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S denotes different sectors.

S = 0 denotes choice of the high school sector, and S = 1 denotes choice of
the college sector.

(' reflects the cost associated with choosing the college sector.

T
Y74t
Y, =
; (1+ r)t
T
Yoit
Yo = :
; (1+ r)t

Y1, Y, and C' are ex post realizations of cost and returns.



1y denotes the information set of the agent at time period ¢ = 0.
LiftE(Y1—-Yy—C|Zy >0
S = :
0, otherwise.
Essential Idea

Suppose, contrary to what is possible, analyst observes Y, Y7 and C.

Ideal data set
Observe two different lifetimes

Construct Y7 — Yy — C from ex post lifetime data.
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Information set Z, of the agent. We seek to construct E (Y; — Yy — C' | Zy).

Suppose we assume we know the right information set (fo = IO> :

We then obtain

Vi, =(Mi-Y%-0) - E(Vi-Y-C|L)

0 p—
Our test is to determine if S depends on V3 .

Test for correct specification of Zp: test if the coefficient on Vz in a discrete
choice equation for S is different from zero.

Search among candidate information sets fo to determine which ones satisfy
the requirement that the generated V5 does not predict S.

Procedure is in the form of a Sims (1972) version of a Wiener-Granger causality
test.

It is also a test for misspecification of the information.
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Components of Vz that do not predict S are called intrinsic components of
uncertainty.

Procedure as stated not practical.

We do not observe Y; and Y| together for anyone.



Specifics of the BASIC STRATEGY in complete market case.
Linear in parameters model:

}/E)it — XitﬁOt + Vot = 07 ceey T
Yin = XuBi + vii
Ci = Ziy+vc.

0 = (01,0,,...,0L),0; and §; mutually independent random variables for ¢ # j.
Voir = i + ot

v = 0,008 + €1,

where ag; and «aq; are vectors.

Ci = Ziy + Oiac + gic.



Choice Equation:

T
E (Z (Xitﬁlt + eialt -+ glit) — (XitﬁOt -+ HiOéOt + 507;75) . (ZZ/Y + (92‘04(] + giC')

(1+7)

.

t=0

S = 1if I >0; S =0 otherwise.

Let ® denote the Hadamard product (a ® b = (a1b1,...,arbr))



For candidate information set fo,

. B (X | To) T (X~ B (X | B) .
o ; (1_|_ )t (ﬁlt_BOt)—i_; (1—|—T)t (ﬁlt_BOt)G) X
YE0: | To) ;(Oﬁtlgit)—&o +[9iE(9if0)]{ ;(0211:3‘})—@0 @Ag}

_|_

T ~ T ~
E(e1i — €0t | Lo) (e1it — €0it) — E(e1ie — €oir | I
Z lit — Ot’ 0) +Z 1it 0it . (€14t 0it | 0>]A€t

=0

t
P (1+7r) +7)

_E (ZZ- yfo) y — [ZZ- _E (Zi |f0)] OA, —E (m yfo) _ [52(; _E (gz—c yfo)] A..
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A test of the validity of information set T, is that Ay = 0; Ay = 0;A, =

0;A;, = 0 and A,, = 0,Vt. Components associated with zero A’s are the
unforecastable elements.

e We test what components of the future income process unobservable to
the econometrician enter the agents information set and are acted on by
the agent at the time of his schooling decision and so are not components
of uncertainty but rather components of heterogeneity.

e This procedure can be generalized so 6 becomes 6,, a hidden state Markov
process.



How is the Model Identified?

Problem: We need to construct counterfactuals. We only observe earnings
in college for people who choose college and earnings in high school for people
who choose high school. We can never form the covariance between college
and high school in the raw data.

Solution: Extension of Factor Models to Nonlinear Settings (see Goldberger
and Joreskog, MIMIC, 1972; LISREL, Joreskog, 1977 for linear versions)

Consider a simple example that motivates the main idea.
We observe

(Y11,..., Y1) for s=1
()/(),17”-7}/0,T> for s=0

Let net utility of s = 1 be represented by the index.
I =u;(X,Z)+U;, Z instruments

Yie = p (X)) +Uy t=1,...,T
Yor = oy (X)+ Uy t=1,...,T

)
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We know F (Yi1,...,Yir | S=1,X,Z) and F (You,...,Yor | S =0, X, Z).

Under conditions on regressors and support of Z (Heckman (1990), Heckman
and Smith (1998), Carneiro, Heckman and Hansen (2003)), we can identify
from these distributions

pog (X) s pyy (X),py (X, Z)  (up toscale) t=1,....T
and the joint distribution of

F(Yii,....Yir, I| X, 2)
F(Yoi,....Yor, I|X,2)

with the scale of I not determined (must be normalized). I* is the normalized
index.
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Motivation on the Nonparametric Identification
of The Joint Distribution of Outcomes and The
Binary Choice Equation

Motivate why F'(Yy, I* | X, Z) is identified. (Take simple case: two potential
outcomes; T' = 0 so one period model for simplicity only)

From Cosslett (1983), Manski (1988) and Matzkin (1992)

X,/
P (X )fromPr(S=1’X,Z):PI(N1<X72)+UIZO‘X’Z)
0r

(Support conditions and continuous regressors).

Can identify

Ur

Or

Can identify distribution of
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From this information and

F(Yo|S=0,X,2)=Pr(Yo <yo | (X, 2)+Ur<0,X,2)

Form

FYo|S=0,X,2)Pr(S=0|X,2)=Pr(Yo <yo, ["<0]| X, 7)

Follow analysis of Heckman (1990), Heckman and Smith (1998) and Carneiro,
Hansen and Heckman (2003).
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Left hand side known.

Right hand side:

X, Z
Pr(}/()éy07ﬁ<_lu[( : )|X72)

Or Or

IUI(Xa Z)

Since we know , we can vary it for each fixed X.

gr
If 4;(X, Z) gets small (u;(X,Z) — —o0), recover the marginal distribution Y
and
Yo =1o(X)+ Uy .. can identity
U —u (X, Z
Pr (UOSyO_:uO(X)?_IS MI( : ) ‘sz)
o

I Or

X and Z can be varied and y, is a number.

Trace out joint distribution of (Uo, %)
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.. Recover joint distribution of

(Yo, 1) = (o) + Un, PZ2EE )

Or

Three key ingredients.

1. The independence of (Uy,Ur) and (X, 7).
M <X7 Z)

2. The assumption that we can set to be very small (so we get

Or
the marginal distribution of Y and hence pq(X)).

MI(Xv Z)

Or

3. The assumption that can be varied independently of 11,(X).

Trace out the joint distribution of (Uo, %) Result generalizes easily to the

vector case. (Carneiro, Hansen, Heckman, IFR, 2003)
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Another way to see this is to write:

F(Yy|S=0,X,Z)Pr(S=0]|X,2)

(X, 2)

This is a function of uy(X) and atl
07

(Index sufficiency)

X.Z U
(X, 2) traces out the distribution of Uy, -

Varying the p,(X) and atl
Or or

This means effectively that we observe (ULI, Y1> : (JLI, YO)

We do not observe (ULI, Yo, Yl)
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Using Factor Analysis, Can Construct Joint Distributions of
Counterfactuals

Example: One factor model.

Assume that all of the dependence across (Uy, Uy, Uy« ) is generated by a scalar
factor 0

UO — 90&0 + €p
U1 = 90&1—|—€1
U]* = (904[* + Ex.

E#)=0, and E(6°)=o;.
FE(e0) =F(e1) =FE(ep)=0
Var (g9) = 0?0, Var(e1) =

Var(er) = agj
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1 Factor Models: A Brief Digression

E@) =0, FE()=0;i=1,...,5

R1:Oé1(9—|—51, R2:&29—|—€2, R3ZO&3(9—|—83,
Ry = ayl + 4, Rs = a0 + €5, e; AL g

Cov (Rl, Rz) — 0410420'3
Cov (Rl, Rg) = 0410430'3
Cov (RQ, Rg) = 0420430'3

Normalize ov; = 1

Cov (RQ, Rg)
CO?} (Rl, RQ)
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. We know o3 from Cov (Ry, Ry) . From Cov (R, R3) we know
a3, Oy, Qis.
Can get the variances of the ¢; from variances of the R;
Var(R;)) = ajo; + o2

If T'= 2, all we can identify is alozgag.

If a; =1, 03 = 1, we identify «s.
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2 Factors:
0, 1L 6,

£ J.Lé‘j \V/Z,]

= 041191 + (0)(92 —+ €1
052191 + (0)(92 —+ )
(3101 + agaly + €3

0101 + el 4 24

= a0 + aslls + 5

Let X11 — ]., X390 — 1.
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Cov (Rl,RQ) = 04210'31
Clov (Rl,Rg) — 04310'31

2
Cov (RQ,R?,) = 042104310'91

Cov (RQ, Rg) — o
C'ov (Rl,RQ) o

. . . N 2
Form ratio of . we identify as, ao1, 03, , as before.

Cov (Rl, R4)

0441031, . we get 031 c.we get o =1

Cov (Rl, Rk) = O‘k:lo-gl

. we identify oy for all k£ and o7, .
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2 2
Cov (R3, Ry) — azi105, = a0y,
2 2
Cov (Rg, R5) — 043104510'91 = 04520'92

2 2
Cov (R4, R5) — (4105109, — (52004209,

By same logic,
Cov (R4, R5) — 044104510'31

= (/59

2
Cov (Rg, R4) — 043104410'01

. get o of “2” loadings.
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If we have dedicated measurements do not need a normalization on R.

M1 = (91—|—€1M
M2 = (92—'—52]\4

Cov (Rl,M> = @110’31
C'ov (RQ, M) = 04210'31
Cov (Rg,M) = 04310'31

2
Cov (Rh R2> — (101209,

2 : )
Cov (Ri,R3) = oqiaa30y,, UL 20y,

.. We can get ajqs, 031 and the other factors.
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General Case

R=M4+ A 0 + ¢

Tx1 Tx1 TxKKx1 Tx1

6 are factors, € uniquenesses

E()=0

(0?1 0o - 0 \
Var (ee') =D = 0 052 .O

K 0 O. a:fT)

E#)=0
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The only source of information on A and Yy is from the covariances.

2

Associated with each variance of R; is a o .

Each variance contributes one new parameter.
How many unique covariance terms do we have?

T(T —1)
2

This is the data.

We have T uniquenesses; T'K elements of A.

K (K —1)
2

K(K-1
( ) +TK parameteI'S (29;A>-

elements of >y.
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Observe that if we multiply A by an orthogonal matrix C, (C'C" = I'), we have
Var (R) = AC [C'SyC| C'AN' + D
C'is a “rotation”. Cannot separate AC from A.

Model not identified against orthogonal transformations in the general case.

26



Some common assumptions:

(05 0 00
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joined with

(ii)

28
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We know that we can identify of the A, >y parameters.

K(K-1 T (T -1
K1) , gy < TO=D)
# of free parameters data

“Ledermann Bound”

Can get more information by looking at higher order moments.
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Recovering the Factor Loadings in the Roy Model (Go
back to simple case)

The Case when there is information only on Y, for / < 0 and Y; for
I >0

Can identify F' (Uy, Ur<) and F (U, Uy+), .*. can identify

CO’U(U(),U]*) = CXQCYI*O%
COU(Ul,U]*) = &1&[*0'2.

Scale of the unobserved [ is normalized

0
o5 =1 al = ka—

k

Normalize some o; to one.

Ck]*:].

Identify a; and o from the known covariances above.
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Since
Cov (Ul, U()) = OélOéoO'g

we can identify covariance between Y] and Y
Do not observe the pair (Y1, Yp)

Access to more observations (say from panel data T > 0)

Cov (Y, I")
Cov (Yiy, Yii)
Cov (You, I")
Cov (Yor, Yor)

= Ot

= O
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Crucial Idea of Identification
We never observe (Y7,Y) as a pair, both Yy and Y] are linked to S through
the choice equation.
From S we can generate [*
We essentially observe (Yy, I*) and (Y1, I*).

The common dependence of Y, and Y] on I* secures identification of the joint
distribution of Yj, Y7, I*.
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Adding a Measurement Equation Helps to Identify the Model

Suppose we have a measurement for 6 observed whether S =1or S =0

Measured ability M is
M = pp (X) +Unr.

Assume that
UM = 0th9 + Enm

We assume o, # 0. Can form
Cov(M,Yy) = Cov(Uy,Upy) = apagog

Cov (M, Y1) Cov (Up,Uy) = apraio
Cov (M, I*) = Cov(Uy,Up) = ayay-o.
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Can form the ratios

Can identify ag-.

Cov (Uo, U]*)
Cov (UM, U[*)

Cov (Ul, U]*)
C'ov (UM, U[*)

Cov (UM, Uo) = &00'3

Identifty ay: = Qg

Recover ag: —

Cov (UM, U[*) = Oé]*O'g
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2 Intuition on Identification of the Normal Case
Model

Generalized Roy versions of model:
M = ] (X) + (91041,]\4 + (92042,]\4 + Enm
(Measurement: A test score equation)

(X) + (9104%,1 + (9204571 -+ 6%

1
1 :
L(X) + 610y + Oyaly + &l } College earnings

0 0 0 0
,ul X) —|_ 910&1,1 _|_ 92@271 + 81 . .
Y2 = 18 (X) + 0100, + 203, + £ High School earnings

Cost

C = Z’}/ + 910410 + 920&20 + ¢
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Decision Rule Under Perfect Certainty:
(Assume r = 0)

M% (X) + /«L% (X) + 04 (04%,1 T 0‘%,2)
+05 (g1 + g 5) + 61+ 63

,U(1) (X) + Ng (X) + 04 (04?,1 + 04(1),2)
+05 (1 + o9 ,) + b + &)
—Zy — oo — Orcac — €¢

w1 (X) + iz (X) = (13 (X) + a3 (X) + Z7]
+6,4 [(041 | 1+ oy 2) (&?,1 + 04972) — 0410]
+06, [(042’1 + 042’2) - (043,1 + 04872) — azc]
+ (5} =+ 6%) — (5(1) -+ eg) — &c
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In Reduced Form
I = QY (X, Z) -+ Ck]71(91 -+ Ck],2(92 + E€7.

Set Ur = ar101 + arabls +€;.

. wWe can write

V' = p(X)+U;
;o= m(X)+Us
VY = (0 +07
)= () +03

Ul,U; etc. match the error terms previously shown.
Ul = 9104},1 + (92045,1 + €7 ete.
Uy = 0oy + 0oy +enr
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Cov (U}, I)
Var (I) A0

E(Y! | X,Z,1>0)=p(X)+

Using standard sample selection bias arguments we can identify beside the
means,

11 (X)), py (X)), ps (X)), 19 (X), the following parameters:

Cov (Ull, U21) , Var (Ull) , Var (U21)

Cov (Ull, UM) ,Cov (U21, UM) Var (Uy)
Cov (U{), UQO) , Var (Uf) ,Var (Ug)

Cov (U{), UM) ,Cov (US, UM)
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Normal Case:

(0,e) 1L (X,Z) : (0,¢) normal.

PI‘(S: 1 ‘ X,Z,(gl,eg)

_ (I)[ 1 [u%(XHM%(X)—[u?(XHuS(X)] ”

0_51 —Z7y + Orar1 + 0201 9

39



Fact:
fS=1[Xg+0>V], X 1 (6,V)

0,V are normal, § 1L V, E(0) =0,E (V) =

Pr(S—1]|X.,0) — @<X5+9>
ov

Pr(S—1]X) — @( A0 )
(7% +03)

Why? S =1[X5 >V —#]. Rest follows from independence (between V' — 6,
and X, and normality).
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Unconditional Probability:

pa (X) + pg (X) — [y (X) + pp (X)] — Zv

1/2
2 2 2 2 2
(O-EI _I_ &1710-91 _I_ &1,20-92)

Pr(S=1|X,2)=a

Observe that if we know py (X)), ps (X)), pud (X)), p9 (X) we know

1 (X) 4 g1z (X)] = (12 (X) + iz (X)]

If Z~v not perfectly collinear with this term (e.g. one or more elements of X
not in Z) we can identify

1
2 2 2 2 2 \2
(O-&?[ —i_ O‘I,lael —|_ &1,2092)

*. we also identify v (get absolute scale on costs).

41



Suppose agents do not know 65 or the future ¢1, £}, €Y, £ but know &, and 6.

Then if what they know is set at mean zero, (they use rational expectations
in a linear decision rule) and their mean forecast is the population mean,

and ayo = 0.

What can we identify?
Is the model testable?
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What information do we have about covariances?

Suppose we have two dedicated measurement systems for 6; and 6.

Mll = (91 + 8%’M )

My = ag 01 + €3, p Cognitive Ability
My = a3 b1 + €3y

M12 = (92 + 5%,]\4 )

M2 = oz%) wmb2 + €3, » Noncognitive Ability
M?? = a§7M92 + Eg,M )

(See e.g. Heckman, Urzua and Stixrud, 2004)
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Observe from M' system we get
Var (61), oz M CV?l) M
From M? system we get

Var (03), 042 M 04% M
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Then
Cov (U, M) = aq,0p,
Cov (Uy, My) = aq,0p,
. we get all of the factor loadings in Y'! on 6.

Using M7 we get a3 ;, a3 , and we get variances of uniquenesses Var (e1), Var (&3) .

By similar reasoning, we get

0 0 0 0
Qq 1, W 1, Qq 2, X9 9

Var (5(1’) Var (5%)

45



Observe from
Cov (I, M}) =05, |1+ a1, — (f1 +f,5) —aic]

.. We can get a1 up to scale oy, since we know everything else by the previous
reasoning.

From
Cov (I, M}) =05, a1 + g5 — (051 + a55) — ]

. we get ase up to scale oy.

From Pr(S =1| X, Z), we can identify 02 using previous reasoning
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Therefore we have that we can identify everything in the model if there is one
X not in Z since we can identify the terms in the numerator.
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But, can we test the model?

In the previous notation, we have that for a test of whether f5 belongs in the
model

py (X)) + pp (X) = [0} (X) + ps (X)] — Zy

p 2 2 2 2
(061 +Q7,0y T QF 2‘792A92)

Pr(S=1|X,2)=a

Apparently, we can test the null
HO . Agz =0

.. apparently we can test if 5, components enter or not.
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The problem with this test is that if 02 # 0, we can always adjust its value
to fit the model perfectly well. If we have a pure Roy model, the test is clean.
A pure Roy model assumes o2 = 0.

Notice, however, that we can also tolerate v # 0 so long as agc = (0. Thus we
can depart from the Roy model somewhat.

Basic point: we don’t observe costs directly. .. we do not get a clean measure-
ment on o2 . We can identify o7 but the problem is that ¢2 can be adjusted.
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Correct Test:

Form
I 0j
Cov (2-.01) = 2ol ol + aly — (ad + o) — ]
or or
2 1 .1 1 0 0
+A02092@1,2 [@1,1 T Qg — (041,1 + O‘l,2) — O‘LC]
we can compute the left hand side under the null. (with exclusion and nor-

mality). We identify all components of right hand side by a separate argument
(from measurement systems).

Thus under the null that Ay, = 0, we can identify o? .

. we construct a test under null:

2 1 1 1 0 0
I 1 09,1 1 [041,1 T Qg — (041,1 + 041,2) - C“Lc]
Cov|—,U; | —

OJ Or

=0

We know both terms under the null. (We do not use the information on

Cov (J—II, Ull) . Departures are evidence that agents know 0s.
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It is assumed that if the agent knows #; but not 65, he sets
E (63) = 0.

This is justified by linearity of the criterion and rational expectations, assuming
E (05| Zy) = 0.
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Then we can test among models by deciding
e Which model fits the data better?

Average effect (we estimate the average probability):

/Pr (S = 1| X.Z.01, D, 00) F (0) F (0) do.

(we test Ay, = 0)

This i1s what is done in the Hicks lecture.
Don’t need normality.
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Recovering the Distributions Nonparametrically

Theorem 1 Suppose that we have two random variables T and 15 that sat-
151y

7 = 0+
TQ — 0—|—’U2

with 0, vy, vo mutually statistically independent, E () < oo, E (v1) = E (v) =
0, that the conditions for Fubini’s theorem are satisfied for each random vari-
able, and the random variables possess nonvanishing (a.e.) characteristic func-

tions, then the densities f (0), f (v1), and f (ve) are identified.

Proof. See Kotlarski (1967). H
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I' = pup(X,Z2)+apl+ep
Yo = 1o (X) 4+ ol + g0
Vi = (X)) 4+l +e
M = py (X)+0+en.

System can be rewritten as

[*—,LL[*(X,Z) — 9 Erx*
T+ T+

07 7))

1 X1



Er- €y €
Applying Kotlarski’s theorem, identify the densities of 6, ! : L : ! JEM-
Oé[* OKO 041

We know o+, ag and «1. Can identify the densities of 0, e+, g, €1, £3s. Recover
the joint distribution of (Y7, Yy)

F(YiY | X) = [ F(.%] 6.X)dF (6).

F' (0) is known
F(Yi.Yy|6,X) = F(Y; | 0.X)F (Y| 6,X).
F(Y;]6,X) and F (Y, | 0, X) identified

F(Y1]0,X,5=1) = F(Y1]|0,X)
F(Yol0,X,8=0) = F(Yy]0,X).

Can identify the number of factors generating dependence among the Y7, Yj,
C, S and M.
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Crucial idea: even though we never observe (y1,¥o) as a pair, both yq
and y; are linked to S through the choice equation (I) or a measurement
equation (M).

Can extend to nonseparable models (Heckman, Matzkin, Navarro and
Urzua, 2004)

For the other market structures the decision rule is no longer linear
(solution to a dynamic programing problem). That is

I = EIO (‘/1 (Xa 97 €1,1, Qo; QS) — ‘/0 (X7 97 €0,1, @0; ¢) T Z,/Y — '\ — gCOSt)

The argument still goes through using external measurements like the
test equations instead of the choice equation as common identifying re-
lationships.

Alternatively, we can also identify the factor loadings using nonsymmet-
ric @ (nonlinear factor analysis).

Can fit model, determine the number of factors and generate counter-

factuals.
56



e ¢ is identified. Obvious if we use consumption data. Also true without
consumption. Under large support conditions, factors and uniquenesses
nonparametrically identified are means. We maintain separabililty.

e Can extend to multiple periods and multiple schooling levels (Heckman
and Navarro, 2004)
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Figure 1.1
Densities of fitted and actual present value of earnings

x 107 from age 19 to 28 for overall sample

5 T T T T T T T T I
- Fitted

= = Actual

4.5

O ] ] ] ] ] ]
0 50 100 150 200 250 300 350 400 450 500

Thousands of Dollars
Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. Let (YO’Yl) denote

potential outcomes in high school and college sectors, respectively. Let S=0 denote high school sector,
and S=1 denote college sector. Define observed earnings as Y:SY1+(1—S)YO. Finally, let f(y) denote

the density function of observed earnings. Here we plot the density functions f generated from the data
(the solid curve), against that predicted by the model (the dashed line). We use kernel density estimation
to smooth these functions.
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3.5

0 | |

Figure 1.2
Densities of fitted and actual present value of earnings
-3 from age 29 to 38 for overall sample

x 10

- Fitted
= = Actual

0 100 200 300 400 500 600 700
Thousands of Dollars

Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. Let (YO’Yl) denote

potential outcomes in high school and college sectors, respectively. Let S=0 denote high school sector,
and S=1 denote college sector. Define observed earnings as Y:SY1+(1—S)YO. Finally, let f(y) denote

the density function of observed earnings. Here we plot the density functions f generated from the data
(the solid curve), against that predicted by the model (the dashed line). We use kernel density estimation

to smooth these functions.
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Figure 1.3
Densities of fitted and actual present value of earnings

r 107 from age 39 to 48 for overall sample
I I I I I I T
PR — Fitted
AR = = Actual
35F \ i

2.5
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0.5

0
0 100 200 300 400 500 600 700 800
Thousands of Dollars

Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. Let (YO,Yl) denote

potential outcomes in high school and college sectors, respectively. Let S=0 denote high school sector,
and S=1 denote college sector. Define observed earnings as Y:SY1+(1—S)YO. Finally, let f(y) denote

the density function of observed earnings. Here we plot the density functions f generated from the data
(the solid curve), against that predicted by the model (the dashed line). We use kernel density estimation
to smooth these functions.
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Figure 1.4
Densities of fitted and actual present value of earnings

x 107 from age 49 to 58 for overall sample
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. Let (YO’Yl) denote

potential outcomes in high school and college sectors, respectively. Let S=0 denote high school sector,
and S=1 denote college sector. Define observed earnings as Y:SY1+(1—S)YO. Finally, let f(y) denote

the density function of observed earnings. Here we plot the density functions f generated from the data
(the solid curve), against that predicted by the model (the dashed line). We use kernel density estimation
to smooth these functions.
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Figure 1.5
Densities of fitted and actual present value of earnings

from age 59 to 65 for overall sample
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. Let (YO,Yl) denote

potential outcomes in high school and college sectors, respectively. Let S=0 denote high school sector,
and S=1 denote college sector. Define observed earnings as Y:SY1+(1—S)YO. Finally, let f(y) denote

the density function of observed earnings. Here we plot the density functions f generated from the data
(the solid curve), against that predicted by the model (the dashed line). We use kernel density estimation
to smooth these functions.
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Figure 2.1
Densities of fitted and actual present value of earnings
X 10-from age 19 to 28 for people who choose to graduate high school

| | | | | | | | [
- — Fitted
= = Actual

4.5

0 ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

Thousands of Dollars
Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. Earnings here are Yo‘

Here we plot the density functions f(yO|S:O) generated from the data (the solid curve), against that
predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 2.2
Densities of fitted and actual present value of earnings
X 10-from age 29 to 38 for people who choose to graduate high school
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Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. Earnings here are YO.

Here we plot the density functions f(yO|S:O) generated from the data (the solid curve), against that
predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 2.3
Densities of fitted and actual present value of earnings
« 10-from age 39 to 48 for people who choose to graduate high school
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Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. Earnings here are Yo‘

Here we plot the density functions f(yO|S:O) generated from the data (the solid curve), against that
predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.

65



Figure 2.4
Densities of fitted and actual present value of earnings
X 10-from age 49 to 58 for people who choose to graduate high school
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. Earnings here are YO.

Here we plot the density functions f(y0|S:O) generated from the data (the solid curve), against that
predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 2.5
Densities of fitted and actual present value of earnings

from age 59 to 65 for people who choose to graduate high school
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. Earnings here are Yo‘
Here we plot the density functions f(yO|S:O) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 3.1

Densities of fitted and actual present value of earnings

X

10 from age 19 to 28 for people who choose to graduate college
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Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. This plot is for Y1'
Here we plot the density functions f(y1|S:1) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 3.2
Densities of fitted and actual present value of earnings

X 102 from age 29 to 38 for people who choose to graduate college
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Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. This plot is for Y1'
Here we plot the density functions f(y1|S:1) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 3.3
Densities of fitted and actual present value of earnings

« 102 from age 39 to 48 for people who choose to graduate college

35 T T T T T T I
- Fjtted
= = Actual

0 | | | | | | |
0 100 200 300 400 500 600 700 800
Thousands of Dollars

Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. This plot is for Y-
Here we plot the density functions f(y1|S:1) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 3.4

Densities of fitted and actual present value of earnings

102 from age 49 to 58 for people who choose to graduate college
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. This plot is for Y1'
Here we plot the density functions f(y1|S:1) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 3.5
Densities of fitted and actual present value of earnings
« 10~ from age 59 to 65 for people who choose to graduate college

8 I I I I I I T

- Fjtted
= = Actual

300

O ] ] ] ] ]

50 100 150 200

Thousands of Dollars

250 350

400

Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. This plot is for Y1'

Here we plot the density functions f(yl|S:1) generated from the data (the solid curve), against that

predicted by the model (the dashed line). We use kernel density estimation to smooth these functions.
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Figure 4
Densities of estimated factors and their normal equivalents
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Factor

Let f(Gl) denote the probability density function of factor 91. We allow f(el) to be a mixture

of normals. Assume ule(el) and 01:Var(91). Let ¢(u1,cl) denote the density of a normal random variable
with mean My and variance o, The solid curve is the actual density of factor 91, f(el), while the dashed
curve is the density of a normal random variable with mean My and variance o, We proceed similarly for

factors 2 and 3.
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Figure 5.1
Densities of "ability" (factor 1) by schooling level
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Factor 1

Let f(el) denote the probability density function of factor 91. We allow f(el) to be a mixture

of normals. The solid line |glots the density of factor 1 conditional on choosing the high school sector,
that is, f(el|choice:high school). The dashed line plots the density of factor 1 conditional on choosing

the college sector, that is, f(61|choice:college).
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Figure 5.2
Densities of factor 2 by schooling level

09 I I I I I I T
== High School
4 - = College

-2.5 -2 -15 -1 -0.5

Factor 2

Let f(ez) denote the probability density function of factor 92. We allow f(ez) to be a mixture

IEIOtS the density of factor 2 conditional on choosing the high school sector,

of normals. The solid line _ _ hi (
ool). The dashed line plots the density of factor 2 conditional on choosing

that is, f(92|choice:high sC
the college sector, that is, f(92|choice:college).
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Figure 5.3
Densities of factor 3 by schooling level
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Factor 3

Let f(eg) denote the probability density function of factor 63. We allow f(e3) to be a mixture
of normals. The solid line ﬁIOtS the density of factor 3 conditional on choosing the high school sector,

that is, f(63|choice:high sC
the college sector, that is, f(63|choice:college).
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Figure 6.1
Densities of ex post present value of counterfactual and fitted earnings
% 107 from age 19 to 65 in the high school sector
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Let Yo denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%
interest rate). Let f(YO) denote its density function. The dashed line plots the predicted Y0 density
conditional on choosing high school, that is, f(Y0|S:O), while the dashed line shows the counterfactual
density function of YO for those agents who are actually college graduates, that is, f(YO|S:1). This
assumes that the agent chooses schooling without knowing 63 and e:(eo’t, € t=0,...T)
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Figure 6.2
Densities of ex post present value of counterfactual and fitted earnings
X107 from age 19 to 65 in the college sector
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Let Y1 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%
interest rate). Let f(Yl) denote its density function. The dashed line plots the predicted Y1 density
conditional on choosing college, that is, f(Y1|S:1), while the solid line shows the counterfactual
density function of Y1 for those agents who are actually high school graduates, that is, f(Y1|S:0). This
assumes that the agent chooses schooling without knowing 63 and e:(so’t, €y t=0,...T)
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Figure 6.3
Densities of ex ante present value of counterfactual and fitted earnings

<10~ from age 19 to 65 in the high school sector
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Let e:(eo v & p t=0,...T). Let Ee 8(YO) denote the ex ante present value of earnings from age 19 to 65 in the

high school sector (discounted at'a 3% interest rate). Let f(Ee ,s(Yo)) denote its density function. The solid
curve plots the predicted Y0 density conditional on choosing h?igh school, that is, f(Ee 18(Y0)|S:O), while the
dashed line shows the counterfactual density function of Ee ,e(YO) for those agents who are actually college
graduates, that is, f(Ee | (Y0)|S:1). This assumes that the aegent chooses schooling without knowing 93 and e.
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Figure 6.4
Densities of ex ante present value of counterfactual and fitted earnings

<10~ from age 19 to 65 in the college sector
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Let e:(.s0 0 & p t=0,...T). Let Ee 8(Yl) dt-arr?&lés %dgxogr%) H?é%ent value of earnings from age 19 to 65 in the

college sector (discounted at a 3% interest rate). Let f(Ee ,e(Yl)) denote its density function. The solid

curve plots the counterfactual Y1 density conditional on cﬁoosing high school, that is, f(Ee ,£(Y1)|S:0), while the
dashed line shows the predicted density function of Ee ’S(Yl) for those agents who are actlfally college
graduates, that is, f(E9 18(Y1)|S:1). This assumes that the agent chooses schooling without knowing 93 and e.
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Figure 6.5
Densities of present value of counterfactual and fitted earnings from age 19 to 65
assuming perfect certainty in the high school sector
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Let YO denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%
interest rate). Let f(YO) denote its density function. The solid curve plots the predicted Y0 density
conditional on choosing high school, that is, f(YO|S:O), while the dashed line shows the counterfactual
density function of Y0 for those agents who are actually college graduates, that is, f(YO|S:1). This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Figure 6.6
Densities of present value of counterfactual and fitted earnings from age 19 to 65

<107 assuming perfect certainty in the college sector
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Let Y1 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%
interest rate). Let f(Yl) denote its density function. The solid curve plots the counterfactual Y, density
conditional on choosing high school, that is, f(Y1|S:0), while the dashed line shows the predicted
density function of Y, for those agents who are actually college graduates, that is, f(Y1|S:1). This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Figure 7.1

Densities of ex post returns to college by level of schooling chosen
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Let YO,Y1 denote the present value of earnings in the high school and college sectors, respectively.

Define ex post returns to college as the ratio R=(Y1—Y0)/YO. Let f(r) denote the density function of

the random variable R. The solid line is the density of ex post returns to colege for high school

graduates, that is f]$r|S:0). The dashed line is the density of ex post returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without knowing 63 and

s:(solt, €y t=0,...T)
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Figure 7.2

Densities of ex ante returns to college by level of schooling chosen
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Fraction of the Base Staje . . :
Lete=(e. €, ,1t=0,.T). LetY, ,Y1 denote the present value of earnings in the high school and college

sectors, respectively. Define ex ante returns to college as the ratio Ee 8(R):Ee e((Yl_YO)/YO)' Let f(r)

denote the density function of the random variable Ee S(R). The solid line is the density of ex post returns
X

to college for high school graduates, that is f(r|S=0). The dashed line is the density of ex post returns to

college for college graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without

knowing 63 and €.
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Figure 7.3

Densities of returns to college by schooling level chosen assuming perfect certainty
07 I I I I I I I

T
== High School
= = College

0.6 1

0.5

0.4

0.3

0.2

0.1

Fraction of the Base State

Let YO,Yl denote the present value of earnings in the high school and college sectors, respectively
(discounted at a 3% interest rate). Define returns to college as the ratio R:(Yl_YO)/YO' Let f(r)

denote the density function of the random variable R. The solid line is the density of returns to college
for high school graduates, that is f(r|S=0). The dashed line is the density of returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling with complete knowledge of
future earnings.



Figure 8
Densities of monetary value of psychic cost

<107 both overall and by schooling level
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Let C denote the monetary value of psychic costs. Let f(c) denote the density function of psychic costs
in monetary terms. The dashed line shows the density of psychic costs for high school graduates, that
is f(c|S=0). The dotted line shows the density of psychic costs for college graduates, that is, f(c|S=1).
The solid line is the unconditional density of the monetary value of psychic costs, f(c).



Figure 9.1
Densities of present value of high school earnings
under different information sets for the agent calculated
«10 for the entire population irregardless of schooling choice
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Let ® denote the agent's information set. Let Yo denote the present value of earnings in the high school

sector (discounted at a 3% interest rate). Let f(y0|®) denote the density of the present value of earnings

S |
0 200 400 600

in high school conditioned on the information set ®. Then:
The solid line plots f(y0|®) under no information, i.e. ®=.

The dashed line plots f(y0|®) when only factor 1 is in the information set, i.e. ®=(61).
The dashed-dotted line plots f(y0|®) when factors 1 and 2 are in the information set, i.e. ®=(61,62).
The crossed line plots f(y0|®) when all factors are in the information set, i.e. ®=(61,62,93).

The X are put at the mean and are assumed to be known. The 6, when known, are set at their mean of zero.
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Figure 9.2
Densities of present value of college earnings
under different information sets for the agent calculated
«10 for the entire population irregardless of schooling choice
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Let ® denote the agent's information set. Let Y1 denote the present value of earnings in the college

sector (discounted at a 3% interest rate). Let f(y1|®) denote the density of the present value of earnings

in high school conditioned on the information set ®. Then:
The solid line plots f(y1|®) under no information, i.e. =.

The dashed line plots f(y1|®) when only factor 1 is in the information set, i.e. ®=(e1).
The dashed-dotted line plots f(y1|®) when factors 1 and 2 are in the information set, i.e. ®=(91,92).
The crossed line plots f(y1|®) when all factors are in the information set, i.e. ®=(61,62,63).

The X are put at the mean and are assumed to be known. The 6, when known, are set at their mean of zero.
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Figure 9.3
Densities of returns college vs high school
under different information sets for the agent calculated
«10 for the entire population irregardless of schooling choice
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Let ® denote the agent's information set. Let YO,Y1 denote the present value of earnings in the high school

and college sectors, respectively (discounted at a 3% interest rate). Let D=Y0-Y 1 be the difference of the present

value of earnings in the college and high school sector. f(d|®) denote the density of the difference of present
value of earnings conditioned on the information set ®. Then:

The solid line plots f(d|®) under no information, i.e. @=.
The dashed line plots f(d|®) when only factor 1 is in the information set, i.e. ®=(61).

The dashed-dotted line plots f(d|®) when factors 1 and 2 are in the information set, i.e. ®=(61,62).
The crossed line plots f(d|®) when all factors are in the information set, i.e. ®=(91,92,63).

The X are put at the mean and are assumed to be known The 6 when known are set at their mean of zero
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Table 1

Estimated Ex Post Returns to Schooling on Schooling and Their
Effects on Schooling Choice using OLS and IV To Estimate The Ex
Post Returns To Schooling

Log Earnings Regressionl

OLS
Variable Coefficient Std. Error
School (High School vs. College) 0.2735 0.0344
School*ASVAB 0.0279 0.0063
Instrumental Variables”
School 0.2573 0.0451
School*ASVAB 0.0153 0.0083

Schooling Choice Probit Equation3

Using OLS Results
Variable Coefficient Std. Error
bschool T Pschoo*asvap*ASVAB 12.6244 0.7284
Marginal Effect 4.8333 0.2654
Using 1V Coefficients
bschool T Pschoo*asvaptASVAB 229150 1.3221
Marginal Effect 8.7731 0.4817

1 Includes controls for Mincer experience (age - years of schooling - 6), experience squared, cohort dummies, and
ASVAB scores.

2 We use parental education, family income, broken home, number of siblings, distance to college, local tuition,
cohort dummies, South at age 14 and urban at age 14 to instrument for schooling. We then interact the instruments
value of school with ASVAB scores.

3 We use the predicted return to school to test whether future earnings affect current schooling choices. We include
controls for family background, cohort dummies, distance to college, and local tuition.
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Table 2.1
Descriptive Statistics from the Pooled NLSY/1979 and PSID (white males)

Full Sample High School Sample College Sample
Variable Name Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max

Asvab AR* 1362 0.72 0.95 -1.78 1.96 747 0.26 0.89 -1.78 1.96 615 1.27 0.70 -1.36 1.96
Asvab PC* 1362 0.42 0.80 -2.68 1.36 747 0.07 0.86 -2.68 1.36 615 0.84 0.44 -1.06 1.36
Asvab WK* 1362 0.52 0.72 -2.29 1.34 747 0.20 0.76 -2.29 1.34 615 0.92 0.41 -1.36 1.34
Asvab MK* 1362 0.62 1.03 -1.62 2.11 747 0.00 0.81 -1.62 2.11 615 1.38 0.73 -1.46 2.11

Asvab CS* 1362 0.21 0.85 -2.52 2.49 747 -0.08 0.79 -2.52 2.08 615 0.56 0.77 -2.52 2.49
Urban at age 14 3695 0.79 0.40 0.00 1.00 1953 0.75 0.44 0.00 1.00 1742 0.85 0.36 0.00 1.00
Parents Divorced 3695 0.15 0.36 0.00 1.00 1953 0.18 0.38 0.00 1.00 1742 0.13 0.34 0.00 1.00
Number of Siblings 3695 2.86 1.96 0.00 17.00 1953 3.19 2.08 0.00 14.00 1742 2.49 1.74 0.00 17.00
Father's Education 3695 4.31 1.94 1.00 8.00 1953 3.56 1.51 1.00 8.00 1742 5.15 2.03 1.00 8.00
Mother's Education 3695 4.21 1.55 1.00 8.00 1953 3.68 1.26 1.00 8.00 1742 4.79 1.63 1.00 8.00
Born between 1906 and 1915 3695 0.01 0.10 0.00 1.00 1953 0.01 0.12 0.00 1.00 1742 0.00 0.06 0.00 1.00
Born between 1916 and 1925 3695 0.04 0.19 0.00 1.00 1953 0.04 0.21 0.00 1.00 1742 0.03 0.18 0.00 1.00
Born between 1926 and 1935 3695 0.07 0.25 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.06 0.24 0.00 1.00
Born between 1936 and 1945 3695 0.09 0.29 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.11 0.31 0.00 1.00
Born between 1946 and 1955 3695 0.20 0.40 0.00 1.00 1953 0.17 0.37 0.00 1.00 1742 0.24 0.43 0.00 1.00
Born between 1956 and 1965 3695 0.55 0.50 0.00 1.00 1953 0.56 0.50 0.00 1.00 1742 0.53 0.50 0.00 1.00
Born between 1966 and 1975 3695 0.04 0.21 0.00 1.00 1953 0.07 0.25 0.00 1.00 1742 0.02 0.14 0.00 1.00
Education 3695 1.47 0.50 1.00 2.00 1953 1.00 0.00 1.00 1.00 1742 2.00 0.00 2.00 2.00
Age in 1980 3695 26.87 12.32 5.00 68.00 1953 26.53 13.10 5.00 68.00 1742  27.25 11.39 9.00 68.00
Grade Completed 1980 1362 12.06 1.66 8.00 18.00 747 11.44 0.92 8.00 12.00 615 12.80 2.03 9.00 18.00
Enrolled in 1980 1362 0.57 0.50 0.00 1.00 747 0.33 0.47 0.00 1.00 615 0.86 0.35 0.00 1.00
PV of Earnings** 7152 2.38 1.64 0.00 18.59 3708 1.95 1.14 0.00 11.52 | 3444 2.83 1.95 0.00 18.59
Tuition at age 17 3695 1.80 0.72 0.00 5.55 1953 1.82 0.74 0.00 5.55 1742 1.76 0.70 0.00 5.55
*Note:

AR=Arithmetic Reasoning

PC=Paragraph Composition

WK= Word Knowledge
MK=Math Knowledge
CS=Coding Speed

**In thousands of Dollars
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Table 2.2

List of Variables Included and Excluded in Each System

Variable Name Cost Function Test System Earnings
Urban at age 14 Yes Yes No
Parents Divorced Yes Yes No
Number of Siblings Yes Yes No
Father's Education Yes Yes No
Mother's Education Yes Yes No
Born between 1906 and 1915 Yes No Yes
Born between 1916 and 1925 Yes No Yes
Born between 1926 and 1935 Yes No Yes
Born between 1936 and 1945 Yes No Yes
Born between 1946 and 1955 Yes No Yes
Born between 1956 and 1965 Yes No Yes
Born between 1966 and 1975 Yes No Yes
Age in 1980 No Yes No
Grade Completed 1980 No Yes No
Enrolled in 1980 No Yes No
Tuition at age 17 Yes No No
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Table 2.3
Estimated Coefficients in Schooling Choice Equation

Coefficients Mean Standard Deviation
Constant -2.2504 0.3587
Mother's Education 0.2250 0.0274
Father's Education 0.3386 0.0246
Parents Divorced -0.1976 0.0845
Number of Siblings -0.1012 0.0163
Urban Residence at age 14 0.1998 0.0755
Dummy birth 1916-1925 0.6076 0.3582
Dummy birth 1926-1935 0.5553 0.3471
Dummy birth 1936-1945 0.7050 0.3417
Dummy birth 1946-1955 0.4160 0.3355
Dummy birth 1956-1965 -0.2064 0.3346
Dummy birth 1966-1975 -1.4159 0.3703
Tuition at 4-year college -0.0953 0.0447
Loading Factor 1 1.3523 0.1315
Loading Factor 2 0.4785 0.1335

Loading Factor 3 -0.0624 0.1274
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Table 2.4
Estimated Coefficients for High School Earnings Equation

Period Zero Period One Period Two Period Three Period 4

Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean StdDev  Mean  Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.1054  0.0829
Dummy birth 1926-1935 - - - - - - -0.0225 0.0974 -0.1443 0.0809
Dummy birth 1936-1945 - - - - -0.1105 0.1034 -0.0201 0.0989 0.0616 0.1276
Dummy birth 1946-1955 - - -0.1779 0.0987 -0.2636 0.0917 0.1657 0.1973 - -
Dummy birth 1956-1965 -0.7107 0.0637 -0.2936 0.0883 -0.0757 0.1385 - - - -
Dummy birth 1966-1975 -0.6730 0.0960 -0.2360 0.2267 - - - - - -
Constant 2.6276 0.0658 2.4021 0.0935 1.8880 0.0870 1.2819 0.0870 0.6147 0.0746
Loading Factor 1 0.1636 0.0433 0.1059 0.0485 0.0164 0.0949 0.0466 0.1122 -0.0077 0.0775
Loading Factor 2 -1.2138 0.0903 -1.6282 0.1142 -1.4415 0.1172 -1.1225 0.1056 -0.3924 0.0763
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.2428 0.1684 0.2791 0.1510 0.1327 0.1013

Estimated Coefficients for College Earnings Equation
Period Zero Period One Period Two Period Three Period 4

Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean StdDev  Mean  Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.2976  0.3218
Dummy birth 1926-1935 - - - - - - -0.0881 0.1846 -0.3743 0.3147
Dummy birth 1936-1945 - - - - -0.0059 0.1710 0.0384 0.1696 -0.2256 0.3457
Dummy birth 1946-1955 - - -0.1944 0.1262 -0.0512 0.1568 0.2122  0.2238 - -
Dummy birth 1956-1965 -0.7375 0.0686 -0.2340 0.1182 -0.1081 0.2910 - - - -
Dummy birth 1966-1975 -0.3459 0.1736 1.3144 0.7365 - - - - - -
Constant 2.2802 0.0670 3.5270 0.1191 3.1859 0.1720 2.4843 0.1914 13632 0.3367
Loading Factor 1 0.2225 0.0853 0.3137 0.1296 -0.2870 0.2415 -0.2676  0.2656 -0.0144 0.2300
Loading Factor 2 1.0000 0.0000 2.3887 0.1573 2.3194 0.1715 1.7102 0.1806 0.7481 0.1231
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.5354 0.1627 0.8876  0.1665
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Estimated Coefficients of Test Equations

Table 2.5

Paragraph
Arithmetic Reasoning Composition Word Knowledge Math Knowledge Coding Speed

Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Constant -1.1198  0.2256  -1.0262 0.1719  -0.5180  0.2032 -1.4751 0.2265 -1.2706  0.2281
Mother's Education 0.0735 0.0177 0.0529 0.0136 0.0614 0.0158 0.0469 0.0178 0.0561 0.0175
Father's Education 0.0494 0.0136 0.0593 0.0105 0.0461 0.0121 0.0168 0.0139 0.0870 0.0135
Family Income in 1979 0.0008 0.0015 0.0009 0.0012 0.0000 0.0014 0.0038 0.0016 0.0021 0.0015
Parents Divorced -0.0584  0.0564 -0.0514 0.0440 -0.0947  0.0508 0.0458 0.0569  -0.0138  0.0560
Number of Siblings -0.0193  0.0111  -0.0397  0.0086  -0.0143  0.0099 -0.0273  0.0115 -0.0313  0.0110
South Residence at age 14 -0.1278  0.0463  -0.0906  0.0358  -0.0064 0.0423  -0.1418 0.0475 -0.1365 0.0464
Urban Residence at age 14 0.0640 0.0461  -0.0243  0.0361 0.0117 0.0422 0.0258 0.0468 0.0529 0.0466
Enrolled at School at Test Date 0.0646 0.0528  -0.0036  0.0403  -0.0515 0.0471 0.0074 0.0527 0.3122 0.0529
Age at Test Date 0.0096 0.0164 0.0237 0.0128  -0.0170  0.0148 0.0048 0.0165 -0.0510 0.0166
Highest Grade Completed at Test Date  0.0911 0.0198 0.0604 0.0155 0.0721 0.0179 0.1082 0.0201 0.1732 0.0198
Loading Factor 1 1.0000 0.0000 0.6801 0.0321 0.8069 0.0377 0.5648 0.0319 0.9562 0.0293
Loading Factor 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3a

Goodness of Fit Tests: Predicted Earnings Densities vs. Actual Densities
The Three-Factor Model

High School College Overall

Period 1 x2 Statistic 91.9681 74.2503 204.3823

Critical Value*| 107.5217 82.5287 178.4854

. XZ Statistic 86.6649 107.6417 207.6152
Period 2 M

Critical Value*| 116.5110 116.5110 218.8205

. %~ Statistic 26.2658 45.5301 106.5721
Period 3 ~

Critical Value* 43.7730 55.7585 91.6702

. %~ Statistic 35.3846 29.7218 55.5758
Period 4 ~

Critical Value* 31.4104 30.1435 55.7585

. Xz Statistic 23.2193 14.9131 41.8657
Period 5 ~

Critical Value* 23.6848 16.9190 35.1725

* 95% Confidence, equiprobable bins with aprox. 15 people per bin
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Table 3b

The Two-Factor Model

Goodness of Fit Tests: Predicted Earnings Densities vs for Actual Earnings Densities

High School College Overall

Period 1 y” Statistic 109.5702 132.3027 267.4894

Critical Value* 107.5217 82.5287 178.4854

: y” Statistic 104.1649 150.5556 247.6732
Period 2 A

Critical Value* 116.5110 116.5110 218.8205

. y” Statistic 40.7028 61.7322 114.1692
Period 3 Al

Critical Value* 43.7730 55.7585 91.6702

. y* Statistic 39.7253 47.5559 64.2503
Period 4 Al

Critical Value* 31.4104 30.1435 55.7585

: y” Statistic 18.3217 26.5855 40.4078
Period 5 A

Critical Value* 23.6848 16.9190 35.1725

* 95% Confidence, equiprobable bins with aprox. 15 people per bin
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Table 4.1: Ex-Post Conditional Distributions (College Earnings Conditional on High School Earnings)
Pr(d;<Yc<d;+1 | d;<Yh<d;+1) where d; is the ith decile of the College Lifetime Ex-Post Earnings Distribution and d; is the jth

decile of the High School Ex-Post Lifetime Earnings Distribution
Corrrelation(Y¢,Yy) = -0.3899

College
High School 1 2 3 4 5 6 7 8 9 10
1 0.0035 0.0109 0.0240 0.0326 0.0524 0.7538 0.1137 0.1557 0.2511 0.2808
2 0.0098 0.0244 0.0419 0.0631 0.0894 0.1122 0.1391 0.1747 0.2048 0.1407
3 0.0160 0.0466 0.0741 0.0877 0.1041 0.1213 0.1441 0.1549 0.1581 0.0931
4 0.0236 0.0603 0.0911 0.1062 0.1220 0.1298 0.1348 0.1372 0.1266 0.0683
5 0.0439 0.0848 0.1108 0.1227 0.1303 0.1309 0.1211 0.1139 0.0928 0.0489
6 0.0627 0.1074 0.1214 0.1304 0.1330 0.1218 0.1168 0.0954 0.0695 0.0415
7 0.0963 0.1256 0.1340 0.1334 0.1200 0.1200 0.0937 0.0784 0.0554 0.0433
8 0.1378 0.1659 0.1529 0.1396 0.1114 0.0925 0.0740 0.0561 0.0296 0.0402
9 0.1939 0.1970 0.1498 0.1180 0.1002 0.0771 0.0534 0.0362 0.0200 0.0543
10 0.3354 0.1983 0.1167 0.0812 0.0515 0.0351 0.0266 0.0152 0.0130 0.1271
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Table 4.2: Ex-Ante Conditional Distribution (College Earnings Conditional on High School Earnings)
Pr(d;<Yc<d;+1 | d;<Yh<d;+1) where d; is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d; is the jth decile
of the High School Ex-Ante Lifetime Earnings Distribution
Individual expects out 65 and g, for t=0, ... , 4, which are unknown by the agent at the time of the schooling choice.
Corrrelation(Y¢,Yy) = -0.69936591

College
High School 1 2 3 4 5 6 7 8 9 10
1 0.0002 0.0079 0.0108 0.0226 0.0421 0.0594 0.0909 0.1447 0.2236 0.3978
2 0.0044 0.0180 0.0286 0.0530 0.0720 0.1010 0.1362 0.1686 0.2114 0.2068
3 0.0106 0.0362 0.0578 0.0786 0.1062 0.1152 0.1498 0.1618 0.1692 0.1146
4 0.0200 0.0546 0.0786 0.1024 0.1204 0.1266 0.1376 0.1406 0.1290 0.0902
5 0.0390 0.0740 0.1004 0.1130 0.1291 0.1387 0.1295 0.1206 0.1010 0.0546
6 0.0454 0.1017 0.1253 0.1353 0.1333 0.1323 0.1189 0.1011 0.0754 0.0314
7 0.0873 0.1299 0.1437 0.1451 0.1299 0.1199 0.0965 0.0777 0.0519 0.0180
8 0.1336 0.1603 0.1613 0.1431 0.1160 0.0974 0.0793 0.0589 0.0389 0.0112
9 0.2063 0.2016 0.1651 0.1293 0.1056 0.0840 0.0540 0.0317 0.0155 0.0068
10 0.4123 0.2318 0.1393 0.0868 0.0556 0.0365 0.0210 0.0110 0.0049 0.0006
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Table 5.1
Average present value of earnings1 for high school graduates
Fitted and Counterfactual’

White males from NLSY79
: : College
High School (Fitted) (counterfactual)
Average Present Value of Earnings 605.92 969.34
Std. Err. 13.719 67.164
Random’ 573.53 987.21
Std. Err. 15.799 47.132

Average returns” to college for high school graduates

Average returns 1.17
Std. Err. 0.1350

' Thousands of dollars. Discounted using a 3% interest rate.
? The counterfactual is constructed using the estimated college outcome equation applied to the population
of persons selecting high school

> It defines the result of taking a person at random from the population regardless of his schooling choice.

* As a fraction of the base state, ie (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).
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Table 5.2
Average present value of earnings1 for college graduates

Fitted and Counterfactual®

White males from NLSY79
High School
11 fi
(Counterfactual) College (fitted)
Average Present Value of Earnings 536.43 1007.64
Std. Err. 26.187 35.113
Random’ 573.53 987.21
Std. Err. 15.799 47.132

Average returns” to college for college graduates

Average returns 1.33
Std. Err. 0.0958

" Thousands of dollars. Discounted using a 3% interest rate.
? The counterfactual is constructed using the estimated high school outcome equation applied to the
population of persons selecting college

> It defines the result of taking a person at random from the population regardless of his schooling choice.

* As a fraction of the base state, ie (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).
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Table 5.3

Average present value of earnings1 for population of persons
indifferent between high school and college
Conditional on education level

White males from NLSY79
High School College
Average Present Value of Earnings 571.33 975.16
Std. Err. 37.066 70.557

Average returns’ to college for people indifferent between high school
and college

High School vs Some College

Average returns 1.26
Std. Err. 0.3691

' Thousands of dollars. Discounted using a 3% interest rate.

* It defines the result of taking a person at random from the population regardless of his schooling choice.

> As a fraction of the base state, ic (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).
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Table 5.4

Average ex-post, ex-ante and perfect certainty returns’
White males from NLSY79

For People who choose High School

ex-post2 ex-ante’ perfect certainty4
Average 1.1594 1.1594 0.9337
Std. Err. 0.1362 0.1362 0.1154

For People who choose College

ex—pos‘[2 ex-ante’ perfect certainty4
Average 1.3398 1.3398 1.6121
Std. Err. 0.1083 0.1083 0.1082

For People Indifferent Between High School and College

ex-post2 ex-ante’ perfect certainty4
Average 1.2585 1.2585 1.2418
Std. Err. 0.3868 0.3868 0.1067

I Let Y0, Y7 denote the present value of earnings in high school and college, respectively. The return to college R is defined
Y1 - Y,
R ( 1 0)
Yo
2 Let I denote the schooling choice index. Let ©¢ denote the information set of the agent at the time of the schooling choice.
Let R denote the return to college. The ex-post mean return to college for a high-school graduate is F (R | Eg (I) < 0),

where Ey (I) = E(I | ©p). Similarly, the ex-post mean return to college for a college graduate is F (R | Ep (I) > 0).
The ex-post mean return to an agent just indifferent between college and high-school is E' (R | E (I) =0).

as

3 Let I denote the schooling index. Let ©¢ denote the information set of the agent at the time of the schooling choice. Let
R denote the return to college. The ex-ante mean return to college for a high-school graduate is E (Eg (R) | Eo (I) < 0).
Similarly, the ex-ante mean return to college for a college graduate is E (Eg (R) | Eo (I) > 0). The ex-ante mean return
to an agent just indifferent between college and high-school is E (Eg (R) | Eo (I) =0). By a property of means, the
mean ex-ante and the mean ex-post returns must be equal for the same conditioning set, i.e. F (FEg(R) | Eq(I) > 0) =

E(R|Ey(I)=0).

4 Let I denote the schooling index. Let R denote the return to college. The return to college under perfect certainty for a
high-school graduate is ' (R | I < 0). Note that now the agent makes his schooling choice under perfect certainty (that
is why we condition on I). Similarly, the return to college under perfect certainty for a college graduate is F (R | I > 0).
The return to college under perfect certainty for an agent just indifferent between college and high-school is F (R | I = 0).
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Table 6.1

Agent’s Forecast Variance of Present Value of Earnings™
Under Different Information Sets
(fraction of the variance explained by ©)**
The Calculation is for the Entire Population Irregardless of Schooling Choice.

Var(Y,) Var (Yy) Var(Y.-Yp)
For lifetime:™
Variance when © = & 156402.14 73827.89 267796.38
O ={0:} 0.95% 0.27% 0.44%
© ={01,0-} 29.10% 29.43% 47.42%
O = {0,02,03} 68.03% 32.27% 62.65%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 19 and 65
as predicted at age 19.

**The variance of the unpredictable component of period 1 college earnings
© = {61} is (1-0.0095)*156402.14
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Table 6.2

Agent’s Forecast Variance of Period Zero Earnings™

Under Different Information Sets

(fraction of the variance explained by ©)

The Calculation is for the Entire Population Irregardless of Schooling Choice.

*3k

Var(Y,) Var (Yy) Var(Y.-Yp)
For lifetime:™
Variance when © = & 13086.24 14303.35 33910.17
O ={0.} 1.90% 0.91% 0.05%
© = {01,052} 23.58% 30.08% 41.02%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 19 and 28
as predicted at age 19.

**The variance of the unpredictable component of period 1 college earnings
© = {6:} is (1-0.0190)*13086.24
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Table 6.3

Agent’s Forecast Variance of Period One Earnings*
Under Different Information Sets
(fraction of the variance explained by ©)**
The Calculation is for the Entire Population Irregardless of Schooling Choice.

Var(Y,) Var (Yp) Var(Y.-Yp)
For lifetime:™
Variance when © = & 26618.64 17545.90 65804.89
e = {0, 1.90% 0.31% 0.34%
O = {6,,0,) 62.43% 43.00% 69.60%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 29 and 38

as predicted at age 19.

**So we would say that the variance of the unpredictable component of period 1
college earnings © = {6} is (1-0.0190)*26618.64
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Table 6.4

Agent’s Forecast Variance of Period Two Earnings™
Under Different Information Sets
(fraction of the variance explained by ©)**
The Calculation is for the Entire Population Irregardless of Schooling Choice.

Var(Y.) Var (Yy,) Var(Y.-Yy)
For lifetime: ™
Variance when © = & 40406.20 16716.50 68918.36
O = {6} 0.95% 0.00% 0.63%
O = {6,,0,) 38.66% 35.02% 58.63%
O = {01,05,03) 75.25% 140.17% 70.98%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 39 and 48
as predicted at age 19.

**The variance of the unpredictable component of period 1 college earnings
© = {61} is (1-0.0095)*40406.20
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Table 6.5

Agent’s Forecast Variance of Period Three Earnings™
Under Different Information Sets
(fraction of the variance explained by ©)**
The Calculation is for the Entire Population Irregardless of Schooling Choice.

Var(Y,) Var (Yp) Var(Y.-Yp)
For lifetime:™
Variance when © = @ 53194.23 14605.29 66926.12
© ={60:} 0.65% 0.08% 0.73%
O = {61,6,) 16.18% 24.55% 34.65%
O = {61,0-,05) 81.20% 31.53% 70.11%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 49 and 58
as predicted at age 19.

**The variance of the unpredictable component of period 1 college earnings
O = {61} is (1-0.0065)*53194.23
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Table 6.6

Agent’s Forecast Variance of Period Four of Earnings™
Under Different Information Sets
(fraction of the variance explained by ©)**
The Calculation is for the Entire Population Irregardless of Schooling Choice.

Var(Y,) Var (Yp) Var(Y.-Yp)
For lifetime:™
Variance when © = & 23096.81 10656.83 32236.82
O = {6, 0.00% 0.00% 0.00%
O = {61,0,) 6.84% 4.10% 11.41%
O = {61,05,05) 56.70% 6.16% 37.95%

*We use an interest rate of 3% to calculate the present value of earnings.
TVariance of the unpredictable component of earnings between age 59 and 65
as predicted at age 19.

**The variance of the unpredictable component of period 1 college earnings
© = {01} is (1-0.00)*23096.81
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