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1 Estimating Distributions of Returns
to Schooling

• Restrict the dependence among the ( 0 1 ) by factor
models or other restrictions Urzua (2005).

• A low dimensional set of random variables generates the
dependence across the unobservables.

• Such dimension reduction coupled with use of the choice
data and measurements that proxy components of the
( 0 1 ), provides enough information to identify the
joint distribution of ( 1 0) and of ( 1 0 ).
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• Assume separability between unobservables and observ-
ables and that 1 and 0 are scalars:

1 = 1( ) + 1

0 = 0( ) + 0

= ( ) +

= 1( 0)

Allow any to be in .
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• To motivate the approach, assume that ( 0 1 ) is
normally distributed with mean zero and covariance ma-
trix (“G” for Generalized Roy).

• If the distributions are normal, they can be fully charac-
terized by means and covariances.

• Under normality, standard results in the selection bias
literature show that from data on 1 given = 1, and
and data on 0 for = 0 and and data on choices

of schooling given , one can identify 1( ), 0( ) and
( ), the latter up to scale (where 2 = ( )).

• In addition, one can identify the joint densities of ( 0 )
and ( 1 )

• Without further information, one cannot identify the joint
density of ( 0 1 ).
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• To get the gist of the method underlying recent work, we
adopt a factor structure model for the 0 1 .

• For simplicity, we assume a one factor model where is
the factor that generates dependence across the unob-
servables:

0 = 0 + 0

1 = 1 + 1

= +

Assume ( 0) = 0 ( 1) = 0 ( ) = 0. ( ) = 0
( 0) = 0, ( 1) = 0 and ( ) = 0

• We assume that is a scalar factor (say unmeasured abil-
ity)

• ( 0 1 ) are independent of and of each other.
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• Under normality or from the general semiparametric iden-
tification analysis, we can identify

( 0 ) =
0 2

( 1 ) =
1 2

where 2 = ( ).

• From the ratio of the second covariance to the first we
obtain 1

0
.

• Thus we obtain the sign of the dependence between 0 1

because
( 0 1) = 0 1

2

From the ratio, we obtain 1 if we normalize 0 = 1.
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• Without further information, we can only identify the
variance of up to scale, which can be normalized to 1.

• Knowledge of the sign of 1

0
is informative on the sign of

the correlation between college and high school skills,
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Example 1 Access to a single test score

• Assume access to data on 0 given = 0 ; to data
on 1 given = 1 ;

Data on given .

• Suppose that the analyst also has access to a single test
score

= ( ) +

= +

= ( ) + +

is independent of 0, 1, and ( ).
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Identify the mean ( ) from observations on and

• We pick up three additional covariance terms, conditional
on :

( 1 ) = 1
2

( 0 ) = 0
2

( ) = 2

• To simplify the notation we keep the conditioning on
and implicit.

• Normalize the loading on the test score to one ( = 1).

• No longer necessary to normalize 0 = 1 as in the pre-
ceding section.
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• From the ratio of the covariance of 1 with with the
covariance of with , we obtain the left hand side of

( 1 )

( )
=

1
2

2
= 1

= 1 (normalization).

• From the preceding argument without the test score, we
obtain 0 since

( 1 )

( 0 )
=

1
2

0
2
=

1

0

• From knowledge of 1 and 0 the normalization for
we obtain 2 from ( 1 ) or ( 0 ).

• We obtain (up to scale ) from ( ) =
2 since we know (= 1) and 2. The model

is overidentified.
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• Observe that if we write the latent variable determining
schooling choices as:

= 1 0

= ( ) +

= +

• is independent of and the other ’s. ( ) = 0 and
is independent of ( ).

                     = 1 0

                     = 1 0

            ( ) = ( 1) + ( 0) + ( )
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• Identification of 0, 1 and implies identification of
.

• Identification of the variance of implies identification
of the variance of since the variances of 1 and 0 are
known.

• Observe further that the scale is identified if there
are variables in but not in (Heckman,1976,1979;
Heckman and Robb, 1985, 1986; Willis and Rosen, 1979).
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From the variance of given , we obtain ( ) since we
know ( ) (conditional on ) and we know 2 2:

( ) 2 2 = 2

Normality not essential.

Possible to nonparametrically identify the distributions of ,
0, 1, and .
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Example 2 Two (or more) periods of panel
data on earnings

Suppose that for each person we have two periods of earnings
data in one counterfactual state or the other.

1 = 1 ( ) + 1 + 1 = 1 2

0 = 0 ( ) + 0 + 0 = 1 2

Observe one or the other lifecycle stream of earnings for each
person, but never both streams for the same person.
Thus in terms of the index

= ( 12 + 11) ( 02 + 01)

= 1( 0) and is cost
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Under normality, application of the standard normal selection
model allows us to identify

1 ( ) for = 1 2

0 ( ) for = 1 2

11( ) + 12( ) 01( ) 02( ) ( )

where = 11 + 12 01 02

• Can recover the scale if there are variables in ( 11( ) +

12( ) ( 01( ) + 02( ))) not in ( ).

Assume that this condition holds.
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• From normality,can recover the joint distributions of ( 11 12)
and ( 01 02) but not directly the joint distribution
of ( 11 12 01 02).

• Thus, conditioning on and we can recover the joint
distribution of ( 01 02) and ( 11 12) but

apparently not that of ( 01 02 11 12).
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However, under our factor structure assumptions this joint dis-
tribution can be recovered as we next show.

From the available data, we can identify the following covari-
ances:

( 12) = ( 12 + 11 02 01 ) 12
2

( 11) = ( 12 + 11 02 01 ) 11
2

( 01) = ( 12 + 11 02 01 ) 01
2

( 02) = ( 12 + 11 02 01 ) 02
2

( 11 12) = 11 12
2

( 01 02) = 01 02
2.
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• If we normalize 01 = 1 we can form the ratios

( 12)

( 01)
= 12

( 11)

( 01)
= 11

( 02)

( 01)
= 02.

• From these coe cients and the remaining covariances, we
identify 2 using ( 11 12) and/or ( 01 02).

• Thus if the factor loadings are nonzero,
( 11 12)

11 12
= 2 and

( 01 02)

01 02
= 2

• We can recover 2 (since we know 11 12 and 01 02)
from ( 11 12) and ( 01 02).
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• We can also recover since we know

2
12 + 11 02 01 and 11 12 01 02

• We can form (conditional on )

( 11 01) = 11 01
2

( 12 01) = 12 01
2

( 11 02) = 11 02
2

( 12 02) = 12 02
2

• Can identify the joint distribution of ( 01 02 11 12 )
since we can identify ( ) from the schooling choice
equation since we know 01 ( ) 02 ( ) 11 ( ) 12 ( ).

• As in Example 1, this analysis can be generalized.
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• The key idea to constructing joint distributions of coun-
terfactuals using the analysis of Cunha, Heckman and
Navarro (2005a,b,c,d) is not the factor structure for un-
observables although it is convenient.

• The motivating idea is the assumption that a low dimen-
sional set of random variables generates the dependence
across outcomes.
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2 Ex Ante and Ex Post Returns: Dis-
tinguishing Heterogeneity fromUn-
certainty

2.1 A Generalized Roy Model

Let denote di erent schooling levels. = 0 denotes choice
of the high school sector, and = 1 denotes choice of the
college sector.

21



1 is the ex post present value of earnings in the college sector,
discounted over horizon ,

1 =
X
=0

1

(1 + )

0 is the ex post present value,

0 =
X
=0

0

(1 + )

is the one-period risk-free interest rate. 1 and 0 can
be constructed from time series of ex post potential earnings
streams in the two states: ( 0 0 0 ) for high school and
( 1 0 1 ) for college.
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The variables 1 0 and are ex post. Under a complete
markets assumption with all risks diversifiable (so that there
is risk-neutral pricing)

=

½
1 if ( 1 0 | I 0) 0
0 otherwise.

(2.1)

Under perfect foresight, the postulated information set would
include 1 0 and

Decision rule is more complicated in the absence of full risk
diversifiability
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2.2 Identifying Information Sets in the Card
Model

Decompose the “returns” coe cient or the gross gains from
schooling in an earnings.

• Write discounted lifetime earnings of person as

= + + (2.2)

is the person-specific ex post return, is years of
schooling is a mean zero unobservable.

• Decompose into two components = + , is a
component known to the agent is revealed after the
choice is made.
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• Schooling choices = ( ), are other observed
determinants.

• represents additional factors unobserved by the analyst
but known to the agent.

• If is known to the agent and acted on, it enters the
schooling choice equation Otherwise it does not.

• and any measurement errors in 1 or 0 should not
be determinants of schooling choices.
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• Suppose that the model for schooling can be written in
linear in parameters form, as in the Card:

= 0 + 1 + 2 + 3 + (2.3)

has mean zero and is assumed to be independent of

• and the proxy costs
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As a simple example, suppose that we observe the cost of funds,
, and assume ( ).

This assumes that the costs of schooling are independent of
the “return” and the payment to raw ability,

We can establish identification of ¯ (If there are observed re-
gressors determining the mean of ¯ we identify ¯ ( ) the
conditional mean of ).
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• Suppose that agents do not know but know ( ) = ¯

• If agents act on this expected return to schooling, deci-
sions are given by

=
¯

ex post earnings after schooling are

= ¯ + ¯ + {( ¯) + ( ¯) }

• Observe that a regression of on identifies ¯
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In this case,
( ) = ¯ ( )

( ¯) is independent of

Note further that [( ¯) ( ¯) ]
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If, on the other hand, agents know , OLS breaks down for
identifying ¯ because is correlated with

We can identify ¯ and the distribution of using the method
of instrumental variables.

In this case

( ) = ¯ ( ) + ( ( ¯) )

We observe can identify ¯ and can construct ( ¯) for each
. Can form both terms on the right hand side.

=

We can identify

Can solve = +
30



Under the assumption that agents do not know but forecast
it by ¯ is independent of so we can test for independence
directly.

In this case the second term on the right hand side is zero and
does not contribute to the explanation of (ln )
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Durbin (1954) — Wu (1978) — Hausman (1978) test can be used
to compare the OLS and IV estimates, which should be the
same under the model that assumes that is not known at the
time schooling decisions are made and that agents base their
choice of schooling on ( ) = ¯.

If we add selection bias to the Card model (so ( | ) de-
pends on ), we can identify ¯ by IV. OLS is no longer consis-
tent even if, in making their schooling decisions, agents forecast
using ¯

Thus the Durbin-Wu-Hausman test is not helpful in assessing
what is in the agent’s information set.
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