts people across categories. This corresponds to making GED attainment easier.52 The esti-

mates reported in Table 6 can be obtained from a structural discrete choice model. The percentage

initially in 1 (GED) increases from 33.17% to 38.8%. The percentage in 2 (dropout) decreases from

29.11% to 25.91%. The percentage in 3 (graduating high school) declines from 37.72% to 35.29%.

The IV estimate is -.032. (See the base of Table 7) This is the only number produced by an IV

analysis using Z1 as an instrument that changes within the specified range. The structural analysis

in Table 7 shows that the net effect produced by the change in Z1 is composed of 2 terms. It arises

from a gain of .199 for the switchers 2→ 1 (dropout to GED) and a loss of .336 (3→ 1) (graduate

to GED).

Figure 1 shows what can be identified from the structural model. It plots the distributions of

gains for persons going from 2 to 1 and from 3 to 1 as well as the overall distribution of gains to

the switchers. Persons switching from 3 to 1 are harmed in gross terms by the policy that changes

Z1, while those who switch from 2 to 1 gain in gross terms. In utility terms, (Rj), people are

50See Heckman and Vytlacil (2007b)
51The literature on “quantile treatment effects” uses IV to identify the quantiles of Y1 and Y2 separately but not

the quantiles of Y1 − Y2. See Abbring and Heckman (2007).
52Heckman, LaFontaine, and Rodŕıguez (2008) show that easing GED requirements promotes dropping out of

school and causes some dropouts to become GEDs.
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better off.53 In terms of gross gains, about 56.8% of the people who switch from 2 to 1 are better

off while 39.3% of the people who switch from 3 to 1 are better off. Overall, 49.2% are better off

in gross terms even though the IV estimate is slightly negative. If one seeks to understand the

distributional effects of the policy associated with a change Z1, the structural analysis is clearly

much more revealing. The IV estimate, which is a mean gross gain aggregating over origin states,

does not capture the rich information about choices afforded by a structural analysis. However, it

does identify the average gain to the program compared to the next-best alternatives. If that is

the object of interest, linear IV is the right tool to use.

3 Derivation of the Standard IV Estimator

We first study the numerator of ∆IV
Z1

in the text. Recall that we keep the conditioning on X implicit.

Using Z̃1 = Z1 − Z̄1,

Cov (Y,Z1) = E
(
Z̃1 (Y1D1 + Y2D2 + Y3D3)

)
.

Using D1 = 1−D2 −D3, we obtain

Cov (Y, Z1) = E
(
Z̃1 (Y1 + (Y2 − Y1)D2 + (Y3 − Y1)D3)

)

= E
(
Z̃1Y1

)
+ E

(
Z̃1 (Y2 − Y1)D2

)
+ E

(
Z̃1 (Y3 − Y1)D3

)
,

53This is imposed in a discrete choice model.
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where E
(
Z̃1Y1

)
= 0. It is natural to decompose this expression using choice “1” as the base,

because Z1 only shifts R1(Z1). The final two terms can be written as

Cov (Y,Z1)

= E
(
Z̃1 (Y2 − Y1) 1 (R2(Z2) ≥ R1(Z1), R2(Z2) ≥ R3(Z3))

)
+ E

(
Z̃1 (Y3 − Y1) 1 (R3(Z3) ≥ R1(Z1), R3(Z3) ≥ R2(Z2))

)

= E
[
Z̃1 (Y2 − Y1) 1

(
(ϑ2 (Z2)− ϑ1 (Z1) ≥ V2 − V1) , (ϑ2 (Z2)− ϑ3 (Z3) ≥ V2 − V3)

)]

+ E
[
Z̃1 (Y3 − Y1) 1

(
(ϑ3 (Z3)− ϑ1 (Z1) ≥ V3 − V1) , (ϑ3 (Z3)− ϑ2 (Z2) ≥ V3 − V2)

)]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z̃1 (y2 − y1)

×
(∫ ϑ2(z2)−ϑ1(z1)

−∞

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2−Y1,V2−V1,V2−V3(y2 − y1, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) d (y2 − y1)

)

× fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3)
(z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1)) dz̃1

+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z̃1 (y3 − y1)

×
(∫ ϑ3(z3)−ϑ1(z1)

−∞

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3−Y1,V3−V1,V3−V2 (y3 − y1, v3 − v1, v3 − v2) d (v3 − v2) d (v3 − v1) d (y3 − y1)

)

× fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2)
(z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1)) dz̃1.

By Fubini’s Theorem, we can simplify the expressions and obtain for the first term:

∫ ∞

−∞

∫ ∞

−∞
E (Y2 − Y1 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1) . (37)

hV2−V1,V2−V3(.) is the joint density of V2−V1, V2−V3. Define the weighting term in braces in (37) as

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)−ϑ3 (z3) , v2−v1). It is necessary to fix both ϑ2 (z2)−ϑ3 (z3) and v2−v1

in forming the weight. This weight can be estimated from a structural discrete choice analysis and

the joint distribution of (Z,D1, D2, D3). The terms multiplying the weight are marginal treatment

effects generalized to the unordered case. (A.1) cannot be decomposed using IV. An alternative
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representation of the term in braces, ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) is

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) =

E (Z1 − E (Z1) | ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1)

× Pr (ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1) .

An analysis parallel to the preceding one shows that the second term can be written as

∫ ∞

−∞

∫ ∞

−∞
E (Y3 − Y1 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×
(∫ ∞

v3−v1
fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ3 (z3)− ϑ2 (z2)) d (v3 − v1) . (38)

Define the term in braces in (38) as the weight ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1).

To obtain the denominator for the IV, recall that S =
∑3

j=1 j Dj . Substitute D1 = 1−D2−D3,

3∑

j=1

j Dj = (1−D2 −D3) + 2D2 + 3D3

= 1 +D2 + 2D3.

Then

Cov(S, Z̃1) = E
(
Z̃1D2

)
+ 2E

(
Z̃1D3

)

= E
(
Z̃1 (1 (R2 ≥ R1, R2 ≥ R3))

)
(39)

+2E
(
Z̃1 (1 (R3 ≥ R1, R3 ≥ R2))

)
.

Using reasoning similar to that invoked for the analysis of the numerator terms, we obtain expres-

sions for the terms corresponding to the two terms of (37) and (38). We obtain for the first term
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of (39)

∫ ∞

−∞
z̃1

[∫ ∞

−∞

∫ ∞

−∞

∫ ϑ2(z2)−ϑ1(z1)

−∞
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×
(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)
d (v2 − v1)

×d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

]
dz̃1. (40)

By Fubini’s Theorem, we obtain:

∫ ∞

−∞

∫ ∞

−∞
z̃1

[∫ ∞

−∞

(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×d (ϑ2 (z2)− ϑ1 (z1))

)
d (ϑ2 (z2)− ϑ3 (z3))

]
d (v2 − v1) dz̃1 (41)

=
∫ ∞

−∞

∫ ∞

−∞
ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3)) .

By parallel logic, we obtain for the second term in 39:

2
∫ ∞

−∞

∫ ∞

−∞
z̃1

[∫ ∞

−∞

(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×
(∫ ∞

v3−v1
fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)

× d (ϑ3 (z3)− ϑ2 (z2))

]
d (v3 − v1) dz̃1

= 2
∫ ∞

−∞

∫ ∞

−∞
ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

These terms can be identified from a structural analysis using the joint distribution of (Z,D1, D2, D3).

Collecting results, we obtain decomposition (33) in the text if we multiply both the numerator and

denominator by -1.
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Table 1: Treatment Effects and Estimands as Weighted Averages of the Marginal Treatment Effect

Table 1A
Treatment E¤ects and Estimands as Weighted Averages

of the Marginal Treatment E¤ect

ATE(x) = E (Y1 � Y0 j X = x) =
R 1
0
�MTE(x; uD) duD

TT(x) = E (Y1 � Y0 j X = x;D = 1) =
R 1
0
�MTE(x; uD)!TT(x; uD) duD

TUT(x) = E (Y1 � Y0 j X = x;D = 0) =
R 1
0
�MTE (x; uD) !TUT (x; uD) duD

Policy Relevant Treatment E¤ect (x) = E (Ya0 j X = x)� E (Ya j X = x) =
R 1
0
�MTE (x; uD) !PRTE (x; uD) duD

for two policies a and a0 that a¤ect the Z but not the X

IVJ(x) =
R 1
0
�MTE(x; uD)!

J
IV(x; uD) duD, given instrument J

OLS(x) =
R 1
0
�MTE(x; uD)!OLS(x; uD) duD

Table 1B
Weights

!ATE(x; uD) = 1

!TT(x; uD) =
hR 1
uD
f(p j X = x)dp

i 1

E(P j X = x)

!TUT (x; uD) =
�R uD
0

f (pjX = x) dp
� 1

E ((1� P ) jX = x)

!PRTE(x; uD) =

�
FPa0 ;X(uD)� FPa;X(uD)

�P

�

!JIV(x; uD) =
hR 1
uD
(J(Z)� E(J(Z) j X = x))

R
fJ;P jX (j; t j X = x) dt dj

i 1

Cov(J(Z); D j X = x)

!OLS(x; uD) = 1 +
E(U1 j X = x; UD = uD)!1(x; uD)� E(U0 j X = x;UD = uD)!0(x; uD)

�MTE(x; uD)

!1(x; uD) =
hR 1
uD
f(p j X = x) dp

i � 1

E(P j X = x)

�

!0(x; uD) =
�R uD
0

f(p j X = x) dp
� 1

E((1� P ) j X = x)

Source: Heckman and Vytlacil (2005)
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Table 2: Weights

Table 1A
Treatment E¤ects and Estimands as Weighted Averages

of the Marginal Treatment E¤ect

ATE(x) = E (Y1 � Y0 j X = x) =
R 1
0
�MTE(x; uD) duD

TT(x) = E (Y1 � Y0 j X = x;D = 1) =
R 1
0
�MTE(x; uD)!TT(x; uD) duD

TUT(x) = E (Y1 � Y0 j X = x;D = 0) =
R 1
0
�MTE (x; uD) !TUT (x; uD) duD

Policy Relevant Treatment E¤ect (x) = E (Ya0 j X = x)� E (Ya j X = x) =
R 1
0
�MTE (x; uD) !PRTE (x; uD) duD

for two policies a and a0 that a¤ect the Z but not the X

IVJ(x) =
R 1
0
�MTE(x; uD)!

J
IV(x; uD) duD, given instrument J

OLS(x) =
R 1
0
�MTE(x; uD)!OLS(x; uD) duD

Table 1B
Weights

!ATE(x; uD) = 1

!TT(x; uD) =
hR 1
uD
f(p j X = x)dp

i 1

E(P j X = x)

!TUT (x; uD) =
�R uD
0

f (pjX = x) dp
� 1

E ((1� P ) jX = x)

!PRTE(x; uD) =

�
FPa0 ;X(uD)� FPa;X(uD)

�P

�

!JIV(x; uD) =
hR 1
uD
(J(Z)� E(J(Z) j X = x))

R
fJ;P jX (j; t j X = x) dt dj

i 1

Cov(J(Z); D j X = x)

!OLS(x; uD) = 1 +
E(U1 j X = x; UD = uD)!1(x; uD)� E(U0 j X = x;UD = uD)!0(x; uD)

�MTE(x; uD)

!1(x; uD) =
hR 1
uD
f(p j X = x) dp

i � 1

E(P j X = x)

�

!0(x; uD) =
�R uD
0

f(p j X = x) dp
� 1

E((1� P ) j X = x)

Source: Heckman and Vytlacil (2005)
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Table 3: Weights for Different Treatment Parameters

(a) Treatment Effects and Estimands as Weighted Averages of the
Marginal Treatment Effect

Table A-1A
Treatment Effects and Estimands as Weighted Averages

of the Marginal Treatment Effect

ATE(x) =
∫ 1

0
MTE(x, uS)duS

TT (x) =
∫ 1

0
MTE(x, uS)hIV(x, uS)duS

TUT (x) =
∫ 1

0
MTE(x, uS)hTUT (x, uS)duS

PRTE (x) =
∫ 1

0
MTE (x, uS) hPRTE (x, uS) duS .

IV(x) =
∫ 1

0
MTE(x, uS)hIV(x, uS)duS

OLS(x) =
∫ 1

0
MTE(x, uS)hOLS(x, uS)duS

Table A-1B
Weights for ATE, TT , TUT , PRTE, IV and OLS

hATE(x, uS) = 1

hTT (x, uS) =
[∫ 1

uS
f(p | X = x)dp

] 1
E(P | X = x)

hTUT (x, uS) =
[∫ uS

0
f(p | X = x)dp

]
· 1
E((1− P ) | X = x)

hPRTE(x, uS) =
[
FP∗,X(uS)− FP,X(uS)

∆P

]

hIV(x, uS) =
[∫ 1

uS
(p-E(P | X = x))f(p | X = x)dp

] 1
V ar(P | X = x)

[for P (Z) as the instrument]∗

hOLS =
E(U1 | X = x, US = uS)h1(x, uD)-E(U0 | X = x, US = uS)h0(x, uS)

MTE(x, uS)

h1(x, uS) =
[∫ 1

uS
f(p | X = x)dp

] 1
E(P | X = x)

h0(x, uS) =
[∫ uS

0
f(p | X = x)dp

] 1
E((1− P ) | X = x)

Source: Heckman and Vytlacil (2005).
∗For a general instrument, see Heckman, Urzua, and Vytlacil (2006) or Heckman and Vytlacil (2007b).

1

(b) Weights for ATE, TT, TUT, PRTE, IV and OLS

Table A-1A
Treatment Effects and Estimands as Weighted Averages

of the Marginal Treatment Effect

ATE(x) =
∫ 1

0
MTE(x, uS)duS

TT (x) =
∫ 1

0
MTE(x, uS)hIV(x, uS)duS

TUT (x) =
∫ 1

0
MTE(x, uS)hTUT (x, uS)duS

PRTE (x) =
∫ 1

0
MTE (x, uS) hPRTE (x, uS) duS .

IV(x) =
∫ 1

0
MTE(x, uS)hIV(x, uS)duS

OLS(x) =
∫ 1

0
MTE(x, uS)hOLS(x, uS)duS

Table A-1B
Weights for ATE, TT , TUT , PRTE, IV and OLS

hATE(x, uS) = 1

hTT (x, uS) =
[∫ 1

uS
f(p | X = x)dp

] 1
E(P | X = x)

hTUT (x, uS) =
[∫ uS

0
f(p | X = x)dp

]
· 1
E((1− P ) | X = x)

hPRTE(x, uS) =
[
FP∗,X(uS)− FP,X(uS)

∆P

]

hIV(x, uS) =
[∫ 1

uS
(p-E(P | X = x))f(p | X = x)dp

] 1
V ar(P | X = x)

[for P (Z) as the instrument]∗

hOLS =
E(U1 | X = x, US = uS)h1(x, uD)-E(U0 | X = x, US = uS)h0(x, uS)

MTE(x, uS)

h1(x, uS) =
[∫ 1

uS
f(p | X = x)dp

] 1
E(P | X = x)

h0(x, uS) =
[∫ uS

0
f(p | X = x)dp

] 1
E((1− P ) | X = x)

Source: Heckman and Vytlacil (2005).
∗For a general instrument, see Heckman, Urzua, and Vytlacil (2006) or Heckman and Vytlacil (2007b).

1

Source: Heckman and Vytlacil (2005).
∗For a general instrument, see Heckman, Urzua, and Vytlacil (2006) or Heckman and Vytlacil (2007b).

41



Table 4: Weights for MPRTE

Measure of Distance Definition of Policy Change Weight
for People Near the Margin

|µS(Z)− V | < e Zkα = Zk + α hMPRTE (x, uS) =
fP |X(uS)fV |X(F−1

V |X(uS))

E(fV |X(µS(Z))|X)

|P − U | < e Pα = P + α hMPRTE (x, uS) = fP |X (uS)∣∣P
U − 1

∣∣ < e Pα = (1 + α)P hMPRTE (x, uS) = uSfP |X(uS)

E(P |X)

Source: Carneiro, Heckman and Vytlacil (Forthcoming, 2009).
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Table 5: Potential Outcomes, Choice Model and Parameterizations

Outcomes Choice Model

Yj = αj + Uj with j ∈ J = {1, 2, 3} Dj =
{

1 if Rj ≥ Rk ∀ j ∈ J
0 otherwise

Y =
∑

j∈J YjDj Rj = γjZj − Vj with j ∈ J

Parameterization

(U1, U2, U3, V1, V2, V3) ∼ N (0,ΣUV ) , (Z1, Z2, Z3) ∼ N (µZ ,ΣZ)

ΣUV =




0.64 0.16 0.16 0.024 −0.32 0.016
0.16 1 0.20 0.020 −0.30 0.010
0.16 0.20 1 0.020 −0.40 0.040
0.024 0.020 0.020 1 0.6 0100
−0.32 −0.30 −0.40 0.6 1 0.2
0.016 0.01 0.040 0100 0.2 1



, µZ = (1.0, 0.5, 1.5) and ΣZ=




1 0 0
0 1 0
0 0 1




[
α1 α2 α3

]
= [ 0.3 0.1 0.7 ],

[
γ1 γ2 γ3

]
= [ 0.2 0.3 0.1 ]
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Table 6: Transition Matrix Obtained from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation
New Value of Instrument

(Z̃ = Z1 + 0.75)
D1 = 1 D2 = 1 D3 = 1 Total

Original Value D1 = 1 33.17% 0% 0% 33.17%
of Instrument D2 = 1 3.20% 25.91% 0% 29.11%

(Z1) D3 = 1 2.43% 0% 35.29% 37.72%
Total 38.80% 25.91% 35.29% 100%
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Table 7: Marginal Gains Identified from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation
Gains to Switchers Fraction of Population Switching

From 2 to 1 0.199 3.20%
From 3 to 1 -0.336 2.43%
Overall (IV estimate) -0.032 5.63%

IV Estimate:
E
[
Y |Z̃1

]
− E [Y |Z1] = 3.20

3.20+2.43 × 0.199− 2.43
3.20+2.43 × 0.336 = −0.032
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Figure 1: Distribution of Gains in Outcomes Induced by the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation
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Switchers From 2 to 1
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% Gross Gainers from all Sources 49.2%
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Figure 2: Weights for three different versions of the MPRTE
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are scaled to fit the picture.
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Figure 3: Weights for IV and MPRTE
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